MATLAB

The Language of Technical Computing

Computation

Visualization

Programming

MATLAB Function Reference Volume 1: A - E

Version 6

How to Contact The MathWorks:

	www.mathworks.com comp.soft-sys.matlab	Web Newsgroup
@	support@mathworks.com suggest@mathworks.com bugs@mathworks.com doc@mathworks.com service@mathworks.com info@mathworks.com	Technical support Product enhancement suggestions Bug reports Documentation error reports Order status, license renewals, passcodes Sales, pricing, and general information
T	508-647-7000	Phone
	508-647-7001	Fax
	The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098	Mail

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Function Reference Volume 1: A - E

© COPYRIGHT 1984 - 2002 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by or for the federal government of the United States. By accepting delivery of the Program, the government hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part 252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain to the government's use and disclosure of the Program and Documentation, and shall supersede any conflicting contractual terms or conditions. If this license fails to meet the government's minimum needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History:	December 1996	First printing	For MATLAB 5
	June 1997	Online only	Revised for 5.1
	October 1997	Online only	Revised for 5.2
	January 1999	Online only	Revised for Release 11
	June 1999	Second printing	For Release 11
	June 2001	Online only	Revised for 6.1
	July 2002	Online only	Revised for 6.5 (Release 13)

Contents

Functions - By Category

-		

Development Environment 1-2
Starting and Quitting 1-2
Command Window 1-2
Getting Help 1-3
Workspace, File, and Search Path 1-3
Programming Tools 1-4
System 1-5
Performance Improvement Tools and Techniques 1-5
Mathematics 1-6
Arrays and Matrices 1-7
Linear Algebra 1-9
Elementary Math 1-11
Data Analysis and Fourier Transforms 1-13
Polynomials 1-14
Interpolation and Computational Geometry 1-15
Coordinate System Conversion 1-16
Nonlinear Numerical Methods 1-16
Specialized Math 1-18
Sparse Matrices 1-18
Math Constants 1-20
Programming and Data Types 1-21
Data Types
Arrays
Operators and Operations 1-27
Programming in MATLAB 1-29
File I/O 1-34
Filename Construction 1-34
Opening, Loading, Saving Files 1-34
Low-Level File I/O 1-35
Text Files 1-35
XML Documents 1-35

Spreadsheets	1-35
Scientific Data	1-36
Audio and Audio/Video	1-36
Images	
Graphics	1-38
Basic Plots and Graphs	1-38
Annotating Plots	1-38
Specialized Plotting	
Bit-Mapped Images	
Printing	
Handle Graphics	
3-D Visualization	1-44
Surface and Mesh Plots	1-44
View Control	1-45
Lighting	1-46
Transparency	
Volume Visualization	
Creating Graphical User Interfaces	1-48
Predefined Dialog Boxes	1-48
Deploying User Interfaces	
Developing User Interfaces	
User Interface Objects	
Finding Objects from Callbacks	
GUI Utility Functions	
Controlling Program Execution	

Functions – Alphabetical List

2

Index

Functions – By Category

The MATLAB Function Reference contains descriptions of all MATLAB commands and functions. Select a category from the following table to see a list of related functions.

Development Environment	Startup, Command Window, help, editing and debugging, other general functions
Mathematics	Arrays and matrices, linear algebra, data analysis, other areas of mathematics
Programming and Data Types	Function/expression evaluation, program control, function handles, object oriented programming, error handling, operators, data types, dates and times, timers
File I/O	General and low-level file I/O, plus specific file formats, like audio, spreadsheet, HDF, images
Graphics	Line plots, annotating graphs, specialized plots, images, printing, Handle Graphics
3-D Visualization	Surface and mesh plots, view control, lighting and transparency, volume visualization.
Creating Graphical User Interface	GUIDE, programming graphical user interfaces.
External Interfaces	Java, COM, Serial Port functions.

See Simulink, Stateflow, Real-Time Workshop, and the individual toolboxes for lists of their functions

Development Environment

General functions for working in MATLAB, including functions for startup, Command Window, help, and editing and debugging.

"Starting and Quitting"	Startup and shutdown options
"Command Window"	Controlling Command Window
"Getting Help"	Finding information
"Workspace, File, and Search Path"	File, search path, variable management
"Programming Tools"	Editing and debugging, source control, Notebook
"System"	Identifying current computer, license, product version, and more
"Performance Improvement Tools and Techniques"	Improving and assessing performance, e.g., profiling and memory use

Starting and Quitting

exi t	Terminate MATLAB (same as qui t)
finish	MATLAB termination M-file
matlab	Start MATLAB (UNIX systems only)
matlabrc	MATLAB startup M-file for single user systems or
	administrators
qui t	Terminate MATLAB
startup	MATLAB startup M-file for user-defined options

Command Window

cl c	Clear Command Window
di ary	Save session to file
dos	Execute DOS command and return result
format	Control display format for output
home	Move cursor to upper left corner of Command Window
more	Control paged output for Command Window
notebook	Open M-book in Microsoft Word (Windows only)
system	Execute operating system command and return result
uni x	Execute UNIX command and return result

Getting Help

doc	Display online documentation in MATLAB Help browser
demo	Access product demos via Help browser
docopt	Location of help file directory for UNIX platforms
hel p	Display help for MATLAB functions in Command Window
hel pbrowser	Display Help browser for access to extensive online help
hel pwi n	Display M-file help, with access to M-file help for all functions
info	Display information about The MathWorks or products
lookfor	Search for specified keyword in all help entries
support	Open MathWorks Technical Support Web page
web	Point Help browser or Web browser to file or Web site
whatsnew	Display information about MATLAB and toolbox releases

Workspace, File, and Search Path

- "Workspace"
- "File"
- "Search Path"

Workspace

assi gni n	Assign value to workspace variable
cl ear	Remove items from workspace, freeing up system memory
eval i n	Execute string containing MATLAB expression in a workspace
exi st	Check if variable or file exists
openvar	Open workspace variable in Array Editor for graphical editing
pack	Consolidate workspace memory
whi ch	Locate functions and files
who, whos	List variables in the workspace
workspace	Display Workspace browser, a tool for managing the workspace

File

cd	Change working directory
copyfile	Copy file or directory
delete	Delete files or graphics objects
di r	Display directory listing
exi st	Check if a variable or file exists
fileattrib	Set or get attributes of file or directory
filebrowser	Display Current Directory browser, a tool for viewing files
lookfor	Search for specified keyword in all help entries
ls	List directory on UNIX

matl abroot	Return root directory of MATLAB installation
mkdi r	Make new directory
movefile	Move file or directory
pwd	Display current directory
rehash	Refresh function and file system caches
rmdi r	Remove directory
type	List file
what	List MATLAB specific files in current directory
whi ch	Locate functions and files

See also "File I/O" functions.

Search Path

addpath	Add directories to MATLAB search path
genpath	Generate path string
parti al path	Partial pathname
path	View or change the MATLAB directory search path
path2rc	Save current MATLAB search path to pathdef. m file
pathtool	Open Set Path dialog box to view and change MATLAB path
rmpath	Remove directories from MATLAB search path

Programming Tools

- "Editing and Debugging"
- "Source Control"
- "Notebook"

Editing and Debugging

dbcl ear dbcont	Clear breakpoints Resume execution
dbdown	Change local workspace context
dbqui t	Quit debug mode
dbstack	Display function call stack
dbstatus	List all breakpoints
dbstep	Execute one or more lines from current breakpoint
dbstop	Set breakpoints in M-file function
dbtype	List M-file with line numbers
dbup	Change local workspace context
edi t	Edit or create M-file
keyboard	Invoke the keyboard in an M-file

Source Control

checki n	Check file into source control system
checkout	Check file out of source control system
cmopts	Get name of source control system
customverctrl	Allow custom source control system
undocheckout	Undo previous checkout from source control system
verctrl	Version control operations on PC platforms

Notebook

notebook	Open M-book ir	n Microsoft Word	(Windows	only)
----------	----------------	------------------	----------	-------

System

computer	Identify information about computer on which MATLAB is
	running
j avachk	Generate error message based on Java feature support
license	Show license number for MATLAB
prefdi r	Return directory containing preferences, history, and . i ni files
usej ava	Determine if a Java feature is supported in MATLAB
ver	Display version information for MathWorks products
version	Get MATLAB version number

Performance Improvement Tools and Techniques

memory	Help for memory limitations
pack	Consolidate workspace memory
profile	Optimize performance of M-file code
profreport	Generate profile report
rehash	Refresh function and file system caches
sparse	Create sparse matrix
zeros	Create array of all zeros

Mathematics

Functions for working with arrays and matrices, linear algebra, data analysis, and other areas of mathematics.

"Arrays and Matrices"	Basic array operators and operations, creation of elementary and specialized arrays and matrices
"Linear Algebra"	Matrix analysis, linear equations, eigenvalues, singular values, logarithms, exponentials, factorization
"Elementary Math"	Trigonometry, exponentials and logarithms, complex values, rounding, remainders, discrete math
"Data Analysis and Fourier Transforms"	Descriptive statistics, finite differences, correlation, filtering and convolution, fourier transforms
"Polynomials"	Multiplication, division, evaluation, roots, derivatives, integration, eigenvalue problem, curve fitting, partial fraction expansion
"Interpolation and Computational Geometry"	Interpolation, Delaunay triangulation and tessellation, convex hulls, Voronoi diagrams, domain generation
"Coordinate System Conversion"	Conversions between Cartesian and polar or spherical coordinates
"Nonlinear Numerical Methods"	Differential equations, optimization, integration
"Specialized Math"	Airy, Bessel, Jacobi, Legendre, beta, elliptic, error, exponential integral, gamma functions
"Sparse Matrices"	Elementary sparse matrices, operations, reordering algorithms, linear algebra, iterative methods, tree operations
"Math Constants"	Pi, imaginary unit, infinity, Not-a-Number, largest and smallest positive floating point numbers, floating point relative accuracy

Arrays and Matrices

- "Basic Information"
- "Operators"
- "Operations and Manipulation"
- "Elementary Matrices and Arrays"
- "Specialized Matrices"

Basic Information

di sp	Display array
di spl ay	Display array
isempty	True for empty matrix
i sequal	True if arrays are identical
i sl ogi cal	True for logical array
isnumeric	True for numeric arrays
i ssparse	True for sparse matrix
length	Length of vector
ndi ms	Number of dimensions
numel	Number of elements
si ze	Size of matrix

Operators

+	Addition
+	Unary plus
-	Subtraction
-	Unary minus
*	Matrix multiplication
^	Matrix power
\backslash	Backslash or left matrix divide
/	Slash or right matrix divide
'	Transpose
. '	Nonconjugated transpose
.*	Array multiplication (element-wise)
. ^	Array power (element-wise)
. \	Left array divide (element-wise)
./	Right array divide (element-wise)

Operations and Manipulation

: (colon)	Index into array, rearrange array
bl kdi ag	Block diagonal concatenation

cat	Concatenate arrays
cross	Vector cross product
cumprod	Cumulative product
cumsum	Cumulative sum
di ag	Diagonal matrices and diagonals of matrix
dot.	Vector dot product
end	Last index
find	Find indices of nonzero elements
	Flip matrices left-right
fliplr flipud	
flipud flindim	Flip matrices up-down
flipdim	Flip matrix along specified dimension Horizontal concatenation
horzcat	
i nd2sub	Multiple subscripts from linear index
ipermute	Inverse permute dimensions of multidimensional array
kron	Kronecker tensor product
max	Maximum elements of array
mi n	Minimum elements of array
permute	Rearrange dimensions of multidimensional array
prod	Product of array elements
repmat	Replicate and tile array
reshape	Reshape array
rot90	Rotate matrix 90 degrees
sort	Sort elements in ascending order
sortrows	Sort rows in ascending order
sum	Sum of array elements
sqrtm	Matrix square root
sub2i nd	Linear index from multiple subscripts
tril	Lower triangular part of matrix
triu	Upper triangular part of matrix
vertcat	Vertical concatenation

See also "Linear Algebra" for other matrix operations. See also "Elementary Math" for other array operations.

Elementary Matrices and Arrays

: (colon)	Regularly spaced vector
bl kdi ag	Construct block diagonal matrix from input arguments
di ag	Diagonal matrices and diagonals of matrix
eye	Identity matrix
freqspace	Frequency spacing for frequency response
l i nspace	Generate linearly spaced vectors
logspace	Generate logarithmically spaced vectors

meshgri d	Generate X and Y matrices for three-dimensional plots
ndgri d	Arrays for multidimensional functions and interpolation
ones	Create array of all ones
rand	Uniformly distributed random numbers and arrays
randn	Normally distributed random numbers and arrays
repmat	Replicate and tile array
zeros	Create array of all zeros

Specialized Matrices

compan	Companion matrix
gallery	Test matrices
hadamard	Hadamard matrix
hankel	Hankel matrix
hi l b	Hilbert matrix
i nvhi l b	Inverse of Hilbert matrix
magi c	Magic square
pascal	Pascal matrix
rosser	Classic symmetric eigenvalue test problem
toeplitz	Toeplitz matrix
vander	Vandermonde matrix
wi l ki nson	Wilkinson's eigenvalue test matrix

Linear Algebra

- "Matrix Analysis"
- "Linear Equations"
- "Eigenvalues and Singular Values"
- "Matrix Logarithms and Exponentials"
- "Factorization"

Matrix Analysis

cond	Condition number with respect to inversion
condei g	Condition number with respect to eigenvalues
det	Determinant
norm	Matrix or vector norm
normest	Estimate matrix 2-norm
nul l	Null space
orth	Orthogonalization
rank	Matrix rank
rcond	Matrix reciprocal condition number estimate

rref	Reduced row echelon form
subspace	Angle between two subspaces
trace	Sum of diagonal elements

Linear Equations

\setminus and /	Linear equation solution
chol	Cholesky factorization
chol i nc	Incomplete Cholesky factorization
cond	Condition number with respect to inversion
condest	1-norm condition number estimate
funm	Evaluate general matrix function
i nv	Matrix inverse
lscov	Least squares solution in presence of known covariance
l sqnonneg	Nonnegative least squares
lu	LU matrix factorization
l ui nc	Incomplete LU factorization
pi nv	Moore-Penrose pseudoinverse of matrix
qr	Orthogonal-triangular decomposition
rcond	Matrix reciprocal condition number estimate

Eigenvalues and Singular Values

bal ance	Improve accuracy of computed eigenvalues
cdf2rdf	Convert complex diagonal form to real block diagonal form
condei g	Condition number with respect to eigenvalues
ei g	Eigenvalues and eigenvectors
ei gs	Eigenvalues and eigenvectors of sparse matrix
gsvd	Generalized singular value decomposition
hess	Hessenberg form of matrix
pol y	Polynomial with specified roots
pol yei g	Polynomial eigenvalue problem
qz	QZ factorization for generalized eigenvalues
rsf2csf	Convert real Schur form to complex Schur form
schur	Schur decomposition
svd	Singular value decomposition
svds	Singular values and vectors of sparse matrix

Matrix Logarithms and Exponentials

expm	Matrix exponential
logm	Matrix logarithm
sqrtm	Matrix square root

Factorization

bal ance	Diagonal scaling to improve eigenvalue accuracy
cdf2rdf	Complex diagonal form to real block diagonal form
chol	Cholesky factorization
chol i nc	Incomplete Cholesky factorization
chol updat e	Rank 1 update to Cholesky factorization
lu	LU matrix factorization
l ui nc	Incomplete LU factorization
pl anerot	Givens plane rotation
qr	Orthogonal-triangular decomposition
qrdel et e	Delete column or row from QR factorization
qri nsert	Insert column or row into QR factorization
qrupdate	Rank 1 update to QR factorization
qz	QZ factorization for generalized eigenvalues
rsf2csf	Real block diagonal form to complex diagonal form

Elementary Math

- "Trigonometric"
- "Exponential"
- "Complex"
- "Rounding and Remainder"
- "Discrete Math (e.g., Prime Factors)"

Trigonometric

acos	Inverse cosine
acosh	Inverse hyperbolic cosine
acot	Inverse cotangent
acoth	Inverse cosecant
acsc	Inverse cosecant
acsch	Inverse hyperbolic cosecant
asec	Inverse hyperbolic secant
asech	Inverse hyperbolic secant
asi n	Inverse sine
asi nh	Inverse hyperbolic sine
atan	Inverse tangent
atanh	Inverse tangent
atan2	Four-quadrant inverse tangent
cos	Cosine
cosh	Hyperbolic cosine
cot	Cotangent
coth	Hyperbolic cotangent

csc	Cosecant
csch	Hyperbolic cosecant
sec	Secant
sech	Hyperbolic secant
sin	Sine
si nh	Hyperbolic sine
tan	Tangent
tanh	Hyperbolic tangent

Exponential

exp	Exponential
log	Natural logarithm
l og2	Base 2 logarithm and dissect floating-point numbers into
	exponent and mantissa
l og10	Common (base 10) logarithm
nextpow2	Next higher power of 2
pow2	Base 2 power and scale floating-point number
reallog	Natural logarithm for nonnegative real arrays
real pow	Array power for real-only output
real sqrt	Square root for nonnegative real arrays
sqrt	Square root

Complex

abs	Absolute value
angl e	Phase angle
compl ex	Construct complex data from real and imaginary parts
conj	Complex conjugate
cpl xpai r	Sort numbers into complex conjugate pairs
i	Imaginary unit
i mag	Complex imaginary part
i sreal	True for real array
j	Imaginary unit
real	Complex real part
unwrap	Unwrap phase angle

Rounding and Remainder

Discrete Math (e.g., Prime Factors)

Prime factors
Factorial function
Greatest common divisor
True for prime numbers
Least common multiple
All combinations of N elements taken K at a time
All possible permutations
Generate list of prime numbers
Rational fraction approximation

Data Analysis and Fourier Transforms

- "Basic Operations"
- "Finite Differences"
- "Correlation"
- "Filtering and Convolution"
- "Fourier Transforms"

Basic Operations

cumprod	Cumulative product
cumsum	Cumulative sum
cumtrapz	Cumulative trapezoidal numerical integration
max	Maximum elements of array
mean	Average or mean value of arrays
medi an	Median value of arrays
mi n	Minimum elements of array
prod	Product of array elements
sort	Sort elements in ascending order
sortrows	Sort rows in ascending order
std	Standard deviation
sum	Sum of array elements
trapz	Trapezoidal numerical integration
var	Variance

Finite Differences

del 2	Discrete Laplacian
diff	Differences and approximate derivatives
gradi ent	Numerical gradient

Correlation

corrcoef	Correlation coefficients
cov	Covariance matrix
subspace	Angle between two subspaces

Filtering and Convolution

conv	Convolution and polynomial multiplication
conv2	Two-dimensional convolution
convn	N-dimensional convolution
deconv	Deconvolution and polynomial division
detrend	Linear trend removal
filter	Filter data with infinite impulse response (IIR) or finite
	impulse response (FIR) filter
filter2	Two-dimensional digital filtering

Fourier Transforms

abs	Absolute value and complex magnitude
angl e	Phase angle
fft	One-dimensional discrete Fourier transform
fft2	Two-dimensional discrete Fourier transform
fftn	N-dimensional discrete Fourier Transform
fftshift	Shift DC component of discrete Fourier transform to center of
	spectrum
ifft	Inverse one-dimensional discrete Fourier transform
ifft2	Inverse two-dimensional discrete Fourier transform
ifftn	Inverse multidimensional discrete Fourier transform
ifftshift	Inverse fast Fourier transform shift
nextpow2	Next power of two
unwrap	Correct phase angles

Polynomials

conv	Convolution and polynomial multiplication
deconv	Deconvolution and polynomial division
pol y	Polynomial with specified roots
polyder	Polynomial derivative
pol yei g	Polynomial eigenvalue problem
polyfit	Polynomial curve fitting
pol yi nt	Analytic polynomial integration
polyval	Polynomial evaluation
pol yval m	Matrix polynomial evaluation
resi due	Convert between partial fraction expansion and polynomial

roots coefficients Polynomial roots

Interpolation and Computational Geometry

- "Interpolation"
- "Delaunay Triangulation and Tessellation"
- "Convex Hull"
- "Voronoi Diagrams"
- "Domain Generation"

Interpolation

dsearch dsearchn griddata griddata3	Search for nearest point Multidimensional closest point search Data gridding Data gridding and hypersurface fitting for three-dimensional data
gri ddatan	Data gridding and hypersurface fitting (dimension >= 2)
interp1	One-dimensional data interpolation (table lookup)
interp2	Two-dimensional data interpolation (table lookup)
interp3	Three-dimensional data interpolation (table lookup)
interpft	One-dimensional interpolation using fast Fourier transform method
interpn	Multidimensional data interpolation (table lookup)
meshgri d	Generate X and Y matrices for three-dimensional plots
mkpp	Make piecewise polynomial
ndgri d	Generate arrays for multidimensional functions and
• •	interpolation
pchi p	Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
ppval	Piecewise polynomial evaluation
spl i ne	Cubic spline data interpolation
tsearchn	Multidimensional closest simplex search
unmkpp	Piecewise polynomial details

Delaunay Triangulation and Tessellation

del aunay	Delaunay triangulation
del aunay3	Three-dimensional Delaunay tessellation
del aunayn	Multidimensional Delaunay tessellation
dsearch	Search for nearest point
dsearchn	Multidimensional closest point search

tetramesh	Tetrahedron mesh plot
trimesh	Triangular mesh plot
tri pl ot	Two-dimensional triangular plot
trisurf	Triangular surface plot
tsearch	Search for enclosing Delaunay triangle
tsearchn	Multidimensional closest simplex search

Convex Hull

convhul l	Convex hull
convhul l n	Multidimensional convex hull
patch	Create patch graphics object
plot	Linear two-dimensional plot
trisurf	Triangular surface plot

Voronoi Diagrams

dsearch	Search for nearest point
patch	Create patch graphics object
plot	Linear two-dimensional plot
voronoi	Voronoi diagram
voronoi n	Multidimensional Voronoi diagrams

Domain Generation

meshgrid	Generate X and Y matrices for three-dimensional plots
ndgri d	Generate arrays for multidimensional functions and
-	interpolation

Coordinate System Conversion

Cartesian

cart2sph	Transform Cartesian to spherical coordinates
cart2pol	Transform Cartesian to polar coordinates
pol 2cart	Transform polar to Cartesian coordinates
sph2cart	Transform spherical to Cartesian coordinates

Nonlinear Numerical Methods

- "Ordinary Differential Equations (IVP)"
- "Delay Differential Equations"
- "Boundary Value Problems"

- "Partial Differential Equations"
- "Optimization"
- "Numerical Integration (Quadrature)"

Ordinary Differential Equations (IVP)

deval	Evaluate solution of differential equation problem
ode113	Solve non-stiff differential equations, variable order method
ode15s	Solve stiff ODEs and DAEs Index 1, variable order method
ode23	Solve non-stiff differential equations, low order method
ode23s	Solve stiff differential equations, low order method
ode23t	Solve moderately stiff ODEs and DAEs Index 1, trapezoidal
	rule
ode23tb	Solve stiff differential equations, low order method
ode45	Solve non-stiff differential equations, medium order method
odeget	Get ODE options parameters
odeset	Create/alter ODE options structure

Delay Differential Equations

dde23	Solve delay differential equations with constant delays
ddeget	Get DDE options parameters
ddeset	Create/alter DDE opt i ons structure

Boundary Value Problems

bvp4c	Solve two-point boundary value problems for ODEs by collocation
bvpget bvpset	Get BVP opti ons parameters Create/alter BVP opti ons structure
deval	Evaluate solution of differential equation problem

Partial Differential Equations

pdepe	Solve initial-boundary value problems for parabolic-elliptic
	PDEs
pdeval	Evaluates by interpolation solution computed by pdepe

Optimization

fminbnd fminsearch	Scalar bounded nonlinear function minimization Multidimensional unconstrained nonlinear minimization, by
	Nelder-Mead direct search method
fzero	Scalar nonlinear zero finding
l sqnonneg	Linear least squares with nonnegativity constraints

optimset	Create or alter optimization options structure
optimget	Get optimization parameters from options structure

Numerical Integration (Quadrature)

Numerically evaluate integral, adaptive Simpson quadrature
(low order)
Numerically evaluate integral, adaptive Lobatto quadrature
(high order)
Numerically evaluate double integral
Numerically evaluate triple integral

Specialized Math

ai ry	Airy functions
bessel h	Bessel functions of third kind (Hankel functions)
bessel i	Modified Bessel function of first kind
bessel j	Bessel function of first kind
besselk	Modified Bessel function of second kind
bessel y	Bessel function of second kind
beta	Beta function
betai nc	Incomplete beta function
betal n	Logarithm of beta function
ellipj	Jacobi elliptic functions
ellipke	Complete elliptic integrals of first and second kind
erf	Error function
erfc	Complementary error function
erfcinv	Inverse complementary error function
erfcx	Scaled complementary error function
erfinv	Inverse error function
expi nt	Exponential integral
gamma	Gamma function
gammai nc	Incomplete gamma function
gammal n	Logarithm of gamma function
legendre	Associated Legendre functions
psi	Psi (polygamma) function

Sparse Matrices

- "Elementary Sparse Matrices"
- "Full to Sparse Conversion"
- "Working with Sparse Matrices"

- "Reordering Algorithms"
- "Linear Algebra"
- "Linear Equations (Iterative Methods)"
- "Tree Operations"

Elementary Sparse Matrices

spdi ags	Sparse matrix formed from diagonals
speye	Sparse identity matrix
sprand	Sparse uniformly distributed random matrix
sprandn	Sparse normally distributed random matrix
sprandsym	Sparse random symmetric matrix

Full to Sparse Conversion

find	Find indices of nonzero elements
full	Convert sparse matrix to full matrix
sparse	Create sparse matrix
spconvert	Import from sparse matrix external format

Working with Sparse Matrices

i ssparse	True for sparse matrix
nnz	Number of nonzero matrix elements
nonzeros	Nonzero matrix elements
nzmax	Amount of storage allocated for nonzero matrix elements
spalloc	Allocate space for sparse matrix
spfun	Apply function to nonzero matrix elements
spones	Replace nonzero sparse matrix elements with ones
spparms	Set parameters for sparse matrix routines
spy	Visualize sparsity pattern

Reordering Algorithms

col amd	Column approximate minimum degree permutation
col mmd	Column minimum degree permutation
col perm	Column permutation
dmperm	Dulmage-Mendelsohn permutation
randperm	Random permutation
symamd	Symmetric approximate minimum degree permutation
symmd	Symmetric minimum degree permutation
symrcm	Symmetric reverse Cuthill-McKee permutation

Linear Algebra

chol i nc	Incomplete Cholesky factorization
condest	1-norm condition number estimate
ei gs	Eigenvalues and eigenvectors of sparse matrix
l ui nc	Incomplete LU factorization
normest	Estimate matrix 2-norm
sprank	Structural rank
svds	Singular values and vectors of sparse matrix

Linear Equations (Iterative Methods)

bi cg	BiConjugate Gradients method
bi cgstab	BiConjugate Gradients Stabilized method
cgs	Conjugate Gradients Squared method
gmres	Generalized Minimum Residual method
lsqr	LSQR implementation of Conjugate Gradients on Normal
	Equations
mi nres	Minimum Residual method
pcg	Preconditioned Conjugate Gradients method
qmr	Quasi-Minimal Residual method
spaugment	Form least squares augmented system
symmlq	Symmetric LQ method

Tree Operations

etree	Elimination tree
et reepl ot	Plot elimination tree
gpl ot	Plot graph, as in "graph theory"
symbfact	Symbolic factorization analysis
treel ayout	Lay out tree or forest
treepl ot	Plot picture of tree

Math Constants

eps	Floating-point relative accuracy
i	Imaginary unit
Inf	Infinity, ∞
j	Imaginary unit
NaN	Not-a-Number
pi	Ratio of a circle's circumference to its diameter, π
realmax	Largest positive floating-point number
realmin	Smallest positive floating-point number

Programming and Data Types

Functions to store and operate on data at either the MATLAB command line or in programs and scripts. Functions to write, manage, and execute MATLAB programs.

"Data Types"	Numeric, character, structures, cell arrays, and data type conversion
"Arrays"	Basic array operations and manipulation
"Operators and Operations"	Special characters and arithmetic, bit-wise, relational, logical, set, date and time operations
"Programming in MATLAB"	M-files, function/expression evaluation, program control, function handles, object oriented programming, error handling

Data Types

- "Numeric"
- "Characters and Strings"
- "Structures"
- "Cell Arrays"
- "Data Type Conversion"
- "Determine Data Type"

Numeric

[]	Array constructor	
cat	Concatenate arrays	
cl ass	Return object's class name (e.g., numeric)	
find	Find indices and values of nonzero array elements	
ipermute	Inverse permute dimensions of multidimensional array	
isa	Detect object of given class (e.g., numeric)	
i sequal	Determine if arrays are numerically equal	
i sequal wi thequal nansTest for equality, treating NaNs as equal		
isnumeric	Determine if item is numeric array	
i sreal	Determine if all array elements are real numbers	
permute	Rearrange dimensions of multidimensional array	

reshape	Reshape array
squeeze	Remove singleton dimensions from array
zeros	Create array of all zeros

Characters and Strings

Description of Strings in MATLAB

strings Describes MATLAB string handling

Creating and Manipulating Strings

bl anks	Create string of blanks
char	Create character array (string)
cellstr	Create cell array of strings from character array
datestr	Convert to date string format
debl ank	Strip trailing blanks from the end of string
lower	Convert string to lower case
sprintf	Write formatted data to string
sscanf	Read string under format control
strcat	String concatenation
strjust	Justify character array
strread	Read formatted data from string
strrep	String search and replace
strvcat	Vertical concatenation of strings
upper	Convert string to upper case

Comparing and Searching Strings

cl ass	Return object's class name (e.g., char)
findstr	Find string within another, longer string
i sa	Detect object of given class (e.g., char)
i scel l st r	Determine if item is cell array of strings
i schar	Determine if item is character array
i sl etter	Detect array elements that are letters of the alphabet
i sspace	Detect elements that are ASCII white spaces
regexp	Match regular expression
regexpi	Match regular expression, ignoring case
regexprep	Replace string using regular expression
strcmp	Compare strings
strcmpi	Compare strings, ignoring case
strfind	Find one string within another
strmatch	Find possible matches for string
strncmp	Compare first n characters of strings

strncmpi	Compare first n characters of strings, ignoring case
strtok	First token in string

Evaluating String Expressions

eval	Execute string containing MATLAB expression
eval c	Evaluate MATLAB expression with capture
eval i n	Execute string containing MATLAB expression in workspace

Structures

cell2struct	Cell array to structure array conversion
cl ass	Return object's class name (e.g., struct)
deal	Deal inputs to outputs
fieldnames	Field names of structure
i sa	Detect object of given class (e.g., struct)
i sequal	Determine if arrays are numerically equal
isfield	Determine if item is structure array field
isstruct	Determine if item is structure array
orderfields	Order fields of a structure array
rmfield	Remove structure fields
struct	Create structure array
struct2cell	Structure to cell array conversion

Cell Arrays

{ }	Construct cell array
cel l	Construct cell array
cellfun	Apply function to each element in cell array
cellstr	Create cell array of strings from character array
cell2mat	Convert cell array of matrices into single matrix
cell2struct	Cell array to structure array conversion
cel l di sp	Display cell array contents
cellplot	Graphically display structure of cell arrays
class	Return object's class name (e.g., cell)
deal	Deal inputs to outputs
i sa	Detect object of given class (e.g., cell)
i scel l	Determine if item is cell array
i scel l str	Determine if item is cell array of strings
i sequal	Determine if arrays are numerically equal
mat2cell	Divide matrix up into cell array of matrices
num2cell	Convert numeric array into cell array
struct2cell	Structure to cell array conversion

Data Type Conversion

Numeric

doubl e	Convert to double-precision
int8	Convert to signed 8-bit integer
int16	Convert to signed 16-bit integer
int32	Convert to signed 32-bit integer
i nt64	Convert to signed 64-bit integer
si ngl e	Convert to single-precision
ui nt 8	Convert to unsigned 8-bit integer
ui nt 16	Convert to unsigned 16-bit integer
ui nt 32	Convert to unsigned 32-bit integer
ui nt64	Convert to unsigned 64-bit integer

String to Numeric

base2dec	Convert base N number string to decimal number
bi n2dec	Convert binary number string to decimal number
hex2dec	Convert hexadecimal number string to decimal number
hex2num	Convert hexadecimal number string to double number
str2double	Convert string to double-precision number
str2num	Convert string to number

Numeric to String

char	Convert to character array (string)
dec2base	Convert decimal to base N number in string
dec2bi n	Convert decimal to binary number in string
dec2hex	Convert decimal to hexadecimal number in string
int2str	Convert integer to string
mat2str	Convert a matrix to string
num2str	Convert number to string

Other Conversions

cell2mat	Convert cell array of matrices into single matrix
cell2struct	Convert cell array to structure array
datestr	Convert serial date number to string
func2str	Convert function handle to function name string
l ogi cal	Convert numeric to logical array
mat2cell	Divide matrix up into cell array of matrices
num2cell	Convert a numeric array to cell array
str2func	Convert function name string to function handle
struct2cell	Convert structure to cell array

Determine Data Type

is*	Detect state
i sa	Detect object of given MATLAB class or Java class
i scel l	Determine if item is cell array
i scel l str	Determine if item is cell array of strings
i schar	Determine if item is character array
isfield	Determine if item is character array
i sj ava	Determine if item is Java object
i sl ogi cal	Determine if item is logical array
isnumeric	Determine if item is numeric array
i sobj ect	Determine if item is MATLAB OOPs object
isstruct	Determine if item is MATLAB structure array

Arrays

- "Array Operations"
- "Basic Array Information"
- "Array Manipulation"
- "Elementary Arrays"

Array Operations

[]	Array constructor
,	Array row element separator
;	Array column element separator
:	Specify range of array elements
end	Indicate last index of array
+	Addition or unary plus
-	Subtraction or unary minus
.*	Array multiplication
./	Array right division
. \	Array left division
. ^	Array power
.'	Array (nonconjugated) transpose

Basic Array Information

di sp	Display text or array
di spl ay	Overloaded method to display text or array
isempty	Determine if array is empty
i sequal	Determine if arrays are numerically equal
i sequal withequal nansTest for equality, treating NaNs as equal	

isnumeric	Determine if item is numeric array
i sl ogi cal	Determine if item is logical array
length	Length of vector
ndims	Number of array dimensions
numel	Number of elements in matrix or cell array
si ze	Array dimensions

Array Manipulation

:	Specify range of array elements
bl kdi ag	Construct block diagonal matrix from input arguments
cat	Concatenate arrays
ci rcshi ft	Shift array circularly
find	Find indices and values of nonzero elements
fliplr	Flip matrices left-right
fl i pud	Flip matrices up-down
flipdim	Flip array along specified dimension
horzcat	Horizontal concatenation
i nd2sub	Subscripts from linear index
ipermute	Inverse permute dimensions of multidimensional array
permute	Rearrange dimensions of multidimensional array
repmat	Replicate and tile array
reshape	Reshape array
rot90	Rotate matrix 90 degrees
shi ftdi m	Shift dimensions
sort	Sort elements in ascending order
sortrows	Sort rows in ascending order
squeeze	Remove singleton dimensions
sub2i nd	Single index from subscripts
vertcat	Horizontal concatenation

Elementary Arrays

Regularly spaced vector
Construct block diagonal matrix from input arguments
Identity matrix
Generate linearly spaced vectors
Generate logarithmically spaced vectors
Generate X and Y matrices for three-dimensional plots
Generate arrays for multidimensional functions and
interpolation
Create array of all ones
Uniformly distributed random numbers and arrays
Normally distributed random numbers and arrays
Create array of all zeros

Operators and Operations

- "Special Characters"
- "Arithmetic Operations"
- "Bit-wise Operations"
- "Relational Operations"
- "Logical Operations"
- "Set Operations"
- "Date and Time Operations"

Special Characters

:	Specify range of array elements
()	Pass function arguments, or prioritize operations
[]	Construct array
{ }	Construct cell array
	Decimal point, or structure field separator
	Continue statement to next line
,	Array row element separator
;	Array column element separator
%	Insert comment line into code
!	Command to operating system
=	Assignment

Arithmetic Operations

- + Plus
- Minus
- . Decimal point
- = Assignment
- * Matrix multiplication
- / Matrix right division
- \ Matrix left division
- ^ Matrix power
- Matrix transpose
- . * Array multiplication (element-wise)
- . / Array right division (element-wise)
- . \ Array left division (element-wise)
- . ^ Array power (element-wise)
- . ' Array transpose

Bit-wise Operations

bi t and	Bit-wise AND
bitcmp	Bit-wise complement
bi tor	Bit-wise OR
bitmax	Maximum floating-point integer
bi t set	Set bit at specified position
bi tshi ft	Bit-wise shift
bi tget	Get bit at specified position
bi t xor	Bit-wise XOR

Relational Operations

<	Less than
<=	Less than or equal to
>	Greater than
>=	Greater than or equal to
==	Equal to
~=	Not equal to
	•

Logical Operations

&&	Logical AND
	Logical OR
&	Logical AND for arrays
	Logical OR for arrays
~	Logical NOT
all	Test to determine if all elements are nonzero
any	Test for any nonzero elements
false	False array
find	Find indices and values of nonzero elements
is*	Detect state
i sa	Detect object of given class
i skeyword	Determine if string is MATLAB keyword
isvarname	Determine if string is valid variable name
l ogi cal	Convert numeric values to logical
true	True array
xor	Logical EXCLUSIVE OR

Set Operations

intersect	Set intersection of two vectors
i smember	Detect members of set
setdi ff	Return set difference of two vectors
issorted	Determine if set elements are in sorted order

setxor	Set exclusive or of two vectors
uni on	Set union of two vectors
uni que	Unique elements of vector

Date and Time Operations

cal endar	Calendar for specified month
clock	Current time as date vector
cputime	Elapsed CPU time
date	Current date string
datenum	Serial date number
datestr	Convert serial date number to string
datevec	Date components
eomday	End of month
etime	Elapsed time
now	Current date and time
tic, toc	Stopwatch timer
weekday	Day of the week

Programming in MATLAB

- "M-File Functions and Scripts"
- "Evaluation of Expressions and Functions"
- "Timer Functions"
- "Variables and Functions in Memory"
- "Control Flow"
- "Function Handles"
- "Object-Oriented Programming"
- "Error Handling"
- "MEX Programming"

M-File Functions and Scripts

()	Pass function arguments
%	Insert comment line into code
	Continue statement to next line
depfun	List dependent functions of M-file or P-file
depdi r	List dependent directories of M-file or P-file
functi on	Function M-files
i nput	Request user input

inputname	Input argument name
mfilename	Name of currently running M-file
namel engthma	x Return maximum identifier length
nargi n	Number of function input arguments
nargout	Number of function output arguments
nargchk	Check number of input arguments
nargoutchk	Validate number of output arguments
pcode	Create preparsed pseudocode file (P-file)
scri pt	Describes script M-file
varargi n	Accept variable number of arguments
varargout	Return variable number of arguments

Evaluation of Expressions and Functions

builtin	Execute builtin function from overloaded method
cellfun	Apply function to each element in cell array
eval	Interpret strings containing MATLAB expressions
eval c	Evaluate MATLAB expression with capture
eval i n	Evaluate expression in workspace
feval	Evaluate function
i skeyword	Determine if item is MATLAB keyword
isvarname	Determine if item is valid variable name
pause	Halt execution temporarily
run	Run script that is not on current path
scri pt	Describes script M-file
symvar	Determine symbolic variables in expression
tic, toc	Stopwatch timer

Timer Functions

delete	Delete timer object from memory
di sp	Display information about timer object
get	Retrieve information about timer object properties
i sval i d	Determine if timer object is valid
set	Display or set timer object properties
start	Start a timer
startat	Start a timer at a specific timer
stop	Stop a timer
timer	Create a timer object
timerfind	Return an array of all timer object in memory
wai t	Block command line until timer completes

Variables and Functions in Memory

assi gni n Assign value to workspace variable

gl obal	Define global variables
inmem	Return names of functions in memory
i sgl obal	Determine if item is global variable
mislocked	True if M-file cannot be cleared
ml ock	Prevent clearing M-file from memory
munl ock	Allow clearing M-file from memory
namel engthmax Return maximum identifier length	
pack	Consolidate workspace memory
persi stent	Define persistent variable
rehash	Refresh function and file system caches

Control Flow

break	Terminate execution of for loop or while loop
case	Case switch
catch	Begin catch block
conti nue	Pass control to next iteration of for or while loop
el se	Conditionally execute statements
el sei f	Conditionally execute statements
end	Terminate conditional statements, or indicate last index
error	Display error messages
for	Repeat statements specific number of times
if	Conditionally execute statements
otherwi se	Default part of switch statement
return	Return to invoking function
switch	Switch among several cases based on expression
try	Begin try block
while	Repeat statements indefinite number of times

Function Handles

cl ass feval functi on_hand	Return object's class name (e.g. function_handle) Evaluate function
Tunceron_nand	
	Describes function handle data type
functi ons	Return information about function handle
func2str	Constructs function name string from function handle
i sa	Detect object of given class (e.g. function_handle)
i sequal	Determine if function handles are equal
str2func	Constructs function handle from function name string

Object-Oriented Programming

MATLAB Classes and Objects

cl ass	Create object or return class of object
fieldnames	List public fields belonging to object,
inferiorto	Establish inferior class relationship
i sa	Detect object of given class
i sobj ect	Determine if item is MATLAB OOPs object
l oadobj	User-defined extension of l oad function for user objects
methods	Display method names
methodsvi ew	Displays information on all methods implemented by class
saveobj	User-defined extension of save function for user objects
subsasgn	Overloaded method for $A(I) = B$, $A\{I\} = B$, and A. fi el d=B
subsi ndex	Overloaded method for X(A)
subsref	Overloaded method for $A(I)$, $A\{I\}$ and A . field
substruct	Create structure argument for subsasgn or subsref
superi orto	Establish superior class relationship

Java Classes and Objects

cell	Convert Java array object to cell array
cl ass	Return class name of Java object
cl ear	Clear Java packages import list
depfun	List Java classes used by M-file
exi st	Detect if item is Java class
fieldnames	List public fields belonging to object
i m2j ava	Convert image to instance of Java image object
import	Add package or class to current Java import list
inmem	List names of Java classes loaded into memory
i sa	Detect object of given class
i sj ava	Determine whether object is Java object
j avaArray	Constructs Java array
javaMethod	Invokes Java method
j ava0bj ect	Constructs Java object
methods	Display methods belonging to class
methodsvi ew	Display information on all methods implemented by class
whi ch	Display package and class name for method

Error Handling

catch	Begin catch block of try/catch statement
error	Display error message
ferror	Query MATLAB about errors in file input or output

lasterr	Return last error message generated by MATLAB
lasterr or	Last error message and related information
lastwarn	Return last warning message issued by MATLAB
rethrow	Reissue error
try	Begin try block of try/catch statement
warni ng	Display warning message

MEX Programming

ode

File I/O

Functions to read and write data to files of different format types.

"Filename Construction"	Get path, directory, filename information; construct filenames
"Opening, Loading, Saving Files"	Open files; transfer data between files and MATLAB workspace
"Low-Level File I/O"	Low-level operations that use a file identifier (e.g., fopen, fseek, fread)
"Text Files"	Delimited or formatted I/O to text files
"XML Documents"	Documents written in Extensible Markup Language
"Spreadsheets"	Excel and Lotus 123 files
"Scientific Data"	CDF, FITS, HDF formats
"Audio and Audio/Video"	General audio functions; SparcStation, Wave, AVI files
"Images"	Graphics files

To see a listing of file formats that are readable from MATLAB, go to file formats.

Filename Construction

fileparts	Return parts of filename
filesep	Return directory separator for this platform
fullfile	Build full filename from parts
tempdi r	Return name of system's temporary directory
tempname	Return unique string for use as temporary filename

Opening, Loading, Saving Files

importdata	Load data from various types of files
load	Load all or specific data from MAT or ASCII file
open	Open files of various types using appropriate editor or program
save	Save all or specific data to MAT or ASCII file
wi nopen	Open file in appropriate application (Windows only)

Low-Level File I/O

fclose	Close one or more open files
feof	Test for end-of-file
ferror	Query MATLAB about errors in file input or output
fgetl	Return next line of file as string without line terminator(s)
fgets	Return next line of file as string with line terminator(s)
fopen	Open file or obtain information about open files
fprintf	Write formatted data to file
fread	Read binary data from file
frewind	Rewind open file
fscanf	Read formatted data from file
fseek	Set file position indicator
ftell	Get file position indicator
fwrite	Write binary data to file

Text Files

csvread	Read numeric data from text file, using comma delimiter
csvwrite	Write numeric data to text file, using comma delimiter
dl mread	Read numeric data from text file, specifying your own delimiter
dlmwrite	Write numeric data to text file, specifying your own delimiter
textread	Read data from text file, specifying format for each value

XML Documents

xml read	Parse XML document
xml write	Serialize XML Document Object Model node
xslt	Transform XML document using XSLT engine

Spreadsheets

Microsoft Excel Functions

xl sfi nfo	Determine if file contains Microsoft Excel (. xl s) spreadsheet
xl sread	Read Microsoft Excel spreadsheet file (. xl s)

Lotus123 Functions

wk1read	Read Lotus123 WK1 spreadsheet file into matrix
wk1write	Write matrix to Lotus123 WK1 spreadsheet file

Scientific Data

Common Data Format (CDF)

cdfinfo	Return information about CDF file
cdfread	Read CDF file

Flexible Image Transport System

fitsinfoReturn information about FITS filefitsreadRead FITS file

Hierarchical Data Format (HDF)

hdf	Interface to HDF files
hdfinfo	Return information about HDF or HDF-EOS file
hdfread	Read HDF file

Audio and Audio/Video

General

	Create audio player object
audi orecorder	Perform real-time audio capture
beep	Produce beep sound
lin2mu	Convert linear audio signal to mu-law
mu2lin	Convert mu-law audio signal to linear
sound	Convert vector into sound
soundsc	Scale data and play as sound

SPARCstation-Specific Sound Functions

auread	Read NeXT/SUN (. au) sound file
auwrite	Write NeXT/SUN (. au) sound file

Microsoft WAVE Sound Functions

wavpl ay	Play sound on PC-based audio output device
wavread	Read Microsoft WAVE (. wav) sound file
wavrecord	Record sound using PC-based audio input device
wavwrite	Write Microsoft WAVE (. wav) sound file

Audio Video Interleaved (AVI) Functions

addframe	Add frame to AVI file
avifile	Create new AVI file
avi i nfo	Return information about AVI file
avi read	Read AVI file
close	Close AVI file
movi e2avi	Create AVI movie from MATLAB movie

Images

i m2j ava	Convert image to instance of Java image object
imfinfo	Return information about graphics file
imread	Read image from graphics file
imwrite	Write image to graphics file

Graphics

2-D graphs, specialized plots (e.g., pie charts, histograms, and contour plots), function plotters, and Handle Graphics functions.

Basic Plots and Graphs	Linear line plots, log and semilog plots
Annotating Plots	Titles, axes labels, legends, mathematical symbols
Specialized Plotting	Bar graphs, histograms, pie charts, contour plots, function plotters
Bit-Mapped Images	Display image object, read and write graphics file, convert to movie frames
Printing	Printing and exporting figures to standard formats
Handle Graphics	Creating graphics objects, setting properties, finding handles

Basic Plots and Graphs

box	Axis box for 2-D and 3-D plots
errorbar	Plot graph with error bars
hol d	Hold current graph
Li neSpec	Line specification syntax
l ogl og	Plot using log-log scales
pol ar	Polar coordinate plot
pl ot	Plot vectors or matrices.
pl ot 3	Plot lines and points in 3-D space
pl ot yy	Plot graphs with Y tick labels on the left and right
semi l ogx	Semi-log scale plot
semi l ogy	Semi-log scale plot
subpl ot	Create axes in tiled positions

Annotating Plots

cl abel	Add contour labels to contour plot
dateti ck	Date formatted tick labels
gtext	Place text on 2-D graph using mouse
legend	Graph legend for lines and patches
texl abel	Produce the TeX format from character string

title	Titles for 2-D and 3-D plots
xl abel	X-axis labels for 2-D and 3-D plots
yl abel	Y-axis labels for 2-D and 3-D plots
zl abel	Z-axis labels for 3-D plots

Specialized Plotting

- "Area, Bar, and Pie Plots"
- "Contour Plots"
- "Direction and Velocity Plots"
- "Discrete Data Plots"
- "Function Plots"
- "Histograms"
- "Polygons and Surfaces"
- "Scatter Plots"
- "Animation"

Area, Bar, and Pie Plots

area	Area plot
bar	Vertical bar chart
barh	Horizontal bar chart
bar3	Vertical 3-D bar chart
bar3h	Horizontal 3-D bar chart
pareto	Pareto char
pi e	Pie plot
pi e3	3-D pie plot

Contour Plots

contour	Contour (level curves) plot
contour3	3-D contour plot
contourc	Contour computation
contourf	Filled contour plot
ezcontour	Easy to use contour plotter
ezcontourf	Easy to use filled contour plotter

Direction and Velocity Plots

comet	Comet plot
comet3	3-D comet plot

compass	Compass plot
feather	Feather plot
qui ver	Quiver (or velocity) plot
qui ver3	3-D quiver (or velocity) plot

Discrete Data Plots

stem	Plot discrete sequence data
stem3	Plot discrete surface data
stairs	Stairstep graph

Function Plots

ezcontour	Easy to use contour plotter
ezcontourf	Easy to use filled contour plotter
ezmesh	Easy to use 3-D mesh plotter
ezmeshc	Easy to use combination mesh/contour plotter
ezpl ot	Easy to use function plotter
ezpl ot 3	Easy to use 3-D parametric curve plotter
ezpol ar	Easy to use polar coordinate plotter
ezsurf	Easy to use 3-D colored surface plotter
ezsurfc	Easy to use combination surface/contour plotter
fplot	Plot a function

Histograms

hi st	Plot histograms
hi stc	Histogram count
rose	Plot rose or angle histogram

Polygons and Surfaces

convhul l	Convex hull
cyl i nder	Generate cylinder
del aunay	Delaunay triangulation
dsearch	Search Delaunay triangulation for nearest point
el l i psoi d	Generate ellipsoid
fill	Draw filled 2-D polygons
fill3	Draw filled 3-D polygons in 3-space
i npol ygon	True for points inside a polygonal region
pcol or	Pseudocolor (checkerboard) plot
pol yarea	Area of polygon
ri bbon	Ribbon plot
sl i ce	Volumetric slice plot
sphere	Generate sphere

tsearch	Search for enclosing Delaunay triangle
voronoi	Voronoi diagram
waterfall	Waterfall plot

Scatter Plots

pl otmatri x	Scatter plot matrix
scatter	Scatter plot
scatter3	3-D scatter plot

Animation

frame2im	Convert movie frame to indexed image
getframe	Capture movie frame
im2frame	Convert image to movie frame
movi e	Play recorded movie frames
noanimate	Change EraseMode of all objects to normal

Bit-Mapped Images

frame2im	Convert movie frame to indexed image
image	Display image object
imagesc	Scale data and display image object
imfinfo	Information about graphics file
imformats	Manage file format registry
im2frame	Convert image to movie frame
im2java	Convert image to instance of Java image object
imread	Read image from graphics file
imwrite	Write image to graphics file
i nd2rgb	Convert indexed image to RGB image

Printing

frameedit	Edit print frame for Simulink and Stateflow diagram
ori ent	Hardcopy paper orientation
pageset updl g	Page position dialog box
pri nt	Print graph or save graph to file
pri ntdl g	Print dialog box
pri ntopt	Configure local printer defaults
pri ntprevi ew	Preview figure to be printed
saveas	Save figure to graphic file

Handle Graphics

- Finding and Identifying Graphics Objects
- Object Creation Functions
- Figure Windows
- Axes Operations

Finding and Identifying Graphics Objects

•	
al l chi l d	Find all children of specified objects
copyobj	Make copy of graphics object and its children
delete	Delete files or graphics objects
findall	Find all graphics objects (including hidden handles)
figflag	Test if figure is on screen
findfigs	Display off-screen visible figure windows
fi ndobj	Find objects with specified property values
gca	Get current Axes handle
gcbo	Return object whose callback is currently executing
gcbf	Return handle of figure containing callback object
gco	Return handle of current object
get	Get object properties
i shandl e	True if value is valid object handle
set	Set object properties

Object Creation Functions

axes	Create axes object
figure	Create figure (graph) windows
image	Create image (2-D matrix)
l i ght	Create light object (illuminates Patch and Surface)
line	Create line object (3-D polylines)
patch	Create patch object (polygons)
rectangl e	Create rectangle object (2-D rectangle)
rootobj ect	List of root properties
surface	Create surface (quadrilaterals)
text	Create text object (character strings)
uicontextmenu	Create context menu (popup associated with object)

Figure Windows

capture	Screen capture of the current figure
clc	Clear figure window
clf	Clear figure

close	Close specified window
closereq	Default close request function
drawnow	Complete any pending drawing
figflag	Test if figure is on screen
gcf	Get current figure handle
hgl oad	Load graphics object hierarchy from a FIG-file
hgsave	Save graphics object hierarchy to a FIG-file
newpl ot	Graphics M-file preamble for NextPl ot property
opengl	Change automatic selection mode of OpenGL rendering
refresh	Refresh figure
saveas	Save figure or model to desired output format

Axes Operations

axi s	Plot axis scaling and appearance
box	Display axes border
cla	Clear Axes
gca	Get current Axes handle
gri d	Grid lines for 2-D and 3-D plots
i shol d	Get the current hold state

3-D Visualization

Create and manipulate graphics that display 2-D matrix and 3-D volume data, controlling the view, lighting and transparency.

Surface and Mesh Plots	Plot matrices, visualize functions of two variables, specify colormap
View Control	Control the camera viewpoint, zooming, rotation, aspect ratio, set axis limits
Lighting	Add and control scene lighting
Transparency	Specify and control object transparency
Volume Visualization	Visualize gridded volume data

Surface and Mesh Plots

- Creating Surfaces and Meshes
- Domain Generation
- Color Operations
- Colormaps

Creating Surfaces and Meshes

hi dden	Mesh hidden line removal mode
meshc	Combination mesh/contourplot
mesh	3-D mesh with reference plane
peaks	A sample function of two variables
surf	3-D shaded surface graph
surface	Create surface low-level objects
surfc	Combination surf/contourplot
surfl	3-D shaded surface with lighting
tetramesh	Tetrahedron mesh plot
trimesh	Triangular mesh plot
tri pl ot	2-D triangular plot
trisurf	Triangular surface plot

Domain Generation

gri ddata	Data gridding and surface fitting
meshgri d	Generation of X and Y arrays for 3-D plots

Color Operations

bri ght en	Brighten or darken color map
caxi s	Pseudocolor axis scaling
col ormapedit	orStart colormap editor
col orbar	Display color bar (color scale)
col ordef	Set up color defaults
col ormap	Set the color look-up table (list of colormaps)
Col or Spec	Ways to specify color
graymon	Graphics figure defaults set for grayscale monitor
hsv2rgb	Hue-saturation-value to red-green-blue conversion
rgb2hsv	RGB to HSVconversion
rgbpl ot	Plot color map
shadi ng	Color shading mode
spinmap	Spin the colormap
surfnorm	3-D surface normals
whitebg	Change axes background color for plots

Colormaps

autumn	Shades of red and yellow color map
bone	Gray-scale with a tinge of blue color map
contrast	Gray color map to enhance image contrast
cool	Shades of cyan and magenta color map
copper	Linear copper-tone color map
flag	Alternating red, white, blue, and black color map
gray	Linear gray-scale color map
hot	Black-red-yellow-white color map
hsv	Hue-saturation-value (HSV) color map
j et	Variant of HSV
lines	Line color colormap
pri sm	Colormap of prism colors
spri ng	Shades of magenta and yellow color map
summer	Shades of green and yellow colormap
winter	Shades of blue and green color map

View Control

- Controlling the Camera Viewpoint
- Setting the Aspect Ratio and Axis Limits
- Object Manipulation
- Selecting Region of Interest

Controlling the Camera Viewpoint

camdolly	Move camera position and target
caml ookat	View specific objects
camorbi t	Orbit about camera target
campan	Rotate camera target about camera position
campos	Set or get camera position
camproj	Set or get projection type
camroll	Rotate camera about viewing axis
camtarget	Set or get camera target
camup	Set or get camera up-vector
camva	Set or get camera view angle
camzoom	Zoom camera in or out
vi ew	3-D graph viewpoint specification.
viewmtx	Generate view transformation matrices

Setting the Aspect Ratio and Axis Limits

daspect	Set or get data aspect ratio
pbaspect	Set or get plot box aspect ratio
xl i m	Set or get the current <i>x</i> -axis limits
ylim	Set or get the current <i>y</i> -axis limits
zlim	Set or get the current <i>z</i> -axis limits

Object Manipulation

reset	Reset axis or figure	
rotate	Rotate objects about specified origin and direction	
rotate3d	Interactively rotate the view of a 3-D plot	
sel ectmoveresi zeInteractively select, move, or resize objects		
zoom	Zoom in and out on a 2-D plot	

Selecting Region of Interest

dragrect	Drag XOR rectangles with mouse
rbbox	Rubberband box

Lighting

Cerate or position Light
Light object creation function
Position light in sphereical coordinates
Lighting mode
Material reflectance mode

Transparency

al pha	Set or query transparency properties for objects in current axes
al phamap	Specify the figure alphamap
alim	Set or query the axes alpha limits

Volume Visualization

curl di vergence fl ow	Plot velocity vectors as cones in 3-D vector field Draw contours in volume slice plane Compute curl and angular velocity of vector field Compute divergence of vector field Generate scalar volume data speedInterpolate streamline vertices from vector-field magnitudes
i socaps	Compute isosurface end-cap geometry
i socol ors	Compute colors of isosurface vertices
i sonormal s	Compute normals of isosurface vertices
isosurface	Extract isosurface data from volume data
reducepatch	Reduce number of patch faces
reducevol ume	Reduce number of elements in volume data set
shrinkfaces	Reduce size of patch faces
sl i ce	Draw slice planes in volume
smooth3	Smooth 3-D data
stream2	Compute 2-D stream line data
stream3	Compute 3-D stream line data
streaml i ne	Draw stream lines from 2- or 3-D vector data
streamparticl	esDraws stream particles from vector volume data
streamri bbon	Draws stream ribbons from vector volume data
streamslice	Draws well-spaced stream lines from vector volume data
streamtube	Draws stream tubes from vector volume data
surf2patch	Convert surface data to patch data
subvol ume	Extract subset of volume data set
vol umebounds	Return coordinate and color limits for volume (scalar and vector)

Creating Graphical User Interfaces

Predefined dialog boxes and functions to control GUI programs.

Due de Gue d'Diele et Desse	Diale a barres for some second south and the assess
Predefined Dialog Boxes	Dialog boxes for error, user input, waiting, etc.
Deploying User Interfaces	Launching GUIs, creating the handles structure
Developing User Interfaces	Starting GUIDE, managing application data, getting user input
User Interface Objects	Creating GUI components
Finding Objects from Callbacks	Finding object handles from within callbacks functions
GUI Utility Functions	Moving objects, text wrapping
Controlling Program Execution	Wait and resume based on user input

Predefined Dialog Boxes

di al og	Create dialog box
errordl g	Create error dialog box
hel pdl g	Display help dialog box
i nput dl g	Create input dialog box
listdlg	Create list selection dialog box
msgbox	Create message dialog box
pagedl g	Display page layout dialog box
pri nt dl g	Display print dialog box
quest dl g	Create question dialog box
ui get di r	Display dialog box to retrieve name of directory
uigetfile	Display dialog box to retrieve name of file for reading
uiputfile	Display dialog box to retrieve name of file for writing
ui set col or	Set Col or Spec using dialog box
ui setfont	Set font using dialog box
wai tbar	Display wait bar
warndl g	Create warning dialog box

Deploying User Interfaces

gui dat a	Store or retrieve application data
gui handl es	Create a structure of handles
movegui	Move GUI figure onscreen
openfi g	Open or raise GUI figure

Developing User Interfaces

gui de	Open GUI Layout Editor
i nspect	Display Property Inspector

Working with Application Data

getappdata	Get value of application data
i sappdata	True if application data exists
rmappdata	Remove application data
setappdata	Specify application data

Interactive User Input

gi nput Graphical input from a mouse or cursor waitfor Wait for conditions before resuming execution waitforbuttonpressWait for key/buttonpress over figure

User Interface Objects

menuGenerate menu of choices for user inputui contextmenuCreate context menuui controlCreate user interface controlui menuCreate user interface menu

Finding Objects from Callbacks

findall	Find all graphics objects
findfigs	Display off-screen visible figure windows
findobj	Find specific graphics object
gcbf	Return handle of figure containing callback object
gcbo	Return handle of object whose callback is executing

GUI Utility Functions

selectmoveres	si zeSelect, move, resize, or copy axes and uicontrol graphics
	objects
textwrap	Return wrapped string matrix for given uicontrol

Controlling Program Execution

ui resume	Resumes program execution halted with ui wai t
ui wai t	Halts program execution, restart with ui resume

Functions – Alphabetical List

Arithmetic Operators + - * / \ ^ '	2-11
Relational Operators < > <= >= == ~=	2-19
Logical Operators, Element-wise & ~	2-20
Logical Operators, Short-circuit &&	2-22
Special Characters [] () {} = ', ; % !	2-24
Colon :	2-27
abs	2-29
acos	2-30
acosh	2-32
acot	2-34
acoth	2-36
acsc	2-38
acsch	2-40
actxcontrol	2-42
actxserver	2-46
addframe	2-48
addpath	2-50
addproperty (COM)	2-52
airy	2-53
alim	2-55
all	2-56
allchild	2-58
alpha	2-59
alphamap	2-62
angle	2-64
ans	2-65
any	2-66
area	2-68
asec	2-70
asech	2-72
asin	2-74
asinh	2-76
assignin	2-78
atan	2-80
atan2	2-82
atanh	2-84
audiodevinfo	2-86

audioplayer	2-88
audiorecorder	2-92
auread	2-97
auwrite	2-98
avifile	2-99
aviinfo	2-102
aviread	2-104
axes	2-105
Axes Properties	2-117
axis	2-138
balance	2-144
bar, barh	2-147
bar3, bar3h	2-151
base2dec	2-155
beep	2-156
besselh	2-157
besseli	2-161
besselk	2-164
besselj	2-167
bessely	2-170
beta	2-173
betainc	2-175
betaln	2-176
	2-177
	2-184
	2-189
bitand	2-190
bitcmp	2-191
bitget	2-192
	2-193
	2-194
bitset	2-195
	2-196
	2-197
	2-198
8	2-199
box	2-200

break	2-201
brighten	2-202
builtin	2-204
bvp4c	2-205
bvpget	2-212
bvpinit	2-213
bvpset	2-215
bvpval	2-218
calendar	2-219
camdolly	2-220
camlight	2-222
camlookat	2-224
camorbit	2-226
campan	2-228
campos	2-229
camproj	2-231
camroll	2-232
camtarget	2-233
camup	2-235
camva	2-237
camzoom	2-239
capture	2-240
cart2pol	2-241
cart2sph	2-242
case	2-243
cat	2-244
catch	2-245
caxis	2-246
cd	2-250
cdf2rdf	2-251
cdfepoch	2-253
cdfinfo	2-254
cdfread	2-258
cdfwrite	2-260
ceil	2-263
cell	2-264
cell2mat	2-266

cell2struct	2-268
celldisp	2-269
cellfun	2-270
cellplot	2-272
cellstr	2-273
cgs	2-274
char	2-278
checkin	2-280
checkout	2-282
chol	2-285
cholinc	2-287
cholupdate	2-294
circshift	2-297
cla	2-298
clabel	2-299
class	2-301
clc	2-303
clear	2-304
clear (serial)	2-308
clf	2-309
clipboard	2-310
clock	2-311
close	2-312
close	2-314
closereq	2-315
cmopts	2-316
colamd	2-317
colmmd	2-319
colorbar	2-322
colordef	2-324
colormap	2-326
colormapeditor	2-330
ColorSpec	2-346
colperm	2-348
comet	2-349
comet3	2-350
compan	2-351

compass	2-352
complex	2-354
computer	2-356
cond	2-357
condeig	2-358
condest	2-359
coneplot	2-360
conj	2-365
continue	2-366
contour	2-367
contour3	2-371
contourc	2-373
contourf	2-375
contourslice	2-377
contrast	2-380
conv	2-381
conv2	2-382
convhull	2-386
convhulln	2-388
convn	2-390
copyfile	2-391
copyobj	2-393
corrcoef	2-395
cos	2-398
cosh	2-400
cot	2-402
coth	2-404
COV	2-406
cplxpair	2-407
cputime	2-408
cross	2-409
CSC	2-410
csch	2-412
csvread	2-414
csvwrite	2-416
cumprod	2-417
cumsum	2-418

cumtrapz	2-419
curl	2-421
customverctrl	2-424
cylinder	2-425
daspect	2-428
date	2-431
datenum	2-432
datestr	2-434
datetick	2-437
datevec	2-440
dbclear	2-442
dbcont	2-444
dbdown	2-445
dblquad	2-446
dbmex	2-448
dbquit	2-449
dbstack	2-450
dbstatus	2-451
dbstep	2-452
dbstop	2-453
dbtype	2-457
dbup	2-458
dde23	2-459
ddeadv	2-463
ddeexec	2-465
ddeget	2-466
ddeinit	2-467
ddepoke	2-468
ddereq	2-470
ddeset	2-472
ddeterm	2-475
ddeunadv	2-476
deal	2-477
deblank	2-479
dec2base	2-480
dec2bin	2-481
dec2hex	2-482

deconv	2-483
del2	2-484
delaunay	2-487
delaunay3	2-492
delaunayn	2-495
delete	2-498
delete (COM)	2-499
delete (serial)	2-501
delete (timer)	2-502
deleteproperty (COM)	2-503
demo	2-504
depdir	2-507
depfun	2-508
det	2-512
detrend	2-513
deval	2-515
diag	2-517
dialog	2-519
diary	2-520
diff	2-521
dir	2-523
disp	2-525
disp (serial)	2-526
disp (timer)	2-527
display	2-529
divergence	2-531
dlmread	2-533
dlmwrite	2-534
dmperm	2-535
doc	2-536
docopt	2-537
docroot	2-538
dos	2-539
dot	2-541
double	2-542
dragrect	2-543
drawnow	2-544

dsearch	2-545
dsearchn	2-546
echo	2-547
edit	2-548
eig	2-550
eigs	2-554
ellipj	2-562
ellipke	2-564
ellipsoid	2-566
else	2-567
elseif	2-568
end	2-570
eomday	2-572
eps	2-573
erf, erfc, erfcx, erfinv, erfcinv	2-574
error	2-576
errorbar	2-578
errordlg	2-580
etime	2-582
etree	2-583
etreeplot	2-584
eval	2-585
evalc	2-587
evalin	2-588
eventlisteners (COM)	2-590
events (COM)	2-592
exist	2-594
exit	2-596
exp	2-597
expint	2-598
expm	2-599
eye	2-601
ezcontour	2-602
ezcontourf	2-605
ezmesh	2-608
ezmeshc	2-610
ezplot	2-612

ezplot3	2-614
ezpolar	2-616
ezsurf	2-618
ezsurfc	2-621

Syntax	A+B	
	A- B	
	A*B	A. *B
	A/B	A. /B
	A∖B	A. \ B
	A^B	A. ^B
	Α'	A. '

Description MATLAB has two different types of arithmetic operations. Matrix arithmetic operations are defined by the rules of linear algebra. Array arithmetic operations are carried out element-by-element, and can be used with multidimensional arrays. The period character (.) distinguishes the array operations from the matrix operations. However, since the matrix and array operations are the same for addition and subtraction, the character pairs . + and . - are not used.

- + Addition or unary plus. A+B adds A and B. A and B must have the same size, unless one is a scalar. A scalar can be added to a matrix of any size.
- Subtraction or unary minus. A-B subtracts B from A. A and B must have the same size, unless one is a scalar. A scalar can be subtracted from a matrix of any size.
- * Matrix multiplication. C = A*B is the linear algebraic product of the matrices A and B. More precisely,

$$C(i, j) = \sum_{k=1}^{n} A(i, k) B(k, j)$$

For nonscalar A and B, the number of columns of A must equal the number of rows of B. A scalar can multiply a matrix of any size.

- .* Array multiplication. A . *B is the element-by-element product of the arrays A and B. A and B must have the same size, unless one of them is a scalar.
- / Slash or matrix right division. B/A is roughly the same as B*i nv(A). More precisely, B/A = $(A' \setminus B')'$. See \setminus .

- . / Array right division. A. /B is the matrix with elements A(i, j)/B(i, j). A and B must have the same size, unless one of them is a scalar.
- Backslash or matrix left division. If A is a square matrix, A\B is roughly the same as i nv(A) *B, except it is computed in a different way. If A is an n-by-n matrix and B is a column vector with n components, or a matrix with several such columns, then $X = A \setminus B$ is the solution to the equation AX = B computed by Gaussian elimination (see "Algorithm" on page 2-15 for details). A warning message prints if A is badly scaled or nearly singular.

If A is an m-by-n matrix with m \sim = n and B is a column vector with m components, or a matrix with several such columns, then X = A\B is the solution in the least squares sense to the under- or overdetermined system of equations AX = B. The effective rank, k, of A, is determined from the QR decomposition with pivoting (see "Algorithm" for details). A solution X is computed which has at most k nonzero components per column. If k < n, this is usually not the same solution as pi nv(A) *B, which is the least squares solution with the smallest norm, ||X||.

- . \land Array left division. A. \land B is the matrix with elements B(i, j) / A(i, j). A and B must have the same size, unless one of them is a scalar.
- ^ Matrix power. X^p is X to the power p, if p is a scalar. If p is an integer, the power is computed by repeated squaring. If the integer is negative, X is inverted first. For other values of p, the calculation involves eigenvalues and eigenvectors, such that if [V, D] = eig(X), then $X^p = V*D$. $^p/V$.

If x is a scalar and P is a matrix, x^P is x raised to the matrix power P using eigenvalues and eigenvectors. X^P , where X and P are both matrices, is an error.

- . ^ Array power. A. ^B is the matrix with elements A(i, j) to the B(i, j) power. A and B must have the same size, unless one of them is a scalar.
- Matrix transpose. A' is the linear algebraic transpose of A. For complex matrices, this is the complex conjugate transpose.
- Array transpose. A. ' is the array transpose of A. For complex matrices, this does not involve conjugation.

Remarks	The arithmetic operators have M-file function equivalents, as shown:

Binary addition	A+B	plus(A, B)
Unary plus	+A	uplus(A)
Binary subtraction	A- B	minus(A,B)
Unary minus	- A	uminus(A)
Matrix multiplication	A*B	mtimes(A,B)
Array-wise multiplication	A. *B	times(A,B)
Matrix right division	A/B	mrdi vi de(A, B)
Array-wise right division	A. /B	rdi vi de(A, B)
Matrix left division	A∖B	ml di vi de(A, B)
Array-wise left division	A. ∖B	l di vi de(A, B)
Matrix power	A^B	<pre>mpower(A, B)</pre>
Array-wise power	A. ^B	<pre>power(A, B)</pre>
Complex transpose	Α'	ctranspose(A)
Matrix transpose	A. '	transpose(A)

Examples Here are two vectors, and the results of various matrix and array operations on them, printed with format rat.

Matrix Operations		Array Operations	
x	1 2 3	У	4 5 6
x '	1 2 3	y'	4 5 6
x+y	5 7 9	x- y	- 3 - 3 - 3

Matrix Operations		Array Operations		
x + 2	3 4 5	x-2	- 1 0 1	
x * y	Error	x. *y	4 10 18	
x' *y	32	x' . *y	Error	
x*y'	$\begin{array}{cccc} 4 & 5 & 6 \\ 8 & 10 & 12 \\ 12 & 15 & 18 \end{array}$	x. *y'	Error	
x*2	2 4 6	x. *2	2 4 6	
x∖y	16/7	x . \y	4 5/2 2	
2\x	1/2 1 3/2	2. /x	2 1 2/3	
x/y	$\begin{array}{cccc} 0 & 0 & 1/6 \\ 0 & 0 & 1/3 \\ 0 & 0 & 1/2 \end{array}$	x. /y	1/4 2/5 1/2	
x/2	1/2 1 3/2	x. /2	1/2 1 3/2	
x^y	Error	x. ^y	1 32 729	
x^2	Error	x. ^2	1 4 9	

Matrix Operations		Array Operations		
2^x	Error		2. ^x	2 4 8
(x+i *y) '	1 - 4i	2 - 5i	3 - 6i	
(x+i *y). '	1 + 4i	2 + 51	3 + 6i	

Algorithm

The specific algorithm used for solving the simultaneous linear equations denoted by $X = A \setminus B$ and X = B/A depends upon the structure of the coefficient matrix A. To determine the structure of A and select the appropriate algorithm, MATLAB follows this precedence:

- 1 If A is sparse, square, and banded, then banded solvers are used. Band density is (# nonzeros in the band)/(# nonzeros in a full band). Band density = 1. 0 if there are no zeros on any of the three diagonals.
 - If A is real and tridiagonal, i.e., band density = 1. 0, and B is real with only one column, X is computed quickly using Gaussian elimination without pivoting.
 - If the tridiagonal solver detects a need for pivoting, or if A or B is not real, or if B has more than one column, but A is banded with band density greater than the spparms parameter ' bandden' (default = 0. 5), then X is computed using LAPACK.
- **2** If A is an upper or lower triangular matrix, then X is computed quickly with a backsubstitution algorithm for upper triangular matrices, or a forward substitution algorithm for lower triangular matrices. The check for triangularity is done for full matrices by testing for zero elements and for sparse matrices by accessing the sparse data structure.
- **3** If A is a permutation of a triangular matrix, then X is computed with a permuted backsubstitution algorithm.
- **4 If A is symmetric, or Hermitian, and has positive diagonal elements**, then a Cholesky factorization is attempted (see chol). If A is found to be positive definite, the Cholesky factorization attempt is successful and requires less than half the time of a general factorization. Nonpositive definite matrices are usually detected almost immediately, so this check also requires little time. If successful, the Cholesky factorization is

$\mathbf{A} = \mathbf{R'} * \mathbf{R}$

where R is upper triangular. The solution X is computed by solving two triangular systems,

 $X = R \setminus (R' \setminus B)$

If A is sparse, a symmetric minimum degree preordering is applied (see symmed and spparms). The algorithm is:

<pre>perm = symmmd(A);</pre>	% Symmetric minimum degree reordering
<pre>R = chol(A(perm, perm));</pre>	% Cholesky factorization
$Y = R' \setminus B(perm);$	% Lower triangular solve
$X(perm, :) = R \setminus Y;$	% Upper triangular solve

- **5 If A is Hessenberg**, but not sparse, it is reduced to an upper triangular matrix and that system is solved via substitution.
- **6 If A is square**, and does not satisfy criteria 1 through 5, then a general triangular factorization is computed by Gaussian elimination with partial pivoting (see l u). This results in
 - A = L*U

where L is a permutation of a lower triangular matrix and U is an upper triangular matrix. Then X is computed by solving two permuted triangular systems.

 $X = U \setminus (L \setminus B)$

If A is sparse, then UMFPACK is used to compute X. The computations result in

 $P^*A^*Q = L^*U$

where P is a row permutaion matrix and Q is a column reordering matrix. Then $X = Q^{*}(U \setminus L \setminus (P^{*}B))$.

7 If A is not square, then Householder reflections are used to compute an orthogonal-triangular factorization.

A*P = Q*R

where P is a permutation, Q is orthogonal and R is upper triangular (see qr). The least squares solution X is computed with

 $X = P*(R \setminus (Q' *B))$

If A is sparse, then MATLAB computes a least squares solution using the sparse qr factorization of A.

Note For sparse matrices, to see information about choice of algorithm and storage allocation, set the spparms parameter ' spumoni ' = 1.

Note Backslash is not implemented for sparse matrices A that are complex but not square.

MATLAB uses LAPACK routines to compute these matrix factorizations:

Matrix	Real	Complex
Sparse square banded with band density > ' bandden' .	DGBTRF, DGBTRS	ZGBTRF, ZGBTRS
Full square, symmetric (Hermitian) positive definite	DLANGE, DPOTRF, DPOTRS, DPOCON	ZLANGE, ZPOTRF, ZPOTRS ZPOCON
Full square, general case	DLANGE, DGESV, DGECON	ZLANGE, ZGESV, ZGECON
Full non-square	DGEQP3, DORMQR, DTRTRS	ZGEQP3, ZORMQR, ZTRTRS

For other cases (sparse, triangular and Hessenberg) MATLAB does not use LAPACK.

Diagnostics • From matrix division, if a square A is singular: Warning: Matrix is singular to working precision.

• From element-wise division, if the divisor has zero elements:

Warning: Divide by zero.

Matrix division and element-wise division may produce NaNs or Infs where appropriate.

• If the inverse was found, but is not reliable:

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = xxx

• From matrix division, if a nonsquare A is rank deficient: Warning: Rank deficient, rank = xxx tol = xxx

See Also chol, det, inv, lu, orth, permute, i permute, qr, rref

References[1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User's Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

[2] Davis, T.A., *UMFPACK Version 4.0 User Guide* (http://www.cise.ufl.edu/research/sparse/umfpack/v4.0/UserGuide.pdf), Dept. of Computer and Information Science and Engineering, Univ. of Florida, Gainesville, FL, 2002.

Purpose	Relational operations
Syntax	$A < B$ $A > B$ $A <= B$ $A >= B$ $A == B$ $A \sim= B$
Description	The relational operators are <, >, <=, >=, ==, and \sim =. Relational operators perform element-by-element comparisons between two arrays. They return a l ogi cal array of the same size, with elements set to true (1) where the relation is true, and elements set to false (0) where it is not.
	The operators <, >, <=, and >= use only the real part of their operands for the comparison. The operators == and \sim = test real and imaginary parts.
	To test if two strings are equivalent, use <pre>strcmp</pre> , which allows vectors of dissimilar length to be compared.
Examples	If one of the operands is a scalar and the other a matrix, the scalar expands to the size of the matrix. For example, the two pairs of statements:
	X = 5; X >= [1 2 3; 4 5 6; 7 8 10] X = 5*ones(3, 3); X >= [1 2 3; 4 5 6; 7 8 10]
	produce the same result:
	ans =
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
See Also	all, any, find, strcmp
	The logical operators &, , ~

Purpose Element-wise logical operations on arrays

Syntax A & B A | B ~A

DescriptionThe symbols &, |, and ~ are the logical array operators AND, OR, and NOT. They
work element-by-element on arrays, with 0 representing logical false (F), and
anything nonzero representing logical true (T). The logical operators return a
logi cal array with elements set to true (1) or false (0), as appropriate.

The & operator does a logical AND, the | operator does a logical OR, and \sim A complements the elements of A. The function xor(A, B) implements the exclusive OR operation. The truth table for these operators and functions is shown below.

Inpu	uts	and	or	not	xor
Α	В	A & B	A B	~A	xor(A, B)
0	0	0	0	1	0
0	1	0	1	1	1
1	0	0	1	0	1
1	1	1	1	0	0

The precedence for the logical operators with respect to each other is

Operator	Operation	Priority
~	NOT	Highest
&	Element-wise AND	
I	Element-wise 0R	
&&	Short-circuit AND	
	Short-circuit OR	Lowest

RemarksMATLAB always gives the & operator precedence over the | operator. Although
MATLAB typically evaluates expressions from left to right, the expression
a|b&c is evaluated as a|(b&c). It is a good idea to use parentheses to explicitly
specify the intended precedence of statements containing combinations of &
and |.

These logical operators have M-file function equivalents, as shown.

Logical Operation	Equivalent Function
A & B	and(A,B)
A B	or(A,B)
~A	not(A)

Examples This example shows the logical OR of the elements in the vector u with the corresponding elements in the vector v:

	$u = [0 \ 0 \ 1 \ 1 \ 0 \ 1];$ $v = [0 \ 1 \ 1 \ 0 \ 0 \ 1];$ u v
	ans = 0 1 1 1 0 1
See Also	all, any, find, logical, xor, true, false
	Logical Operators, Short-circuit: &&,
	Relational Operators: <, <=, >, >=, ==, ~=

Logical Operators, Short-circuit && ||

Purpose	Logical operations, with short-circuiting capability
Syntax	A && B A B
Description	The symbols && and $ $ are the logical AND and OR operators used to evaluate logical expressions. Use && and $ $ in the evaluation of compound expressions of the form
	expression_1 && expression_2
	where expressi on_1 and expressi on_2 each evaluate to a scalar, logical result.
	The && and $ $ operators support short-circuiting. This means that the second operand is evaluated only when the result is not fully determined by the first operand. See "Short-circuit Operators" in the MATLAB documentation for a discussion on short-circuiting with && and $ $.
	Note Always use the && and operators when short-circuiting is required. Using the element-wise operators (& and) for short-circuiting may yield unexpected results.
Examples	In the following statement, it doesn't make sense to evaluate the relation on the right if the divisor, b, is zero. The test on the left is put in to avoid generating a warning under these circumstances: $x = (b \sim = 0) \& (a/b > 18.5)$
	By definition, if any operands of an AND expression are false, the entire expression must be false. So, if (b ~= 0) evaluates to false, MATLAB assumes the entire expression to be false and terminates its evaluation of the expression early. This avoids the warning that would be generated if MATLAB were to evaluate the operand on the right.

See Also al l , any, fi nd, l ogi cal , xor, true, fal se Logical operators, Element-wise: &, |, ~ Relational Operators: <, <=, >, >=, ==, ~=

Special Characters []() {} = ' , ; % !

Purpose	Special characters
Syntax	[](){} = ',; % !
Description	 Brackets are used to form vectors and matrices. [6. 9 9. 64 sqrt(-1)] is a vector with three elements separated by blanks. [6. 9, 9. 64, i] is the same thing. [1+j 2-j 3] and [1 +j 2 -j 3] are not the same. The first has three elements, the second has five. [11 12 13; 21 22 23] is a 2-by-3 matrix. The semicolon ends the first row. Vectors and matrices can be used inside [] brackets. [A B; C] is allowed if the number of rows of A equals the number of rows of B and the number of columns of A plus the number of columns of B equals the number of columns of C. This rule generalizes in a hopefully obvious way to allow fairly complicated constructions. A = [] stores an empty matrix in A. A(m, :) = [] deletes row m of A. A(:, n) = [] deletes column n of A. A(n) = [] reshapes A into a column vector and deletes the third element. [A1, A2, A3] = funct i on assigns function output to multiple variables.
	<pre>statements, see l u, ei g, svd, and so on. { } Curly braces are used in cell array assignment statements. For example, A(2, 1) = {[1 2 3; 4 5 6]}, or A{2, 2} = ('str'). See help paren</pre>

 $A(2, 1) = \{ [1 2 3; 4 5 6] \}, \text{ or } A\{2, 2\} = ('str'). See help parent for more information about { }.$

- Parentheses are used to indicate precedence in arithmetic expressions in the usual way. They are used to enclose arguments of functions in the usual way. They are also used to enclose subscripts of vectors and matrices in a manner somewhat more general than usual. If X and V are vectors, then X(V) is [X(V(1)), X(V(2)), ..., X(V(n))]. The components of V must be integers to be used as subscripts. An error occurs if any such subscript is less than 1 or greater than the size of X. Some examples are
 - X(3) is the third element of X.
 - X([1 2 3]) is the first three elements of X.

See help paren for more information about ().

If X has n components, X(n: -1: 1) reverses them. The same indirect subscripting works in matrices. If V has m components and W has n components, then A(V, W) is the m-by-n matrix formed from the elements of A whose subscripts are the elements of V and W For example, A([1, 5], :) = A([5, 1], :) interchanges rows 1 and 5 of A.

- Used in assignment statements. B = A stores the elements of A in B.
 == is the relational equals operator. See the Relational Operators page.
 - Matrix transpose. X' is the complex conjugate transpose of X. X. ' is the nonconjugate transpose.
 - Quotation mark. ' any text' is a vector whose components are the ASCII codes for the characters. A quotation mark within the text is indicated by two quotation marks.
- . Decimal point. 314/100, 3.14 and .314e1 are all the same. Element-by-element operations. These are obtained using . * , .^ , . /, or . \. See the Arithmetic Operators page.
- . Field access. A. (field) and A(i). field, when A is a structure, access the contents of field.
- · Parent directory. See cd.
- ... Continuation. Three or more points at the end of a line indicate continuation.

	,	Used to separate stat	ements in multista	ipts and function arguments. tement lines. For e replaced by a semicolon to
	;	Semicolon. Used insid or statement to suppr		ows. Used after an expression eparate statements.
	%	end of line. Any follow	ving text is ignored	omment; it indicates a logical . MATLAB displays the first response to a hel p command.
	!	as a command to the o	operating system. C	st of the input line is issued On the PC, adding & to the end ses the output to appear in a
Remarks	Some	uses of special charact	ers have M-file fun	ction equivalents, as shown:
	Horiz	ontal concatenation	[A, B, C]	horzcat (A, B, C)
	Vertic	al concatenation	[A; B; C]	vertcat(A, B, C)
	Subsc	ript reference	A(i,j,k)	subsref(A,S). See help subsref.
	Subsc	ript assignment	A(i, j, k) = B	subsasgn(A, S, B). See hel p subsasgn.
See Also	The a	rithmetic operators +, -	-, *, /, ^, '	
	The r	elational operators <, <	=, >, >=, ==, ~=	
	The lo	ogical operators &, , ~		

Purpose Create vectors, array subscripting, and for loop iterations

Description The colon is one of the most useful operators in MATLAB. It can create vectors, subscript arrays, and specify for iterations.

The colon operator uses the following rules to create regularly spaced vectors:

j : k	is the same as $[j, j+1, \ldots, k]$
j : k	is empty if $j > k$
j:i:k	is the same as $[j, j+i, j+2i, \ldots, k]$
j:i:k	is empty if $i \ > 0$ and $j \ > k$ or if $i \ < 0$ and $j \ < k$

where i, j, and k are all scalars.

Below are the definitions that govern the use of the colon to pick out selected rows, columns, and elements of vectors, matrices, and higher-dimensional arrays:

A(:,j)	is the j -th column of A

- A(i,:) is the i -th row of A
- A(:,:) is the equivalent two-dimensional array. For matrices this is the same as A.
- A(j:k) is A(j), A(j+1),..., A(k)
- A(:, j:k) is A(:, j), A(:, j+1), ..., A(:, k)
- A(:,:,k) is the kth page of three-dimensional array A.
- $\begin{array}{ll} A(i\,,j\,,k,\,:\,) & \text{ is a vector in four-dimensional array A. The vector includes} \\ A(i\,,j\,,k,\,1)\,,\,A(i\,,j\,,k,\,2)\,,\,A(i\,,j\,,k,\,3)\,,\,\text{and so on.} \end{array}$
- A(:) is all the elements of A, regarded as a single column. On the left side of an assignment statement, A(:) fills A, preserving its shape from before. In this case, the right side must contain the same number of elements as A.

Examples

Using the colon with integers,

D = 1:4

results in

D = 1 2 3 4

Using two colons to create a vector with arbitrary real increments between the elements,

$$E = 0:.1:.5$$

results in

E = 0 0.1000 0.2000 0.3000 0.4000 0.5000

The command

A(:,:,2) = pascal(3)

generates a three-dimensional array whose first page is all zeros.

=	
0	0
0	0
0	0
_	
1	1
2	3
3	6
	0 0 0 = 1 2

See Also

for, linspace, logspace, reshape

Purpose	Absolute value and complex magnitude
Syntax	Y = abs(X)
Description	abs(X) returns an array Y such that each element of Y is the absolute value of the corresponding element of X.
	If X is complex, $abs(X)$ returns the complex modulus (magnitude), which is the same as
	$sqrt(real(X).^2 + imag(X).^2)$
Examples	abs(-5)
	ans = 5 abs(3+4i) ans =
	5
See Also	angle, sign, unwrap

acos

nverse cosine
$X = a\cos(X)$
$X = a\cos(X)$ returns the inverse cosine (arccosine) for each element of X. For real elements of X in the domain $[-1, 1]$, $a\cos(X)$ is real and in the range $0, \pi$]. For real elements of X outside the domain $[-1, 1]$, $a\cos(X)$ is complex. The acos function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians
and ranges include complex values. All angles are in radians. Graph the inverse cosine function over the domain $-1 \le x \le 1$. x = -1:.05:1; plot(x, acos(x)), grid on

Definition

The inverse cosine can be defined as

$$\cos^{-1}(z) = -i \log \left[z + i(1-z^2)^{\frac{1}{2}} \right]$$

Algorithm acos uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http://www.netlib.org.

See Also acosh, cos

acosh

Purpose	Inverse hyperbolic cosine
Syntax	$Y = a\cosh(X)$
Description	Y = acosh(X) returns the inverse hyperbolic cosine for each element of X. The acosh function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.
Examples	Graph the inverse hyperbolic cosine function over the domain $1 \le x \le \pi$. x = 1: pi / 40: pi; pl ot(x, acosh(x)), grid on

Definition

The hyperbolic inverse cosine can be defined as

$$\cosh^{-1}(z) = \log \left[z + (z^2 - 1)^{\frac{1}{2}} \right]$$

Algorithm acosh uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http://www.netlib.org. See Also acos, cosh

acot

Purpose	Inverse cotangent	
Syntax	Y = acot(X)	
Description	Y = acot(X) returns the inverse cotangent (arccotangent) for each element of X.	
	The acot function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.	
Examples	Graph the inverse cotangent over the domains $-2\pi \le x < 0$ and $0 < x \le 2\pi$.	
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
	1.5	
	1	
	0.5	
	0	
	-0.5	
	-1	
Definition	The inverse cotangent can be defined as	
	$\cot^{-1}(z) = \tan^{-1}\left(\frac{1}{z}\right)$	
Algorithm	acot uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http://www.netlib.org.	

See Also cot, acoth

acoth

Purpose	Inverse hyperbolic cotangent
Syntax	$Y = \operatorname{acoth}(X)$
Description	Y = acoth(X) returns the inverse hyperbolic cotangent for each element of X. The acoth function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.
Examples	Graph the inverse hyperbolic cotangent over the domains $-30 \le x < -1$ and $1 < x \le 30$. x1 = -30: 0. 1: -1. 1; x2 = 1. 1: 0. 1: 30; plot (x1, acoth(x1), x2, acoth(x2)), grid on $\frac{1}{16} = \frac{1}{16} = 1$

The hyperbolic inverse cotangent can be defined as

$$\operatorname{coth}^{-1}(z) = \operatorname{tanh}^{-1}\left(\frac{1}{z}\right)$$

Algorithm acoth uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http://www.netlib.org.

See Also acot, coth

Purpose	Inverse cosecant		
Syntax	$Y = \operatorname{acsc}(X)$		
Description	Y = acsc(X) returns the inverse cosecant (arccosecant) for each element of X.		
	The acsc function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.		
Examples	Graph the inverse cosecant over the domains $-10 \le x < -1$ and $1 < x \le 10$.		
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
	1.5		
	0.5		
	0		
	-0.5		
	_1		
	-1.5 -1.5 -10 -5 -5 -10 -5 -5 -10 -5 -10 -5 -10 -5 -10 -10 -5 -10		
Definition	The inverse cosecant can be defined as		
	$\csc^{-1}(z) = \sin^{-1}\left(\frac{1}{z}\right)$		

Algorithm acsc uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http://www.netlib.org.

See Also csc, acsch

acsch

Purpose	Inverse cosecant and inverse hyperbolic cosecant
Syntax	$Y = \operatorname{acsch}(X)$
Description	$Y = \operatorname{acsch}(X)$ returns the inverse hyperbolic cosecant for each element of X. The acsch function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.
Examples	Graph the inverse hyperbolic cosecant over the domains $-20 \le x \le -1$ and $1 \le x \le 20$. x1 = -20: 0. 01: -1; x2 = 1: 0. 01: 20; plot (x1, acsch(x1), x2, acsch(x2)), grid on 1 = -20: 0. 01: -1; and $1 = -20: 0. 01: -1;$ and $1 = -20: 0. 01: -1;$ by the second se

Definition

The hyperbolic inverse cosecant can be defined as

-5

0

10

5

15

20

$$\operatorname{csch}^{-1}(z) = \sinh^{-1}\left(\frac{1}{z}\right)$$

-15

-10

-0.8 -1 -20 Algorithm acsc uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http://www.netlib.org.

See Also acsc, csch

actxcontrol

Purpose	Create a COM control in a figure window	
Syntax	<pre>h = actxcontrol (progid [, position [, fig_handle [, callback {event1 eventhandler1; event2 eventhandler2;} [, filename]]])</pre>	
Arguments	progi d String that is the name of the control to create. The control vendor provides this string.	
	position Position vector containing the x and y location and the xsi ze and ysi ze of the control, expressed in pixel units as $[x \ y \ xsi \ ze \ ysi \ ze]$. Defaults to $[20 \ 20 \ 60]$ 60].	
	cal l back Name of an M-function that accepts a variable number of arguments. This function will be called whenever the control triggers an event. Each argument is converted to a MATLAB string. See the section, "Writing Event Handlers" in the External Interfaces documentation for more information on handling control events.	
	event Triggered event specified by either number or name.	
	eventhandl er Name of an M-function that accepts a variable number of arguments. This function will be called whenever the control triggers the event associated with it. See "Writing Event Handlers" in the External Interfaces documentation for more information on handling control events.	
	filename The name of a file to which a previously created control has been saved. When you specify filename, MATLAB creates a new control using the position, handle, and event/eventhandler arguments, and then initializes the control from the specified file. The progid argument in actxcontrol must match the progid of the saved control.	
	Position vector containing the x and y location and the xsi ze and ysi ze of the control, expressed in pixel units as [x y xsi ze ysi ze]. Defaults to [20 20 60 60]. fi g_handl e Handle Graphics handle of the figure window in which the control is to be created. If the control should be invisible, use the handle of an invisible figure window. Defaults to gcf. call back Name of an M-function that accepts a variable number of arguments. This function will be called whenever the control triggers an event. Each argument is converted to a MATLAB string. See the section, "Writing Event Handlers" in the External Interfaces documentation for more information on handling control events. event Triggered event specified by either number or name. eventhandl er Name of an M-function that accepts a variable number of arguments. This function will be called whenever the control triggers the event associated with it. See "Writing Event Handlers" in the External Interfaces documentation for more information on handling control events. event Triggered event specified by either number or name. eventhandl er Name of an M-function that accepts a variable number of arguments. This function will be called whenever the control triggers the event associated with it. See "Writing Event Handlers" in the External Interfaces documentation for more information on handling control events. fil ename The name of a file to which a previously created control has been saved. When you specify fil ename, MATLAB creates a new control using the position, handl e, and event/eventhandl er arguments, and then initializes the control from the specified file. The progid argument in actxcontrol must match the	

Description	Create a COM control at a particular location within a figure window. If the parent figure window is invisible, the control will be invisible. The returned COM object represents the default interface for the control. This interface must be released through a call to release when it is no longer needed to free the memory and resources used by the interface. Note that releasing the interface does not delete the control itself (use the del et e command to delete the control.)		
	The strings specified in the call back, event, and event handler arguments are not case sensitive.		
	Note There are two ways to handle events. You can create a single handler (callback) for all events, or you can specify a cell array that contains pairs of events and event handlers. In the cell array format, specify events by name in a quoted string. There is no limit to the number of pairs that can be specified in the cell array. Although using the single callback method may be easier in some cases, using the cell array technique creates more efficient code that results in better performance.		
	For an example callback event handler, see the file sampev. m in the tool box\matl ab\wi nfun\comcl i directory.		
Examples	Basic Control Methods		
·	Create a control that runs Microsoft's Calendar application:		
	<pre>f = figure('pos',[300 300 500 500]); cal = actxcontrol('mscal.calendar', [0 0 500 500], f) cal =</pre>		
	Call the get method on cal to list all properties of the Calendar:		
	get(cal) BackColor: 2.1475e+009 Day: 23 DayFont: [1x1 Interface.mscal.calendar.DayFont] Value: '8/20/2001'		

•

Read just one property to record today's date:

•

Set the Day property to a new value:

Calling i nvoke with no arguments lists all available methods:

Invoke the NextWeek method to advance the current date by one week:

.

Call events to list all Calendar events that can be triggered:

```
events(cal)
ans =
    Click = void Click()
    DblClick = void DblClick()
    KeyDown = void KeyDown(int16 KeyCode, int16 Shift)
    KeyPress = void KeyPress(int16 KeyAscii)
    KeyUp = void KeyUp(int16 KeyCode, int16 Shift)
    BeforeUpdate = void BeforeUpdate(int16 Cancel)
    AfterUpdate = void AfterUpdate()
```

NewMonth = void NewMonth()
NewYear = void NewYear()

Set Up Event Handling

See the section, Sample Event Handlers in the External Interfaces documentation for examples of event handler functions and how to register them with MATLAB.

See Also actxserver, release, delete, save, load

actxserver

Purpose	Create a COM Automation server and return a COM object for the server's default interface
Syntax	<pre>h = actxserver (progid [, machinename])</pre>
Arguments	progi d This is a string that is the name of the control to instantiate. This string is provided by the control or server vendor and should be obtained from the vendor's documentation. For example, the progi d for MATLAB is matlab. application.
	machi nename This is the name of a remote machine on which the server is to be run. This argument is optional and is used only in environments that support Distributed Component Object Model (DCOM) — see "Using MATLAB As a DCOM Server Client" in the External Interfaces documentation. This can be an IP address or a DNS name.
Description	Create a COM Automation server and return a COM object that represents the server's default interface. Local/Remote servers differ from controls in that they are run in a separate address space (and possibly on a separate machine) and are not part of the MATLAB process. Additionally, any user interface that they display will be in a separate window and will not be attached to the MATLAB process. Examples of local servers are Microsoft Excel and Microsoft Word. There is currently no support for events generated from automation servers.
Examples	<pre>Launch Microsoft Excel and make the main frame window visible: e = actxserver ('Excel.Application') e = COM.excel.application set(e, 'Visible', 1);</pre>

Call the get method on the excel object to list all properties of the application:

```
get(e)
ans =
Application: [1x1 Interface. excel. application. Application]
Creator: 'xlCreatorCode'
Parent: [1x1 Interface. Excel. Application. Parent]
Workbooks: [1x1 Interface. excel. application. Workbooks]
UsableHeight: 666.7500
```

Create an interface:

eWorkbooks = get(e, 'Workbooks')
eWorkbooks =
 Interface.excel.application.Workbooks

List all methods for that interface by calling i nvoke with just the handle argument:

Invoke the Add method on workbooks to add a new workbook, also creating a new interface:

w = Add(eWorkbooks)
w =
 Interface. Excel. Application. Workbooks. Add

Quit the application and delete the object:

Quit(e); delete(e);

See Also actxcontrol, release, del ete, save, load

addframe

Purpose	Add a frame to an Audio Video Interleaved (AVI) file.	
Syntax	<pre>avi obj = addframe(avi obj, frame) avi obj = addframe(avi obj, frame1, frame2, frame3,) avi obj = addframe(avi obj, mov) avi obj = addframe(avi obj, h)</pre>	
Description	avi obj = addframe(avi obj, frame) appends the data in frame to the AVI file identified by avi obj, which was created by a previous call to avi file. frame can be either an indexed image (m-by-n) or a truecolor image (m-by-n-by-3) of double or ui nt8 precision. If frame is not the first frame added to the AVI file, it must be consistent with the dimensions of the previous frames.	
addframe returns a handle to the updated AVI file object, avi obj . For exa addframe updates the Total Frames property of the AVI file object each t adds a frame to the AVI file.		
avi obj = addframe(avi obj, frame1, frame2, frame3,) adds multiple frames to an AVI file.		
	avi obj = addframe(avi obj, mov) appends the frame(s) contained in the MATLAB movie, mov, to the AVI file, avi obj. MATLAB movies that store frames as indexed images use the colormap in the first frame as the colormap for the AVI file, unless the colormap has been previously set.	
	avi obj = addframe(avi obj, h) captures a frame from the figure or axis handle h, and appends this frame to the AVI file. addframe renders the figure into an offscreen array before appending it to the AVI file. This ensures that the figure is written correctly to the AVI file even if the figure is obscured on the screen by another window or screen saver.	
	Note If an animation uses XOR graphics, you must use getframe to capture the graphics into a frame of a MATLAB movie. You can then add the frame to an AVI movie using the addframe syntax, avi obj = addframe(avi obj, mov). See the example for an illustration.	
Example	This example calls <code>addframe</code> to add frames to the AVI file object, avi obj .	

addframe

```
fig=figure;
                     set(fig, 'DoubleBuffer', 'on');
                     set(gca, 'xlim', [-80 80], 'ylim', [-80 80], ...
                         'nextplot', 'replace', 'Visible', 'off')
                     aviobj = avifile('example.avi')
                     x = -pi : . 1 : pi;
                     radius = 0: length(x);
                     for i=1:length(x)
                         h = patch(sin(x) * radius(i), cos(x) * radius(i), ...
                                  [abs(cos(x(i))) 0 0]);
                         set(h, 'EraseMode', 'xor');
                         frame = getframe(gca);
                         aviobj = addframe(aviobj, frame);
                     end
                     aviobj = close(aviobj);
See Also
                   avifile, close, movie2avi
```

addpath

Purpose	Add directories to MATLAB search path		
Graphical Interface	As an alternative to the addpath function, use the Set Path dialog box. To open it, select Set Path from the File menu in the MATLAB desktop.		
Syntax	addpath('directory') addpath('dir','dir2','dir3') addpath('dir','dir2','dir3''-flag') addpath dir1 dir2 dir3flag		
Description	addpath(' di rectory') prepends the specified directory to the current MATLAB search path, that is, it adds them to the top of the path. Use the full pathname for di rectory.		
		i r2' , ' di r3' \ldots) prepends all the specified directories to ull pathname for each di r.	
	$addpath('dir', 'dir2', 'dir3' \dots '-flag')$ either prepends or appends the specified directories to the path depending on the value of flag.		
	flag Argument Result		
	0 or begi n	Prepend specified directories	
	1 or end	Append specified directories (add to bottom/end)	
addpath dir1 dir2 dir3flag is the unquoted form of the synta		2 dir3flag is the unquoted form of the syntax.	
Examples	For the current path, viewed by typing path,		
	MATLABPATH		
c: \matl ab\tool box\general			
	c: \matl ab\tool box\ops c: \matl ab\tool box\strfun		
	you can add c: /matlab/mymfiles to the front of the path by typing		
·		tlab/mymfiles')	
	• ·		

Verify that the files were added to the path b	
	path
	and MATLAB returns
	MATLABPATH c:\matlab\mymfiles c:\matlab\toolbox\general c:\matlab\toolbox\ops c:\matlab\toolbox\strfun
See Also	path, pathtool, genpath, rehash, rmpath

addproperty (COM)

Purpose	Add custom property to COM object
Syntax	addproperty(h, 'propertyname')
Arguments	h Handle for a COM object previously returned from <code>actxcontrol</code> , <code>actxserver</code> , get, or i nvoke.
	propertyname A string specifying the name of the custom property to add to the object or interface.
Description	Add a custom property, propertyname, to the object or interface, h. You can assign a value to that property using set.
Examples	Create an mwsamp control and add a new property named Position to it. Assign an array value to the property:
	<pre>f = figure('pos', [100 200 200 200]); h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f); get(h) Label: 'Label' Radius: 20</pre>
	addproperty(h, 'Position'); set(h, 'Position', [200 120]); get(h) Label: 'Label' Radius: 20 Position: [200 120]
	get(h, 'Position') ans = 200 120
See Also	del eteproperty, get, set, i nspect

PurposeAiry functions

Syntax

W = airy(Z)W = airy(k, Z) [W, ierr] = airy(k, Z)

Definition The Airy functions form a pair of linearly independent solutions to

$$\frac{d^2 W}{dZ^2} - ZW = 0$$

The relationship between the Airy and modified Bessel functions is

$$Ai(Z) = \left[\frac{1}{\pi}\sqrt{Z/3}\right] K_{1/3}(\zeta)$$
$$Bi(Z) = \sqrt{Z/3} \left[I_{-1/3}(\zeta) + I_{1/3}(\zeta)\right]$$

where

$$\zeta = \frac{2}{3}Z^{3/2}$$

Description W = ai ry(Z) returns the Airy function, Ai(Z), for each element of the complex array Z.

W = ai ry(k, Z) returns different results depending on the value of k.

k	Returns
0	The same result as ai ry(Z)
1	The derivative, $Ai'(Z)$
2	The Airy function of the second kind, $Bi(Z)$
3	The derivative, $Bi'(Z)$

[W, i err] = ai ry(k, Z) also returns completion flags in an array the same size as W.

ierr	Description
0	ai ry succesfully computed the Airy function for this element.
1	Illegal arguments
2	Overflow. Returns I nf
3	Some loss of accuracy in argument reduction
4	Unacceptable loss of accuracy, Z too large
5	No convergence. Returns NaN

See Also bessel i , bessel j , bessel k, bessel y

References [1] Amos, D. E., "A Subroutine Package for Bessel Functions of a Complex Argument and Nonnegative Order," *Sandia National Laboratory Report*, SAND85-1018, May, 1985.

[2] Amos, D. E., "A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order," *Trans. Math. Software*, 1986.

Purpose	Set or query the axes alpha limits
Syntax	<pre>alpha_limits = alim alim([amin amax]) alim_mode = alim('mode') alim('alim_mode') alim(axes_handle,)</pre>
Description	al pha_l i mits = al i m returns the alpha limits (the axes ALi m property) of the current axes. al i m([ami n amax]) sets the alpha limits to the specified values. ami n is the value of the data mapped to the first alpha value in the alphamap, and amax is the value of the data mapped to the last alpha value in the alphamap. Data values in between are linearly interpolated across the alphamap, while data values outside are clamped to either the first or last alphamap value, whichever is closest.
	al i m_mode = al i m(' mode') returns the alpha limits mode (the axes ALi mMode property) of the current axes.
	al i m(' al i m_mode') sets the alpha limits mode on the current axes. al i m_mode can be:
	 auto – MATLAB automatically sets the alpha limits based on the alpha data of the objects in the axes. manual – MATLAB does not change the alpha limits.
	al i m(axes_handl e, \ldots) operates on the specified axes.
See Also	al pha, al phamap, caxi s Axes ALi m and ALi mMode properties Patch FaceVertexAl phaData property Image and surface Al phaData properties Transparency for related functions Transparency in 3-D Visualization for examples

Purpose	Test to determine if all elements are nonzero
Syntax	B = all(A) B = all(A, dim)
Description	B = all(A) tests whether <i>all</i> the elements along various dimensions of an array are nonzero or logical true (1).
	If A is a vector, al l (A) returns logical true (1) if all of the elements are nonzero, and returns logical false (0) if one or more elements are zero.
	If A is a matrix, all (A) treats the columns of A as vectors, returning a row vector of 1s and 0s.
	If A is a multidimensional array, all(A) treats the values along the first non-singleton dimension as vectors, returning a logical condition for each vector.
	B = all(A, <i>di m</i>) tests along the dimension of A specified by scalar <i>di m</i> .
	1 1 1 0 1 1 1 0 0 0
	A all(A,1) all(A,2)
Examples	Given,
	$A = \begin{bmatrix} 0.53 & 0.67 & 0.01 & 0.38 & 0.07 & 0.42 & 0.69 \end{bmatrix}$
	then B = $(A < 0.5)$ returns logical true (1) only where A is less than one half:
	0 0 1 1 1 1 0
	The all function reduces such a vector of logical conditions to a single condition. In this case, all (B) yields 0.
	This makes all particularly useful in if statements,
	if all(A < 0.5)

if all(A < 0.5) do something end where code is executed depending on a single condition, not a vector of possibly conflicting conditions.

Applying the all function twice to a matrix, as in all (all(A)), always reduces it to a scalar condition.

```
all(all(eye(3)))
ans =
0
```

See Also

any, logical operators, relational operators, col on Other functions that collapse an array's dimensions include: max, mean, medi an, mi n, prod, std, sum, trapz

allchild

Purpose	Find all children of specified objects
Syntax	child_handles = allchild(handle_list)
Description	child_handles = allchild(handle_list) returns the list of all children (including ones with hidden handles) for each handle. If handle_list is a single element, allchild returns the output in a vector. Otherwise, the output is a cell array.
Examples	Compare the results returned by these two statements. get(gca, 'Children') allchild(gca)
See Also	findall, findobj

Purpose	Set transparency properties for objects in current axes
Syntax	al pha(face_al pha) al pha(al pha_data) al pha(al pha_data_mappi ng) al pha(obj ect_handl e,)
Description	al pha sets one of three transparency properties, depending on what arguments you specify with the call to this function.
	FaceAlpha
	al pha(face_al pha) set the FaceAl pha property of all image, patch, and surface objects in the current axes. You can set face_al pha to:
	• a scalar – set the FaceAl pha property to the specified value (for images, set the Al phaData property to the specified value)
	• 'flat' – set the FaceAl pha property to flat
	 'interp' – set the FaceAl pha property to interp
	 'texture' – set the FaceAl pha property to texture
	 'opaque' – set the FaceAl pha property to 1
	 'clear' – set the FaceAl pha property to 0
	See Specifying a Single Transparency Value for more information.
	AlphaData (Surface Objects)
	al pha(al pha_data) sets the Al phaData property of all surface objects in the current axes. You can set al pha_data to:
	 a matrix the same size as CData – sets the Al phaData property to the specified values
	• 'x' – set the Al phaData property to be the same as XData
	• 'y' – set the Al phaData property to be the same as YData
	• 'z' – set the Al phaData property to be the same as ZData
	• 'color' – set the AlphaData property to be the same as CData

- ' rand' – set the Al phaData property to a matrix of random values equal in size to CData

AlphaData (Image Objects)

al pha(al pha_data) sets the Al phaData property of all image objects in the current axes. You can set al pha_data to:

- a matrix the same size as CData sets the Al phaData property to the specified value
- 'x' ignored
- 'y' ignored
- 'z' ignored
- 'color' set the AlphaData property to be the same as CData
- 'rand' set the Al phaData property to a matrix of random values equal in size to CData

FaceVertexAlphaData (Patch Objects)

al pha(al pha_data) sets the FaceVertexAl phaData property of all patch objects in the current axes. You can set al pha_data to:

- a matrix the same size as FaceVertexCData sets the FaceVertexAl phaData property to the specified value
- 'x' set the FaceVertexAl phaData property to be the same as Vertices(:, 1)
- 'y' set the FaceVertexAl phaData property to be the same as Vertices(:, 2)
- 'z' set the FaceVertexAl phaData property to be the same as Vertices(:, 3)
- 'color' set the FaceVertexAl phaData property to be the same as FaceVertexCData
- 'rand' set the FaceVertexAl phaData property to random values

See Mapping Data to Transparency for more information.

AlphaDataMapping

al pha(al pha_data_mappi ng) sets the Al phaDataMappi ng property of all image, patch, and surface objects in the current axes. You can set al pha_data_mappi ng to:

- 'scaled' set the AlphaDataMapping property to scaled
- 'direct' set the AlphaDataMapping property to direct
- 'none' set the Al phaDataMapping property to none

al pha(obj ect_handl e, val ue) set the transparency property only on the object identified by obj ect_handl e

See Alsoal i m, al phamapImage: Al phaData, Al phaDataMappi ngPatch: FaceAl pha, FaceVertexAl phaData, Al phaDataMappi ngSurface: FaceAl pha, Al phaData, Al phaDataMappi ngTransparency for related functionsTransparency in 3-D Visualization for examples

alphamap

Purpose	Specify the figure alphamap (transparency)
Syntax	<pre>al phamap(al pha_map) al phamap(' parameter') al phamap(' parameter', l ength) al phamap(' parameter', del ta) al phamap(figure_handl e,) al pha_map = al phamap al pha_map = al phamap(figure_handl e) al pha_map = al phamap(' parameter')</pre>
Description	al phamap enables you to set or modify a figure's Al phamap property. Unless you specify a figure handle as the first argument, al phamap operates on the current figure.
	al phamap(al pha_map) set the Al phaMap of the current figure to the specified m-by-1 array of alpha values.
	al phamap('parameter') create a new or modify the current alphamap. You can specify the following parameters:
	 default – set the Al phaMap property to the figure's default alphamap rampup – create a linear alphamap with increasing opacity (default l ength equals the current alphamap length)
	• rampdown – create a linear alphamap with decreasing opacity (default l ength equals the current alphamap length)
	• vup – create an alphamap that is opaque in the center and becomes more transparent linearly towards the beginning and end (default l ength equals the current alphamap length)
	 vdown – create an alphamap that is transparent in the center and becomes more opaque linearly towards the beginning and end (default l ength equals the current alphamap length)
	• i ncrease – modify the alphamap making it more opaque (default del ta is . 1, which is added to the current values)
	• decrease – modify the alphamap making it more transparent (default del ta is . 1, which is subtracted from the current values)

	- spin – rotate the current alphamap (default del ta is 1; note that delta must be an integer)
	alphamap('parameter',length) creates a new alphamap with the length specified by length (used with parameters: rampup, rampdown, vup, vdown)
	al phamap('parameter', delta) modifies the existing alphamap using the value specified by delta (used with parameters: increase, decrease, spin).
	al phamap(figure_handle, \dots) performs the operation on the alphamap of the figure identified by figure_handle.
	al pha_map = al phamap return the current alphamap.
	al pha_map = al phamap(figure_handle) returns the current alphamap from the figure identified by figure_handle.
	alpha_map = alphamap('parameter') retruns the alphamap modified by the parameter, but does not set the AlphaMap property.
See Also	alim, alpha
	Image: Al phaData, Al phaDataMappi ng
	Patch: FaceAl pha, Al phaData, Al phaDataMappi ng
	Surface: FaceAl pha, Al phaData, Al phaDataMappi ng
	Transparency for related functions
	Transparency in 3-D Visualization for examples

angle

Purpose	Phase angle
Syntax	P = angl e(Z)
Description	$P = angl e(Z)$ returns the phase angles, in radians, for each element of complex array Z. The angles lie between $\pm \pi$.
	For complex Z, the magnitude R and phase angle theta are given by
	R = abs(Z) theta = angle(Z)
	and the statement
	Z = R. *exp(i*theta)
	converts back to the original complex Z.
Examples	$Z = \begin{bmatrix} 1 & -1i & 2 & +1i & 3 & -1i & 4 & +1i \\ 1 & +2i & 2 & -2i & 3 & +2i & 4 & -2i \\ 1 & -3i & 2 & +3i & 3 & -3i & 4 & +3i \\ 1 & +4i & 2 & -4i & 3 & +4i & 4 & -4i \end{bmatrix}$
	P = angle(Z)
	P =
	- 0. 7854 0. 4636 - 0. 3218 0. 2450
	1. 1071 - 0. 7854 0. 5880 - 0. 4636
	-1.2490 0.9828 -0.7854 0.6435
	1. 3258 - 1. 1071 0. 9273 - 0. 7854
Algorithm	The angle function can be expressed as $angle(z) = i mag(log(z)) = atan2(i mag(z), real(z)).$
See Also	abs, atan2, unwrap

Purpose	The most recent answer
Syntax	ans
Description	MATLAB creates the ans variable automatically when you specify no output argument.
Examples	The statement 2+2 is the same as ans = $2+2$
See Also	di spl ay

any

Purpose	Test for any nonzeros
Syntax	B = any(A) B = any(A, dim)
Description	B = any(A) tests whether <i>any</i> of the elements along various dimensions of an array are nonzero or logical true (1).
	If A is a vector, $any(A)$ returns logical true (1) if any of the elements of A are nonzero, and returns logical false (0) if all the elements are zero.
	If A is a matrix, $any(A)$ treats the columns of A as vectors, returning a row vector of 1s and 0s.
	If A is a multidimensional array, any(A) treats the values along the first non-singleton dimension as vectors, returning a logical condition for each vector.
	B = any(A, dim) tests along the dimension of A specified by scalar dim.
	1 0 1 1 1 0 0 0 0 0
	A any(A,1) any(A,2)
Examples	Given,
	$A = [0.53 \ 0.67 \ 0.01 \ 0.38 \ 0.07 \ 0.42 \ 0.69]$
	then B = $(A < 0.5)$ returns logical true (1) only where A is less than one half:
	0 0 1 1 1 1 0
	The any function reduces such a vector of logical conditions to a single condition. In this case, any(B) yields 1.
	This makes any particularly useful in if statements,
	if $any(A < 0.5)$

do something end where code is executed depending on a single condition, not a vector of possibly conflicting conditions.

Applying the any function twice to a matrix, as in any(any(A)), always reduces it to a scalar condition.

```
any(any(eye(3)))
ans =
1
```

See Also

all, logical operators, relational operators, colon
 Other functions that collapse an array's dimensions include:
 max, mean, median, min, prod, std, sum, trapz

area

Purpose	Area fill of a two-dimensional plot
Syntax	<pre>area(Y) area(X, Y) area(, ymin) area(, 'PropertyName', PropertyValue,) h = area()</pre>
Description	An area plot displays elements in Y as one or more curves and fills the area beneath each curve. When Y is a matrix, the curves are stacked showing the relative contribution of each row element to the total height of the curve at each <i>x</i> interval.
	area(Y) plots the vector Y or the sum of each column in matrix Y. The x-axis automatically scales depending on $l ength(Y)$ when Y is a vector and on si $ze(Y, 1)$ when Y is a matrix.
	area(X, Y) plots Y at the corresponding values of X. If X is a vector, $l ength(X)$ must equal $l ength(Y)$ and X must be monotonic. If X is a matrix, si $ze(X)$ must equal si $ze(Y)$ and each column in X must be monotonic. To make a vector or matrix monotonic, use sort.
	area(, ymin) specifies the lower limit in the y direction for the area fill. The default ymin is 0.
	$area(\ldots, 'PropertyName', PropertyValue, \ldots)$ specifies property name and property value pairs for the patch graphics object created by area.
	h = area() returns handles of patch graphics objects. area creates one patch object per column in Y.
Remarks	area creates one curve from all elements in a vector or one curve per column in a matrix. The colors of the curves are selected from equally spaced intervals throughout the entire range of the colormap.
Examples	Plot the values in Y as a stacked area plot.
	$Y = \begin{bmatrix} 1, 5, 3; \\ 3, 2, 7; \end{bmatrix}$

pl ot

"Area, Bar, and Pie Plots" for related functions Area Graphs for more examples

asec

Purpose	Inverse secant
Syntax	$Y = \operatorname{asec}(X)$
Description	Y = asec(X) returns the inverse secant (arcsecant) for each element of X. The asec function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.
Examples	Graph the inverse secant over the domains $1 \le x \le 5$ and $-5 \le x \le -1$. x1 = -5: 0.01: -1; x2 = 1: 0.01: 5; plot (x1, asec(x1), x2, asec(x2)), grid on 35 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4
Definition	The inverse secant can be defined as
	$\sec^{-1}(z) = \cos^{-1}\left(\frac{1}{z}\right)$
Algorithm	asec uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http: //www.netlib.org.

See Also asech, sec

asech

Purpose	Inverse hyperbolic secant
Syntax	$Y = \operatorname{asech}(X)$
Description	$Y = \operatorname{asech}(X)$ returns the inverse hyperbolic secant for each element of X. The asech function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.
Examples	Graph the inverse hyperbolic secant over the domain $0.01 \le x \le 1$. x = 0.01: 0.001: 1; plot(x, asech(x)), grid on

Definition The hyperbolic inverse secant can be defined as

 $\operatorname{sech}^{-1}(z) = \operatorname{cosh}^{-1}\left(\frac{1}{z}\right)$

Algorithm asech uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http://www.netlib.org. See Also asec, sech

asin

Purpose	Inverse sine
Syntax	Y = asin(X)
Description	Y = asi n(X) returns the inverse sine (arcsine) for each element of X. For real elements of X in the domain $[-1, 1]$, asi n(X) is in the range $[-\pi/2, \pi/2]$. For real elements of x outside the range $[-1, 1]$, asi n(X) is complex.
	The asi n function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.
Examples	Graph the inverse sine function over the domain $-1 \le x \le 1$. x = -1:.01:1; plot(x, asin(x)), grid on

The inverse sine can be defined as

$$\sin^{-1}(z) = -i \log \left[iz + (1-z^2)^{\frac{1}{2}} \right]$$

Algorithmasi n uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also sin, asinh

asinh

Purpose	Inverse hyperbolic sine
Syntax	Y = asinh(X)
Description	Y = asi nh(X) returns the inverse hyperbolic sine for each element of X. The asi nh function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.
Examples	Graph the inverse hyperbolic sine function over the domain $-5 \le x \le 5$. x = -5:.01:5; plot(x, asinh(x)), grid on

The hyperbolic inverse sine can be defined as

$$\sinh^{-1}(z) = \log \left[z + (z^2 + 1)^{\frac{1}{2}} \right]$$

Algorithm as in h uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http://www.netlib.org.

See Also asi n, si nh

assignin

Purpose	Assign a value to a workspace variable
Syntax	assignin(ws, 'var', val)
Description	assi gni n(ws, 'var', val) assigns the value val to the variable var in the workspace ws. var is created if it doesn't exist. ws can have a value of 'base' or 'caller' to denote the MATLAB base workspace or the workspace of the caller function.
	The assi gnin function is particularly useful for these tasks:
	 Exporting data from a function to the MATLAB workspace
	• Within a function, changing the value of a variable that is defined in the workspace of the caller function (such as a variable in the function argument list)
Remarks	The MATLAB base workspace is the workspace that is seen from the MATLAB command line (when not in the debugger). The caller workspace is the workspace of the function that called the M-file. Note the base and caller workspaces are equivalent in the context of an M-file that is invoked from the MATLAB command line.
Examples	This example creates a dialog box for the image display function, prompting a user for an image name and a colormap name. The assi gnin function is used to export the user-entered values to the MATLAB workspace variables i mfile and cmap.
	<pre>prompt = {'Enter image name:', 'Enter colormap name:'}; title = 'Image display - assignin example'; lines = 1; def = {'my_image', 'hsv'}; answer = inputdlg(prompt, title, lines, def); assignin('base', 'imfile', answer{1}); assignin('base', 'cmap', answer{2});</pre>

🛃 Image display - assignin example	×
Enter image name:	
my_image	
Enter colormap name:	
hsv	
Cancel	ОК

See Also

eval i n

atan

Purpose	Inverse tangent		
Syntax	Y = atan(X)		
Description	Y = $atan(X)$ returns the inverse tangent (arctangent) for each element of X. For real elements of X, $atan(X)$ is in the range $[-\pi/2, \pi/2]$.		
	The at an function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.		
Examples	Graph the inverse tangent function over the domain $-20 \le x \le 20$. x = -20:0.01:20; plot(x, atan(x)), grid on		
	1.5		

1.5 1.5 0.5 0.5 -0.5 -1.5 -1.5 -2 -20 -15 -10 -5 0 5 0 -10 -5 0 -10 -5 0 -10 -5 0 -15 -10 -15 -10 -15 -10 -5 0 5 10 1520

Definition

The inverse tangent can be defined as

$$\tan^{-1}(z) = \frac{i}{2} \log\left(\frac{i+z}{i-z}\right)$$

Algorithm at an uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http://www.netlib.org.

See Also atan2, tan, atanh

atan2

Purpose	Four-quadrant inverse	tangent
---------	-----------------------	---------

Syntax P = atan2(Y, X)

Description P = atan2(Y, X) returns an array P the same size as X and Y containing the element-by-element, four-quadrant inverse tangent (arctangent) of the real parts of Y and X. Any imaginary parts are ignored.

Elements of P lie in the closed interval [-pi, pi], where pi is the MATLAB floating-point representation of π . at an uses si gn(Y) and si gn(X) to determine the specific quadrant.

at an2(Y, X) contrasts with at an(Y/X), whose results are limited to the interval $[-\pi/2, \pi/2]$, or the right side of this diagram.

Examples Any complex number z = x + iy is converted to polar coordinates with

```
r = abs(z)
theta = atan2(imag(z), real(z))
```

For example,

```
z = 4 + 3i;
r = abs(z)
theta = atan2(imag(z), real(z))
r =
5
```

	theta = 0. 6435 This is a common operation, so MATLAB provides a function, $angl e(z)$, that computes theta = $atan2(imag(z), real(z))$.
	To convert back to the original complex number
	z = r *exp(i *theta) z =
	4. 0000 + 3. 0000i
Algorithm	atan2 uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http://www.netlib.org.
See Also	angl e, atan, atanh

atanh

Purpose	Inverse hyperbolic tangent
Syntax	$Y = \operatorname{atanh}(X)$
Description	The at anh function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.
	Y = atanh(X) returns the inverse hyperbolic tangent for each element of X.
Examples	Graph the inverse hyperbolic tangent function over the domain $-1 < x < 1$. x = -0.99: 0.01: 0.99; pl ot(x, atanh(x)), grid on

Definition The hyperbolic inverse tangent can be defined as

 $\tanh^{-1}(z) = \frac{1}{2} \log\left(\frac{1+z}{1-z}\right)$

Algorithm at anh uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http://www.netlib.org. See Also atan2, atan, tanh

audiodevinfo

Purpose	Obtain information on installed audio devices
Syntax	<pre>d = audi odevi nfo audi odevi nfo(i o) audi odevi nfo(i o, ID) audi odevi nfo(i o, ID, 'Dri verVersi on') audi odevi nfo(i o, name) audi odevi nfo(i o, rate, bits, chans) audi odevi nfo(i o, ID, rate, bits, chans)</pre>
Description	Note This function is for use only with 32-bit, Windows-based machines.
	 d = audi odevi nfo returns a structure, d with an input field and an output field. Each field is an array of structures that contains information about the system's audio input and output devices. Each array contains these fields: a string with the name of the device, a string with the version of the installed driver (Dri verVersi on), and the device's numeric ID. audi odevi nfo(io) returns the number of input (io=1) or output (io=0) audio devices on the system. audi odevi nfo(io, ID) returns the name of the audio device specified by its ID. audi odevi nfo(io, ID, 'Dri verVersi on') returns a string containing the driver version of the specified audio device. audi odevi nfo(io, name) returns the device ID specified by name. You can enter a partial name, but the case must match. If no device with the specified name is found, -1 is returned. audi odevi nfo(io, ID, rate, bits, chans) returns the device ID of the first audio device that supports the specified sample rate, number of bits, and number of channels, chans. If no matching device is found, -1 is returned.

See Also audi opl ayer, audi orecorder

audioplayer

Purpose	Create an audio player object
Syntax	<pre>y = audi opl ayer(x, Fs) y = audi opl ayer(x, Fs, nbits) y = audi opl ayer(r) y = audi opl ayer(r, id)</pre>
Description	Note audi opl ayer is available only on Windows-based machines. On 32-bit, Windows-based machines with an installed 24-bit audio device, audi opl ayer supports 24-bit playback.
	To use all of the audi opl ayer features, your system needs a properly installed and configured sound card with 8- and 16-bit I/O, two channels, and support for sampling rates of up to 48 kHz.
	y = audi opl ayer(x, Fs) returns a handle to an audio player object y using input audio signal x. The input signal x can be a vector or two-dimensional array containing si ngl e, doubl e, i nt 8, ui nt 8, or i nt 16 MATLAB data types. The input sample values for si ngl e and doubl e data must be between -1 and 1. For i nt 8, ui nt 8, and i nt 16 data, the ranges of sample values are -128 to 127, 0 to 255, and -32768 to 32767, respectively.
	Fs is the sampling rate in Hz to use for playback. Valid values for Fs depend on the specific audio hardware installed. Typical values supported by most sound cards are 8000, 11025, 22050, and 44100 Hz.
	y = audi opl ayer(x, Fs, nbits) returns a handle to an audio player object where nbits is the bit quantization to use for single or double data types. This is an optional parameter with a default value of 16. Valid values for nbits are 8 and 16 (and 24, if a 24-bit device is installed). You do not need to specify nbits for int8, uint8 or int16 data because the quantization is set automatically to 8 or 16, respectively.
	y = audi opl ayer(r) returns a handle to an audio player object from an audi orecorder object r.
	y = audi opl ayer(r, i d) returns a handle to an audio player object from an audi orecorder object r, using the specified audio device i d for output.

Method	Description
pl ay(y) pl ay(y, start) pl ay(y, [start stop]) pl ay(y, range)	Starts playback from the beginning and plays to the end, or from start sample to the end, or from start sample to stop sample. The values of start and stop can be specified in a two-element vector range.
pl aybl ocki ng(y) pl aybl ocki ng(y, start) pl aybl ocki ng(y, [start stop]) pl aybl ocki ng(y, range)	Same as play, but does not return control until playback completes.
<pre>stop(y)</pre>	Stops playback.
pause(y)	Pauses playback.
resume(y)	Restarts playback from where playback was paused.
i spl ayi ng(y)	Indicates whether playback is in progress. If 0, playback is not in progress. If 1, playback is in progress.
di spl ay(y) di sp(y) get(y)	Displays all property information about audio player y.

After you create an audio player object, you can use the methods listed below on that object. y represents the name of the returned audio player.

Audio player objects have the properties listed below. To set a user-settable property use this syntax:

set(y, 'property1', value, 'property2', value, ...)

To view a read-only property

```
get(y, 'property') % Displays 'property' setting.
```

Property	Description	Туре
Туре	Name of the object's class	read-only
SampleRate	Sampling frequency in Hz	user-settable
BitsPerSample	Number of bits per sample	read-only
NumberOfChannels	Number of channels	read-only
Total Samples	Total length, in samples, of the audio data	read-only
Runni ng	Status of the audio player ('on' or 'off')	read-only
CurrentSample	Current sample being played by the audio output device (If it is not playing, current sample is the next sample to be played with pl ay or resume.)	read-only
UserData	User data of any type	user-settable
Tag	User-specified object label string	user-settable

For information on using the following four properties, see Creating Timer Callback Functions in the MATLAB documentation. Note that for audio object callbacks, eventStruct (event) is currently empty ([]).

TimerFcn	Name of, or handle to, user-specified function to be called during playback	user-settable
TimerPeri od	Time, in seconds, between TimerFcn callbacks	user-settable

	Property	Description	Туре
	StartFcn	Name of, or handle to, the function to be called once when playback starts	user-settable
	StopFcn	Name of or handle to the function to be called once when playback stops	user-settable
Example	higher sampling rate	o file, create an audio player object, and j e. x contains the audio samples and Fs is he audi opl ayer functions listed above o	the sampling rate.
	l oad handel ; pl ayer=audi opl a pl ay(pl ayer, [1	ayer(y, Fs); (get(player, 'SampleRate')*3)]);	
	To stop the playback, use this command:		
	<pre>stop(pl ayer);</pre>	% Equivalent to p	layer.stop
See Also	audi orecorder, sou	nd, wavpl ay, wavwrite, wavread, get, so	et, methods

audiorecorder

Purpose	Create an audio recorder object		
Syntax	<pre>y = audi orecorder y = audi orecorder(Fs, nbits, channels) y = audi orecorder(Fs, nbits, channels, id)</pre>		
Description	Note To use all of the audio recorder object features, your system must have a properly installed and configured sound card with 8- and 16-bit I/O and support for sampling rates of up to 48 kHz.		
	On 32-bit, Windows-based machines with an installed 24-bit audio device, audi orecorder supports 24-bit recording.		
	y = audi orecorder returns a handle to an 8-kHz, 8-bit, mono audio recorder object.		
	y = audi orecorder (Fs, nbits, channels) returns a handle to an audio recorder object using the sampling rate, Fs (in Hz), the sample size of nbits, and the number of channels. Fs can be any sampling rate supported by the audio hardware. Common sampling rates are 8000, 11025, 22050, and 44000. The value of nbits must be 8 or 16 (or 24, if a 24-bit device is installed). For mono or stereo, channels must be 1 or 2, respectively.		
	y = audi orecorder(Fs, nbits, channels, id) returns a handle to an audio recorder object using the audio device specified by its id for input.		
		ject, you can use the methods listed below	
	Method	Description	
	record(y) record(y,length)	Starts recording. Records for l ength number of seconds.	
	recordbl ocki ng(y, l ength)	Same as record, but does not return control until recording completes.	
	stop(y)	Stops recording.	

Method	Description
pause(y)	Pauses recording.
resume(y)	Restarts recording from where recording was paused.
i srecordi ng(y)	Indicates the status of recording. If 0, recording is not in progress. If 1, recording is in progress.
pl ay(y)	Creates an audi opl ayer, plays the recorded audio data, and returns a handle to the created audi opl ayer.
getpl ayer(y)	Creates an audi opl ayer and returns a handle to the created audi opl ayer.
getaudi odata(y) getaudi odata(y, 'type')	Returns the recorded audio data to the MATLAB workspace. type is a string containing the desired data type. Supported data types are doubl e, si ngl e, i nt 16, i nt 8, or ui nt 8. If type is omitted, it defaults to ' doubl e'. For doubl e and si ngl e, the array contains values between -1 and 1. For i nt 8, values are between -128 to 127. For ui nt 8, values are from 0 to 255. For i nt 16, values are from -32768 to 32767. If the recording is in mono, the returned array has one column. If it is in stereo, the array has two columns— one for each channel.
di spl ay(y) di sp(y) get (y)	Displays all property information about audio recorder y.

audiorecorder

Audio recorder objects have the properties listed below. To set a user-settable property use this syntax:

set(y, 'property1', value, 'property2', value,...)

To view a read-only property

get(y, 'property') %displays 'property' setting.

Property	Description	Туре
Туре	Name of the object's class	read-only
SampleRate	Sampling frequency in Hz	read-only
BitsPerSample	Number of bits per recorded sample	read-only
NumberOfChannels	Number of channels of recorded audio	read-only
Total Samples	Total length, in samples, of the recording	read-only
Runni ng	Status of the audio recorder ('on' or 'off')	read-only
CurrentSample	Current sample being recorded by the audio output device (If it is not recording, current sample is the next sample to be recorded with record or resume.)	read-only
UserData	User data of any type	user-settable

Property	Description	Туре
Callback Functions	sing the following four properties, see n the MATLAB documentation. Note ntStruct (event) is currently empty	that for audio
TimerFcn	Name of or handle to user-specified function to be called during recording	user-settable
TimerPeri od	Time, in seconds, between TimerFcn callbacks	user-settable
StartFcn	Name of or handle to the function to be called a single time when recording starts	user-settable
StopFcn	Name of or handle to the function to be called a single time when recording stops	user-settable
NumberOfBuffers	Number of buffers used for recording (You should adjust this only if you have skips, dropouts, etc. in your recording.)	user-settable
BufferLength	Length in seconds of buffer (You should adjust this only if you have skips, dropouts, etc. in your recording.)	user-settable
Tag	User-specified object label string	user-settable

Examples Example 1

Using a microphone, record 3.5 seconds of 44.1-kHz, 16-bit, stereo data, and then return the data to the MATLAB workspace as a double array.

recorder = audiorecorder(44100, 16, 2); recordblocking(recorder, 3. 5); audioarray = getaudiodata(recorder);

audiorecorder

Example 2

Using a microphone, record 8-bit, 22-kHz mono data, play it back, record again and return the data to the MATLAB workspace as a ui nt8 array.

```
      mi crecorder = audi orecorder(22050, 8, 1);
record(mi crecorder);
% Now, speak into mi crophone

      stop(mi crecorder);
speechpl ayer = pl ay(mi crecorder);
% Now, listen to the recording

      stop(speechpl ayer);
speechdata = getaudi odata(mi crecorder, 'ui nt8');

      Remarks
      The current implementation of Audi oRecorder is not intended for long, high
sample rate recording because it uses system memory for storage and does not
use disk buffering. When large recordings are attempted, MATLAB
performance may degrade.

      See Also
      audi opl ayer, wavread, wavrecord, wavwrite, get, set, methods
```

Purpose	Read NeXT/SUN (. au) sound file
Graphical Interface	As an alternative to auread, use the Import Wizard. To activate the Import Wizard, select Import data from the File menu.
Syntax	<pre>y = auread('aufile') [y, Fs, bits] = auread('aufile') [] = auread('aufile', N) [] = auread('aufile', [N1, N2]) siz = auread('aufile', 'size')</pre>
Description	y = auread('aufile') loads a sound file specified by the string $aufile$, returning the sampled data in y. The . au extension is appended if no extension is given. Amplitude values are in the range $[-1, +1]$. auread supports multi-channel data in the following formats:
	 8-bit mu-law 8-, 16-, and 32-bit linear floating-point
	[y, Fs, bits] = auread('aufile') returns the sample rate (Fs) in Hertz and the number of bits per sample (bits) used to encode the data in the file.
	$[\ldots]$ = auread('aufile', N) returns only the first N samples from each channel in the file.
	$[\dots]$ = auread('aufile', [N1 N2]) returns only samples N1 through N2 from each channel in the file.
	siz = auread('aufile', 'size') returns the size of the audio data contained in the file in place of the actual audio data, returning the vector $siz = [samples channels]$.
See Also	auwrite, wavread

auwrite

Purpose	Write NeXT/SUN (. au) sound file
Syntax	<pre>auwrite(y, 'aufile') auwrite(y, Fs, 'aufile') auwrite(y, Fs, N, 'aufile') auwrite(y, Fs, N, 'method', 'aufile')</pre>
Description	auwrite(y, 'aufile') writes a sound file specified by the string aufile. The data should be arranged with one channel per column. Amplitude values outside the range $[-1, +1]$ are clipped prior to writing. auwrite supports multi-channel data for 8-bit mu-law, and 8- and 16-bit linear formats. auwrite(y, Fs, 'aufile') specifies the sample rate of the data in Hertz. auwrite(y, Fs, N, 'aufile') selects the number of bits in the encoder. Allowable settings are N = 8 and N = 16. auwrite(y, Fs, N, 'method', 'aufile') allows selection of the encoding method, which can be either mu or linear. Note that mu-law files must be 8-bit. By default, method = 'mu'.
See Also	auread, wavwrite

Purpose	Create a new Audio Video Interleaved (AVI) file
Syntax	<pre>aviobj = avifile(filename) aviobj = avifile(filename, 'PropertyName', value, 'PropertyName', value,)</pre>
Description	avi obj = avi file(filename) creates an AVI file, giving it the name specified in filename, using default values for all AVI file object properties. If filename does not include an extension, avi file appends. avi to the filename. AVI is a file format for storing audio and video data.
	avi f i l e returns a handle to an AVI file object, avi obj . You use this object to refer to the AVI file in other functions. An AVI file object supports properties and methods that control aspects of the AVI file created.

avi obj = avi file(filename, 'Param', Value, 'Param', Value, ...) creates an AVI file with the specified parameter settings. This table lists available parameters.

Parameter	Value		Default
' col ormap'	An m-by-3 matrix defining the colormap to be used for indexed AVI movies, where m must be no greater than 256 (236 if using I ndeo compression). You must set this parameter before calling addframe, unless you are using addframe with the MATLAB movie syntax.		There is no default colormap.
'compression'	A text string specify compression codec to	0	
	On Windows: ' I ndeo3' ' I ndeo5' ' Ci nepak' ' MSVC' ' None'	On Unix: 'None'	' I ndeo3' , on Windows. 'None' on Unix.

avifile

Parameter	Value	Default
	To use a custom compression codec, specify the four-character code that identifies the codec (typically included in the codec documentation). The addframe function reports an error if it can not find the specified custom compressor.	
'fps'	A scalar value specifying the speed of the AVI movie in frames per second (fps).	15 fps
'keyframe'	For compressors that support temporal compression, this is the number of key frames per second.	2 key frames per second.
'name'	A descriptive name for the video stream. This parameter must be no greater than 64 characters long.	The default is the filename.
' qual i ty'	A number between 0 and 100. This parameter has no effect on uncompressed movies. Higher quality numbers result in higher video quality and larger file sizes. Lower quality numbers result in lower video quality and smaller file sizes.	75

You can also use structure syntax to set AVI file object properties. For example, to set the quality property to 100 use the following syntax:

aviobj = avifile(filename); aviobj.Quality = 100;

Example This example shows how to use the avi file function to create the AVI file example. avi.

fig=figure; set(fig, 'DoubleBuffer', 'on');

See Also

addframe, close, movie2avi

aviinfo

Purpose	Return information about an Audio Video Interleaved (AVI) file
Syntax	<pre>fileinfo = aviinfo(filename)</pre>
Description	fileinfo = aviinfo(filename) returns a structure whose fields contain information about the AVI file specified in the string, filename. If filename does not include an extension, then . avi is used. The file must be in the current working directory or in a directory on the MATLAB path.

The set of fields in the fileinfo structure are shown below.

Field Name	Description
Audi oFormat	A string containing the name of the format used to store the audio data, if audio data is present
Audi oRate	An integer indicating the sample rate in Hertz of the audio stream, if audio data is present
Filename	A string specifying the name of the file
FileModDate	A string containing the modification date of the file
FileSize	An integer indicating the size of the file in bytes
FramesPerSecond	An integer indicating the desired frames per second
Hei ght	An integer indicating the height of the AVI movie in pixels
ImageType	A string indicating the type of image. Either ' truecol or' for a truecolor (RGB) image, or ' i ndexed' for an indexed image.
NumAudi oChannel s	An integer indicating the number of channels in the audio stream, if audio data is present
NumFrames	An integer indicating the total number of frames in the movie

Field Name	Description
NumCol ormapEntri es	An integer specifying the number of colormap entries
Quality	A number between 0 and 100 indicating the video quality in the AVI file. Higher quality numbers indicate higher video quality; lower quality numbers indicate lower video quality. This value is not always set in AVI files and therefore may be inaccurate.
Vi deoCompressi on	A string containing the compressor used to compress the AVI file. If the compressor is not Microsoft Video 1, Run Length Encoding (RLE), Cinepak, or Intel Indeo, avi i nfo returns a four-character code.
Width	An integer indicating the width of the AVI movie in pixels

See also

avifile, aviread

aviread

Purpose	Read an Audio Video Interleaved (AVI) file.		
Syntax	<pre>mov = aviread(fi mov = aviread(fi</pre>		
Description	movie structure mo used. Use the movie be an uncompresse mov has two fields,	v. If filename does not incl e function to view the movie d AVI file. cdata and colormap. The c	vie filename into the MATLAB ude an extension, then . avi is e, mov. On UNIX, filename must content of these fields varies
	depending on the t	ype of image.	
	Image Type	mov.cdata Field	mov.colormap Field

Image Type	mov.cdata Field	mov.colormap Field
Truecol or	height-by-width-by-3 array	Empty
Indexed	height-by-width array	m-by-3 array

mov = avi read(filename, index) reads only the frame(s) specified by index. i ndex can be a single index or an array of indices into the video stream. In AVI files, the first frame has the index value 1, the second frame has the index value 2, and so on.

See also aviinfo, avifile, movie

Purpose	Create axes graphics object
Syntax	<pre>axes axes('PropertyName', PropertyValue,) axes(h) h = axes()</pre>
Description	axes is the low-level function for creating axes graphics objects.
	axes creates an axes graphics object in the current figure using default property values.
	axes(' <i>PropertyName</i> ', PropertyValue,) creates an axes object having the specified property values. MATLAB uses default values for any properties that you do not explicitly define as arguments.
	axes(h) makes existing axes h the current axes. It also makes h the first axes listed in the figure's Children property and sets the figure's CurrentAxes property to h. The current axes is the target for functions that draw image, line, patch, surface, and text graphics objects.
	h = axes() returns the handle of the created axes object.
Remarks	MATLAB automatically creates an axes, if one does not already exist, when you issue a command that draws image, light, line, patch, surface, or text graphics objects.
	The axes function accepts property name/property value pairs, structure arrays, and cell arrays as input arguments (see the set and get commands for examples of how to specify these data types). These properties, which control various aspects of the axes object, are described in the "Axes Properties" section.
	Use the set function to modify the properties of an existing axes or the get function to query the current values of axes properties. Use the gca command to obtain the handle of the current axes.
	The axis (not axes) function provides simplified access to commonly used properties that control the scaling and appearance of axes.

While the basic purpose of an axes object is to provide a coordinate system for plotted data, axes properties provide considerable control over the way MATLAB displays data.

Stretch-to-Fill

By default, MATLAB stretches the axes to fill the axes position rectangle (the rectangle defined by the last two elements in the Posi t i on property). This results in graphs that use the available space in the rectangle. However, some 3-D graphs (such as a sphere) appear distorted because of this stretching, and are better viewed with a specific three-dimensional aspect ratio.

Stretch-to-fill is active when the DataAspectRatioMode, PlotBoxAspectRatioMode, and CameraViewAngleMode are all auto (the default). However, stretch-to-fill is turned off when the DataAspectRatio, PlotBoxAspectRatio, or CameraViewAngle is user-specified, or when one or more of the corresponding modes is set to manual (which happens automatically when you set the corresponding property value).

This picture shows the same sphere displayed both with and without the stretch-to-fill. The dotted lines show the axes Position rectangle.

When stretch-to-fill is disabled, MATLAB sets the size of the axes to be as large as possible within the constraints imposed by the Position rectangle without introducing distortion. In the picture above, the height of the rectangle constraints the axes size.

Examples Zooming

Zoom in using aspect ratio and limits:

```
sphere
set(gca, 'DataAspectRatio', [1 1 1], ...
'PlotBoxAspectRatio', [1 1 1], 'ZLim', [-0.6 0.6])
```

Zoom in and out using the CameraVi ewAngl e:

```
sphere
set(gca, 'CameraVi ewAngl e', get(gca, 'CameraVi ewAngl e')-5)
set(gca, 'CameraVi ewAngl e', get(gca, 'CameraVi ewAngl e')+5)
```

Note that both examples disable the MATLAB stretch-to-fill behavior.

Positioning the Axes

The axes Positi on property enables you to define the location of the axes within the figure window. For example,

```
h = axes('Position', position_rectangle)
```

creates an axes object at the specified position within the current figure and returns a handle to it. Specify the location and size of the axes with a rectangle defined by a four-element vector,

```
position_rectangle = [left, bottom, width, height];
```

The left and bottom elements of this vector define the distance from the lower-left corner of the figure to the lower-left corner of the rectangle. The wi dth and hei ght elements define the dimensions of the rectangle. You specify these values in units determined by the Units property. By default, MATLAB uses normalized units where (0,0) is the lower-left corner and (1.0,1.0) is the upper-right corner of the figure window.

You can define multiple axes in a single figure window:

```
axes('position',[.1 .1 .8 .6])
mesh(peaks(20));
axes('position',[.1 .7 .8 .2])
pcolor([1:10;1:10]);
```


In this example, the first plot occupies the bottom two-thirds of the figure, and the second occupies the top third.

See Also axis, cla, clf, figure, gca, grid, subplot, title, xlabel, ylabel, zlabel, view

"Axes Operations" for related functions

Axes Properties for more examples

Object Hierarchy

Setting Default Properties

You can set default axes properties on the figure and root levels:

set(0, 'DefaultAxesPropertyName', PropertyValue,...)
set(gcf, 'DefaultAxesPropertyName', PropertyValue,...)

where *PropertyName* is the name of the axes property and PropertyValue is the value you are specifying. Use set and get to access axes properties.

Property List The following table lists all axes properties and provides a brief description of each. The property name links take you an expanded description of the properties.

Property Name	Property Description	Property Value
Controlling Style and Appearance		
Box	Toggle axes plot box on and off	Values: on, off Default: off
Cl i ppi ng	This property has no effect; axes are always clipped to the figure window	
Gri dLi neStyl e	Line style used to draw axes grid lines	Values: -,, : , , none Default: : (dotted line)

Property Name	Property Description	Property Value
Mi norGri dLi neStyl e	Line style used to draw axes minor grid lines	Values: –, ––, : , , none Default: : (dotted line)
Layer	Draw axes above or below graphs	Values: bottom, top Default: bottom
Li neStyl e0rder	Sequence of line styles used for multiline plots	Values: Li neSpec Default: – (solid line for)
Li neWi dt h	Width of axis lines, in points (1/72" per point)	Values: number of points Default: 0.5 points
Sel ecti onHi ghl i ght	Highlight axes when selected (Sel ected property set to on)	Values: on, off Default: or
Ti ckDi r	Direction of axis tick marks	Values: i n, out Default: i n (2-D), out (3-D
Ti ckDi rMode	Use MATLAB or user-specified tick mark direction	Values: auto, manual Default: auto
Ti ckLength	Length of tick marks normalized to axis line length, specified as two-element vector	Values: [2-D 3-D] Default: [0. 01 0. 025}
Vi si bl e	Make axes visible or invisible	Values: on, off Default: on
XGrid, YGrid, ZGrid	Toggle grid lines on and off in respective axis	Values: on, off Default: off
General Information Abo	ut the Axes	
Chi l dren	Handles of the images, lights, lines, patches, surfaces, and text objects displayed in the axes	Values: vector of handles
Current Poi nt	Location of last mouse button click defined in the axes data units	Values: a 2-by-3 matrix

Property Name	Property Description	Property Value
HitTest	Specify whether axes can become the current object (see figure Current0bj ect property)	Values: on, off Default: on
Parent	Handle of the figure window containing the axes	Values: scalar figure handle
Positi on	Location and size of axes within the figure	Values: [left bottom width height] Default: [0. 1300 0. 1100 0. 7750 0. 8150] in normalized Units
Selected	Indicate whether axes is in a "selected" state	Values: on, off Default: on
Tag	User-specified label	Values: any string Default: '' (empty string)
Туре	The type of graphics object (read only)	Value: the string ' axes'
Units	Units used to interpret the Position property	Values: i nches, centi meters, characters, normal i zed, poi nts, pi xel s Default: normal i zed
UserData	User-specified data	Values: any matrix Default: [] (empty matrix)
Selecting Fonts and La	abels	
FontAngl e	Select italic or normal font	Values: normal, italic, oblique Default: normal
FontName	Font family name (e.g., Helvetica, Courier)	Values: a font supported by your system or the string Fi xedWi dth Default: Typically Helvetica

Property Name	Property Description	Property Value
FontSi ze	Size of the font used for title and labels	Values: an integer in FontUni ts Default: 10
FontUni ts	Units used to interpret the FontSi ze property	Values: points, normal i zed, i nches, centimeters, pixel s Default: points
FontWeight	Select bold or normal font	Values: normal , bol d, l i ght , demi Default: normal
Title	Handle of the title text object	Values: any valid text object handle
XLabel, YLabel, ZLabel	Handles of the respective axis label text objects	Values: any valid text object handle
XTi ckLabel , YTi ckLabel , ZTi ckLabel	Specify tick mark labels for the respective axis	Values: matrix of strings Defaults: numeric values selected automatically by MATLAB
XTi ckLabel Mode, YTi ckLabel Mode, ZTi ckLabel Mode	Use MATLAB or user-specified tick mark labels	Values: auto, manual Default: auto
Controlling Axis Scaling		
XAxi sLocati on	Specify the location of the <i>x</i> -axis	Values: top, bottom Default: bottom
YAxi sLocati on	Specify the location of the <i>y</i> -axis	Values: right left Default: left
XDir, YDir, ZDir	Specify the direction of increasing values for the respective axes	Values: normal, reverse Default: normal

Property Name	Property Description	Property Value
XLim, YLim, ZLim	Specify the limits to the respective axes	Values: [min max] Default: min and max determined automatically by MATLAB
XLimMode, YLimMode, ZLimMode	Use MATLAB or user-specified values for the respective axis limits	Values: auto, manual Default: auto
XMi norGri d, YMi norGri d, ZMi norGri d	Determines whether MATLAB displays gridlines connecting minor tick marks in the respective axis.	Values: on, off Default: off
XMi norTi ck, YMi norTi ck, ZMi norTi ck	Determines whether MATLAB displays minor tick marks in the respective axis.	Values: on, off Default: off
XScale, YScale, ZScale	Select linear or logarithmic scaling of the respective axis	Values: 1 i near, 1 og Default: 1 i near (changed by plotting commands that create nonlinear plots)
XTi ck, YTi ck, ZTi ck	Specify the location of the axis ticks marks	Values: a vector of data values locating tick marks Default: MATLAB automatically determines tick mark placement
XTickMode, YTickMode, ZTickMode	Use MATLAB or user-specified values for the respective tick mark locations	Values: auto, manual Default: auto
Controlling the View		
CameraPosition	Specify the position of point from which you view the scene	Values: [x, y, z] axes coordinates Default: automatically determined by MATLAB

Property Name	Property Description	Property Value
CameraPositionMode	Use MATLAB or user-specified camera position	Values: auto, manual Default: auto
CameraTarget	Center of view pointed to by camera	Values: [x, y, z] axes coordinates Default: automatically determined by MATLAB
CameraTargetMode	Use MATLAB or user-specified camera target	Values: auto, manual Default: auto
CameraUpVector	Direction that is oriented up	Values: [x, y, z] axes coordinates Default: automatically determined by MATLAB
CameraUpVectorMode	Use MATLAB or user-specified camera up vector	Values: auto, manual Default: auto
CameraVi ewAngl e	Camera field of view	Values: angle in degrees between 0 and 180 Default: automatically determined by MATLAB
CameraVi ewAngl eMode	Use MATLAB or user-specified camera view angle	Values: auto, manual Default: auto
Proj ecti on	Select type of projection	Values: orthographi c, perspecti ve Default: orthographi c
Controlling the Axes Asp	ect Ratio	
DataAspectRatio	Relative scaling of data units	Values: three relative values [dx dy dz] Default: automatically determined by MATLAB
DataAspectRatioMode	Use MATLAB or user-specified data aspect ratio	Values: auto, manual Default: auto

Property Name	Property Description	Property Value
Pl otBoxAspectRati o	Relative scaling of axes plot box	Values: three relative values [dx dy dz] Default: automatically determined by MATLAB
PlotBoxAspectRatioMode	Use MATLAB or user-specified plot box aspect ratio	Values: auto, manual Default: auto
Controlling Callback Routi	ne Execution	
BusyAction	Specify how to handle events that interrupt execution callback routines	Values: cancel , queue Default: queue
ButtonDownFcn	Define a callback routine that executes when a button is pressed over the axes	Values: string or function handle Default: an empty string
CreateFcn	Define a callback routine that executes when an axes is created	Values: string or function handle Default: an empty string
DeleteFcn	Define a callback routine that executes when an axes is created	Values: string or function handle Default: an empty string
Interrupti bl e	Control whether an executing callback routine can be interrupted	Values: on, off Default: or
UI ContextMenu	Associate a context menu with the axes	Values: handle of a Uicontextmenu
Specifying the Rendering	Mode	
DrawMode	Specify the rendering method to use with the Painters renderer	Values: normal, fast Default: normal
Targeting Axes for Graph	ics Display	
Handl eVi si bi l i t y	Control access to a specific axes' handle	Values: on, callback, off Default: on

Property Name	Property Description	Property Value
NextPl ot	Determine the eligibility of the axes for displaying graphics	Values: add, repl ace, repl acechi l dren Default: repl ace
Properties that Specify Tra	nsparency	
ALi m	Alpha axis limits	Values: [amin amax]
ALi mMode	Alpha axis limits mode	Values: auto manual Default: auto
Properties that Specify Col	or	
Ambi entLi ghtCol or	Color of the background light in a scene	Values: Col orSpec Default: [1 1 1]
CLi m	Control how data is mapped to colormap	Values: [cmin cmax] Default: automatically determined by MATLAB
CLi mMode	Use MATLAB or user-specified values for CLim	Values: auto, manual Default: auto
Col or	Color of the axes background	Values: none, Col orSpec Default: none
Col orOrder	Line colors used for multiline plots	Values: m-by-3 matrix of RGB values Default: depends on color scheme used
XColor, YColor, ZColor	Colors of the axis lines and tick marks	Values: Col orSpec Default: depends on current color scheme

Modifying Properties	You can set and query graphics object properties in two ways:		
	• The Property Editor is an interactive tool that enables you to see and change object property values.		
	 The set and get commands enable you to set and query the values of properties 		
	To change the default value of properties see Setting Default Property Values.		
Axes Property Descriptions	This section lists property names along with the types of values each accepts. Curly braces { } enclose default values.		
	ALim [amin, amax]		
	<i>Alpha axis limits.</i> A two-element vector that determines how MATLAB maps the Al phaData values of surface, patch and image objects to the figure's alphamap. ami n is the value of the data mapped to the first alpha value in the alphamap, and amax is the value of the data mapped to the last alpha value in the alphamap. Data values in between are linearly interpolated across the alphamap, while data values outside are clamped to either the first or last alphamap value, whichever is closest.		
	When ALi mMode is auto (the default), MATLAB assigns amin the minimum data value and amax the maximum data value in the graphics object's Al phaData. This maps Al phaData elements with minimum data values to the first alphamap entry and those with maximum data values to the last alphamap entry. Data values in between are mapped linearly to the values		
	If the axes contains multiple graphics objects, MATLAB sets ALim to span the range of all objects' Al phaData (or FaceVertexAl phaData for patch objects).		
	ALimMode {auto} manual		
	<i>Alpha axis limits mode.</i> In auto mode, MATLAB sets the ALi m property to span the Al phaData limits of the graphics objects displayed in the axes. If ALi mMode is manual, MATLAB does not change the value of ALi m when the Al phaData limits of axes children change. Setting the ALi m property sets ALi mMode to manual.		
	AnbientLightColor ColorSpec		
	<i>The background light in a scene.</i> Ambient light is a directionless light that shines uniformly on all objects in the axes. However, if there are no visible light		

objects in the axes, MATLAB does not use Ambi entLi ghtCol or. If there are light objects in the axes, the Ambi entLi ghtCol or is added to the other light sources.

AspectRatio (Obsolete)

This property produces a warning message when queried or changed. It has been superseded by the DataAspectRatio[Mode] and PlotBoxAspectRatio[Mode] properties.

Box on | {off}

Axes box mode. This property specifies whether to enclose the axes extent in a box for 2-D views or a cube for 3-D views. The default is to not display the box.

BusyAction cancel | {queue}

Callback routine interruption. The BusyActi on property enables you to control how MATLAB handles events that potentially interrupt executing callback routines. If there is a callback routine executing, subsequently invoked callback routines always attempt to interrupt it. If the Interrupti bl e property of the object whose callback is executing is set to on (the default), then interruption occurs at the next point where the event queue is processed. If the Interrupt ibl e property is off, the BusyActi on property (of the object owning the executing callback) determines how MATLAB handles the event. The choices are:

- cancel discard the event that attempted to execute a second callback routine.
- queue queue the event that attempted to execute a second callback routine until the current callback finishes.

ButtonDownFcn string or function handle

Button press callback routine. A callback routine that executes whenever you press a mouse button while the pointer is within the axes, but not over another graphics object displayed in the axes. For 3-D views, the active area is defined by a rectangle that encloses the axes.

Define this routine as a string that is a valid MATLAB expression or the name of an M-file. The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles to define the callback function.

CameraPosition [x, y, z] axes coordinates

The location of the camera. This property defines the position from which the camera views the scene. Specify the point in axes coordinates.

If you fix CameraVi ewAngl e, you can zoom in and out on the scene by changing the CameraPosition, moving the camera closer to the CameraTarget to zoom in and farther away from the CameraTarget to zoom out. As you change the CameraPosition, the amount of perspective also changes, if Projection is perspective. You can also zoom by changing the CameraVi ewAngl e; however, this does not change the amount of perspective in the scene.

CameraPositionMode {auto} | manual

Auto or manual CameraPosition. When set to auto, MATLAB automatically calculates the CameraPositi on such that the camera lies a fixed distance from the CameraTarget along the azimuth and elevation specified by vi ew. Setting a value for CameraPositi on sets this property to manual.

CameraTarget [x, y, z] axes coordinates

Camera aiming point. This property specifies the location in the axes that the camera points to. The CameraTarget and the CameraPositi on define the vector (the view axis) along which the camera looks.

CameraTargetMode {auto} | manual

Auto or manual CameraTarget placement. When this property is auto, MATLAB automatically positions the CameraTarget at the centroid of the axes plotbox. Specifying a value for CameraTarget sets this property to manual.

CameraUpVector [x, y, z] axes coordinates

Camera rotation. This property specifies the rotation of the camera around the viewing axis defined by the CameraTarget and the CameraPosi ti on properties. Specify CameraUpVector as a three-element array containing the *x*, *y*, and *z* components of the vector. For example, $[0 \ 1 \ 0]$ specifies the positive *y*-axis as the up direction.

The default CameraUpVector is $[0 \ 0 \ 1]$, which defines the positive *z*-axis as the up direction.

CameraUpVectorMode auto} | manual

Default or user-specified up vector. When CameraUpVectorMode is auto, MATLAB uses a value of [0 0 1] (positive *z*-direction is up) for 3-D views and [0 1 0] (positive *y*-direction is up) for 2-D views. Setting a value for CameraUpVector sets this property to manual.

CameraViewAngle scalar greater than 0 and less than or equal to 180 (angle in degrees)

The field of view. This property determines the camera field of view. Changing this value affects the size of graphics objects displayed in the axes, but does not affect the degree of perspective distortion. The greater the angle, the larger the field of view, and the smaller objects appear in the scene.

CameraViewAngleMode{auto} | manual

Auto or manual CameraViewAngle. When in auto mode, MATLAB sets CameraVi ewAngl e to the minimum angle that captures the entire scene (up to 180°).

The following table summarizes MATLAB automatic camera behavior.

CameraView Angle	Camera Target	Camera Position	Behavior
auto	auto	auto	CameraTarget is set to plot box centroid, CameraVi ewAngl e is set to capture entire scene, CameraPosition is set along the view axis.
auto	auto	manual	CameraTarget is set to plot box centroid, CameraVi ewAngl e is set to capture entire scene.
auto	manual	auto	CameraVi ewAngl e is set to capture entire scene, CameraPosi ti on is set along the view axis.
auto	manual	manual	CameraVi ewAngl e is set to capture entire scene.
manual	auto	auto	CameraTarget is set to plot box centroid, CameraPosition is set along the view axis.
manual	auto	manual	CameraTarget is set to plot box centroid
manual	manual	auto	CameraPosition is set along the view axis.
manual	manual	manual	All Camera properties are user-specified.

Children vector of graphics object handles

Children of the axes. A vector containing the handles of all graphics objects rendered within the axes (whether visible or not). The graphics objects that can be children of axes are images, lights, lines, patches, surfaces, and text. You can change the order of the handles and thereby change the stacking of the objects on the display.

The text objects used to label the *x*-, *y*-, and *z*-axes are also children of axes, but their Handl eVi si bility properties are set to callback. This means their handles do not show up in the axes Children property unless you set the Root ShowHi ddenHandles property to on.

CLim [cmin, cmax]

Color axis limits. A two-element vector that determines how MATLAB maps the CData values of surface and patch objects to the figure's colormap. cmi n is the value of the data mapped to the first color in the colormap, and cmax is the value of the data mapped to the last color in the colormap. Data values in between are linearly interpolated across the colormap, while data values outside are clamped to either the first or last colormap color, whichever is closest.

When CLi mMode is auto (the default), MATLAB assigns cmin the minimum data value and cmax the maximum data value in the graphics object's CData. This maps CData elements with minimum data value to the first colormap entry and with maximum data value to the last colormap entry.

If the axes contains multiple graphics objects, MATLAB sets CLim to span the range of all objects' CData.

CLimMode {auto} | manual

Color axis limits mode. In auto mode, MATLAB sets the CLim property to span the CData limits of the graphics objects displayed in the axes. If CLimMode is manual, MATLAB does not change the value of CLim when the CData limits of axes children change. Setting the CLim property sets this property to manual.

Clipping {on} | off

This property has no effect on axes.

Col or{none}| Col or Spec

Color of the axes back planes. Setting this property to none means the axes is transparent and the figure color shows through. A Col or Spec is a three-element RGB vector or one of the MATLAB predefined names. Note that while the default value is none, the matl abrc. m file may set the axes col or to a specific color.

ColorOrder m-by-3 matrix of RGB values

Colors to use for multiline plots. Col or 0 rder is an *m*-by-3 matrix of RGB values that define the colors used by the pl ot and pl ot 3 functions to color each line plotted. If you do not specify a line color with pl ot and pl ot 3, these functions cycle through the Col or 0 rder to obtain the color for each line plotted. To obtain the current Col or 0 rder, which may be set during startup, get the property value:

```
get(gca, 'Color0rder')
```

Note that if the axes NextPl ot property is set to repl ace (the default), high-level functions like pl ot reset the Col orOrder property before determining the colors to use. If you want MATLAB to use a Col orOrder that is different from the default, set NextPl ot to repl acechildren. You can also specify your own default Col orOrder.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a callback routine that executes when MATLAB creates an axes object. You must define this property as a default value for axes. For example, the statement,

set(0, 'DefaultAxesCreateFcn', 'set(gca, ''Color'', ''b'')')

defines a default value on the Root level that sets the current axes' background color to blue whenever you (or MATLAB) create an axes. MATLAB executes this routine after setting all properties for the axes. Setting this property on an existing axes object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only through the Root Callback0bj ect property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles to define the callback function.

CurrentPoint 2-by-3 matrix

Location of last button click, in axes data units. A 2-by-3 matrix containing the coordinates of two points defined by the location of the pointer. These two points lie on the line that is perpendicular to the plane of the screen and passes through the pointer. The 3-D coordinates are the points, in the axes coordinate system, where this line intersects the front and back surfaces of the axes volume (which is defined by the axes *x*, *y*, and *z* limits).

The returned matrix is of the form:

xback ^yback ^zback front ^yfront ^zfront

MATLAB updates the CurrentPoint property whenever a button-click event occurs. The pointer does not have to be within the axes, or even the figure window; MATLAB returns the coordinates with respect to the requested axes regardless of the pointer location.

DataAspectRatio [dx dy dz]

Relative scaling of data units. A three-element vector controlling the relative scaling of data units in the *x*, *y*, and *z* directions. For example, setting this property t o $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$ causes the length of one unit of data in the *x* direction to be the same length as two units of data in the *y* direction and one unit of data in the *z* direction.

Note that the DataAspectRatio property interacts with the PlotBoxAspectRatio, XLi mMode, YLi mMode, and ZLi mMode properties to control how MATLAB scales the *x*-, *y*-, and *z*-axis. Setting the DataAspectRatio will disable the stretch-to-fill behavior, if DataAspectRatioMode, PlotBoxAspectRatioMode, and CameraVi ewAngleMode are all auto. The following table describes the interaction between properties when stretch-to-fill behavior is disabled.

X-, Y-, Z-Limits	DataAspect Ratio	PlotBox AspectRatio	Behavior
auto	auto	auto	Limits chosen to span data range in all dimensions.
auto	auto	manual	Limits chosen to span data range in all dimensions. DataAspectRatio is modified to achieve the requested PlotBoxAspectRatio within the limits selected by MATLAB.
auto	manual	auto	Limits chosen to span data range in all dimensions. PlotBoxAspectRatio is modified to achieve the requested DataAspectRatio within the limits selected by MATLAB.
auto	manual	manual	Limits chosen to completely fit and center the plot within the requested Pl otBoxAspectRati o given the requested DataAspectRati o (this may produce empty space around 2 of the 3 dimensions).
manual	auto	auto	Limits are honored. The DataAspectRatio and PlotBoxAspectRatio are modified as necessary.
manual	auto	manual	Limits and Pl otBoxAspectRati o are honored. The DataAspectRati o is modified as necessary.
manual	manual	auto	Limits and DataAspectRatio are honored. The PlotBoxAspectRatio is modified as necessary.
1 manual 2 auto	manual	manual	The 2 automatic limits are selected to honor the specified aspect ratios and limit. See "Examples"
2 or 3 manual	manual	manual	Limits and DataAspectRati o are honored; the Pl otBoxAspectRati o is ignored.

DataAspectRatioMode {auto} | manual

User or MATLAB controlled data scaling. This property controls whether the values of the DataAspectRati o property are user defined or selected automatically by MATLAB. Setting values for the DataAspectRati o property automatically sets this property to manual . Changing DataAspectRati oMode to manual disables the stretch-to-fill behavior, if DataAspectRati oMode, Pl otBoxAspectRati oMode, and CameraVi ewAngl eMode are all auto.

Del eteFcn string or function handle

Delete axes callback routine. A callback routine that executes when the axes object is deleted (e.g., when you issue a delete or a close command). MATLAB executes the routine before destroying the object's properties so the callback routine can query these values.

The handle of the object whose Del eteFcn is being executed is accessible only through the Root Callback0bj ect property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles to define the callback function.

DrawMode {normal} | fast

Rendering method. This property controls the method MATLAB uses to render graphics objects displayed in the axes, when the figure Renderer property is painters.

- normal mode draws objects in back to front ordering based on the current view in order to handle hidden surface elimination and object intersections.
- fast mode draws objects in the order in which you specify the drawing commands, without considering the relationships of the objects in three dimensions. This results in faster rendering because it requires no sorting of objects according to location in the view, but may produce undesirable results because it bypasses the hidden surface elimination and object intersection handling provided by normal DrawMode.

When the figure Renderer is zbuffer, DrawMode is ignored, and hidden surface elimination and object intersection handling are always provided.

FontAngle {normal} | italic | oblique

Select italic or normal font. This property selects the character slant for axes text. normal specifies a nonitalic font. italic and oblique specify italic font.

FontName A name such as Couri er or the string Fi xedWi dth

Font family name. The font family name specifying the font to use for axes labels. To display and print properly, FontName must be a font that your system supports. Note that the *x*-, *y*-, and *z*-axis labels do not display in a new font until you manually reset them (by setting the XLabel, YLabel, and ZLabel properties or by using the xl abel, yl abel, or zl abel command). Tick mark labels change immediately.

Specifying a Fixed-Width Font

If you want an axes to use a fixed-width font that looks good in any locale, you should set FontName to the string Fi xedWi dth:

set(axes_handle, 'FontName', 'Fi xedWidth')

This eliminates the need to hardcode the name of a fixed-width font, which may not display text properly on systems that do not use ASCII character encoding (such as in Japan where multibyte character sets are used). A properly written MATLAB application that needs to use a fixed-width font should set FontName to Fi xedWi dth (note that this string is case sensitive) and rely on Fi xedWi dthFontName to be set correctly in the end-user's environment.

End users can adapt a MATLAB application to different locales or personal environments by setting the root Fi xedWi dthFontName property to the appropriate value for that locale from startup. m.

Note that setting the root Fi xedWi dthFontName property causes an immediate update of the display to use the new font.

FontSize Font size specified in FontUnits

Font size. An integer specifying the font size to use for axes labels and titles, in units determined by the FontUnits property. The default point size is 12. The *x*-, *y*-, and *z*-axis text labels do not display in a new font size until you manually reset them (by setting the XLabel, YLabel, or ZLabel properties or by using the xl abel, yl abel, or zl abel command). Tick mark labels change immediately.

```
FontUnits {points} | normalized | inches |
centimeters | pixels
```

Units used to interpret the FontSi ze *property.* When set to normal i zed, MATLAB interprets the value of FontSi ze as a fraction of the height of the axes. For example, a normal i zed FontSi ze of 0.1 sets the text characters to a

font whose height is one tenth of the axes' height. The default units (points), are equal to 1/72 of an inch.

FontWeight {normal} | bold | light | demi

Select bold or normal font. The character weight for axes text. The *x*-, *y*-, and *z*-axis text labels do not display in bold until you manually reset them (by setting the XLabel, YLabel, and ZLabel properties or by using the xlabel, yl abel, or zlabel commands). Tick mark labels change immediately.

GridLineStyle - | --| {:} | -. | none

Line style used to draw grid lines. The line style is a string consisting of a character, in quotes, specifying solid lines (–), dashed lines (––), dotted lines(:), or dash-dot lines (–.). The default grid line style is dotted. To turn on grid lines, use the grid command.

HandleVisibility {on} | callback | off

Control access to object's handle by command-line users and GUIs. This property determines when an object's handle is visible in its parent's list of children. Handl eVi si bility is useful for preventing command-line users from accidentally drawing into or deleting a figure that contains only user interface devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting Handl eVi si bi l i ty to cal l back causes handles to be visible from within callback routines or functions invoked by callback routines, but not from within functions invoked from the command line. This provides a means to protect GUIs from command-line users, while allowing callback routines to have complete access to object handles.

Setting Handl eVi si bi l i ty to off makes handles invisible at all times. This may be necessary when a callback routine invokes a function that might potentially damage the GUI (such as evaluating a user-typed string) and so temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent's list of children, it cannot be returned by functions that obtain handles by searching the object hierarchy or querying handle properties. This includes get, findobj, gca, gcf, gco, newplot, cl a, cl f, and cl ose.

When a handle's visibility is restricted using callback or off, the object's handle does not appear in its parent's Children property, figures do not appear in the Root's Currentfigure property, objects do not appear in the Root's CallbackObject property or in the figure's CurrentObject property, and axes do not appear in their parent's Currentaxes property.

You can set the Root ShowHi ddenHandl es property to on to make all handles visible, regardless of their Handl eVi si bility settings (this does not affect the values of the Handl eVi si bility properties).

Handles that are hidden are still valid. If you know an object's handle, you can set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the axes can become the current object (as returned by the gco command and the figure CurrentObj ect property) as a result of a mouse click on the axes. If HitTest is off, clicking on the axes selects the object below it (which is usually the figure containing it).

Interruptible {on} | off

Callback routine interruption mode. The Interrupti bl e property controls whether an axes callback routine can be interrupted by subsequently invoked callback routines. Only callback routines defined for the ButtonDownFcn are affected by the Interrupti bl e property. MATLAB checks for events that can interrupt a callback routine only when it encounters a drawnow, fi gure, getframe, or pause command in the routine. See the BusyActi on property for related information.

Setting Interruptible to on allows any graphics object's callback routine to interrupt callback routines originating from an axes property. Note that MATLAB does not save the state of variables or the display (e.g., the handle returned by the gca or gcf command) when an interruption occurs.

Layer {bottom} | top

Draw axis lines below or above graphics objects. This property determines if axis lines and tick marks draw on top or below axes children objects for any 2-D view (i.e., when you are looking along the x-, y-, or z-axis). This is useful for placing grid lines and tick marks on top of images.

LineStyleOrder LineSpec

Order of line styles and markers used in a plot. This property specifies which line styles and markers to use and in what order when creating multiple-line plots. For example,

```
set(gca, 'LineStyleOrder', '-*|: |o')
```

sets Li neStyl eOrder to solid line with asterisk marker, dotted line, and hollow circle marker. The default is (–), which specifies a solid line for all data plotted. Alternatively, you can create a cell array of character strings to define the line styles:

```
set(gca, 'LineStyleOrder', {'-*', ':', 'o'})
```

MATLAB supports four line styles, which you can specify any number of times in any order. MATLAB cycles through the line styles only after using all colors defined by the Col orOrder property. For example, the first eight lines plotted use the different colors defined by Col orOrder with the first line style. MATLAB then cycles through the colors again, using the second line style specified, and so on.

You can also specify line style and color directly with the pl ot and pl ot 3 functions or by altering the properties of the line objects.

Note that, if the axes NextPl ot property is set to replace (the default), high-level functions like pl ot reset the Li neStyl eOrder property before determining the line style to use. If you want MATLAB to use a Li neStyl eOrder that is different from the default, set NextPl ot to replacechildren. You can also specify your own default Li neStyl eOrder.

LineWidth linewidth in points

Width of axis lines. This property specifies the width, in points, of the *x*-, *y*-, and *z*-axis lines. The default line width is 0.5 points (1 point = $1/_{72}$ inch).

MinorGridLineStyle - | --| {:} | -. | none

Line style used to draw minor grid lines. The line style is a string consisting of one or more characters, in quotes, specifying solid lines (–), dashed lines (––), dotted lines(:), or dash-dot lines (–.). The default minor grid line style is dotted. To turn on minor grid lines, use the grid minor command.

NextPlotadd | {replace} | replacechildren

Where to draw the next plot. This property determines how high-level plotting functions draw into an existing axes.

- add use the existing axes to draw graphics objects.
- replace reset all axes properties, except Position, to their defaults and delete all axes children before displaying graphics (equivalent to clareset).
- repl acechildren remove all child objects, but do not reset axes properties (equivalent to cla).

The newpl ot function simplifies the use of the NextPl ot property and is used by M-file functions that draw graphs using only low-level object creation routines. See the M-file pcol or. m for an example. Note that figure graphics objects also have a NextPl ot property.

Parent figure handle

Axes parent. The handle of the axes' parent object. The parent of an axes object is the figure in which it is displayed. The utility function gcf returns the handle of the current axes' Parent. You can reparent axes to other figure objects.

PlotBoxAspectRatio [px py pz]

Relative scaling of axes plotbox. A three-element vector controlling the relative scaling of the plot box in the *x*-, *y*-, and *z*-directions. The plot box is a box enclosing the axes data region as defined by the *x*-, *y*-, and *z*-axis limits.

Note that the Pl otBoxAspectRati o property interacts with the DataAspectRati o, XLi mMode, YLi mMode, and ZLi mMode properties to control the way graphics objects are displayed in the axes. Setting the Pl otBoxAspectRati o disables stretch-to-fill behavior, if DataAspectRati oMode, Pl otBoxAspectRati oMode, and CameraVi ewAngl eMode are all auto.

PlotBoxAspectRatioMode {auto} | manual

User or MATLAB controlled axis scaling. This property controls whether the values of the Pl ot BoxAspectRati o property are user defined or selected automatically by MATLAB. Setting values for the Pl ot BoxAspectRati o property automatically sets this property to manual. Changing the Pl ot BoxAspectRati oMode to manual disables stretch-to-fill behavior, if

 $\label{eq:lasses} DataAspectRatioMode, \ PlotBoxAspectRatioMode, \ and \ CameraVi \ ewAngl \ eMode are \ all \ auto.$

Position four-element vector

Position of axes. A four-element vector specifying a rectangle that locates the axes within the figure window. The vector is of the form:

[left bottom width height]

where l eft and bottom define the distance from the lower-left corner of the figure window to the lower-left corner of the rectangle. wi dth and hei ght are the dimensions of the rectangle. All measurements are in units specified by the Units property.

When axes stretch-to-fill behavior is enabled (when DataAspectRatioMode, PlotBoxAspectRatioMode, CameraViewAngleMode are all auto), the axes are stretched to fill the Position rectangle. When stretch-to-fill is disabled, the axes are made as large as possible, while obeying all other properties, without extending outside the Position rectangle

Projection{orthographic} | perspective

Type of projection. This property selects between two projection types:

- orthographic This projection maintains the correct relative dimensions of graphics objects with regard to the distance a given point is from the viewer. Parallel lines in the data are drawn parallel on the screen.
- perspect i ve This projection incorporates foreshortening, which allows you to perceive depth in 2-D representations of 3-D objects. Perspective projection does not preserve the relative dimensions of objects; a distant line segment displays smaller than a nearer line segment of the same length. Parallel lines in the data may not appear parallel on screen.

Selected on | off

Is object selected. When you set this property to on, MATLAB displays selection "handles" at the corners and midpoints if the Sel ectionHi ghl i ght property is also on (the default). You can, for example, define the ButtonDownFcn callback routine to set this property to on, thereby indicating that the axes has been selected.

SelectionHighlight {on} | off

Objects highlight when selected. When the Selected property is on, MATLAB indicates the selected state by drawing four edge handles and four corner handles. When Selecti onHi ghl i ght is off, MATLAB does not draw the handles.

Tag string (GUIDE sets this property)

User-specified object label. The Tag property provides a means to identify graphics objects with a user-specified label. This is particularly useful when constructing interactive graphics programs that would otherwise need to define object handles as global variables or pass them as arguments between callback routines.

For example, suppose you want to direct all graphics output from an M-file to a particular axes, regardless of user actions that may have changed the current axes. To do this, identify the axes with a Tag:

```
axes('Tag', 'Special Axes')
```

Then make that axes the current axes before drawing by searching for the Tag with findobj:

axes(findobj('Tag', 'Special Axes'))

TickDir in | out

Direction of tick marks. For 2-D views, the default is to direct tick marks inward from the axis lines; 3-D views direct tick marks outward from the axis line.

Ti ckDi rMode{auto}manual

Automatic tick direction control. In auto mode, MATLAB directs tick marks inward for 2-D views and outward for 3-D views. When you specify a setting for Ti ckDi r, MATLAB sets Ti ckDi rMode to manual. In manual mode, MATLAB does not change the specified tick direction.

TickLength [2DLength 3DLength]

Length of tick marks. A two-element vector specifying the length of axes tick marks. The first element is the length of tick marks used for 2-D views and the second element is the length of tick marks used for 3-D views. Specify tick mark lengths in units normalized relative to the longest of the visible X-, Y-, or Z-axis annotation lines.

Title handle of text object

Axes title. The handle of the text object that is used for the axes title. You can use this handle to change the properties of the title text or you can set Title to the handle of an existing text object. For example, the following statement changes the color of the current title to red:

```
set(get(gca, 'Title'), 'Color', 'r')
```

To create a new title, set this property to the handle of the text object you want to use:

```
set(gca, 'Title', text('String', 'New Title', 'Color', 'r'))
```

However, it is generally simpler to use the title command to create or replace an axes title:

```
title('New Title', 'Color', 'r')
```

Type string (read only)

Type of graphics object. This property contains a string that identifies the class of graphics object. For axes objects, Type is always set to 'axes'.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the axes. Assign this property the handle of a Uicontextmenu object created in the axes' parent figure. Use the ui contextmenu function to create the context menu. MATLAB displays the context menu whenever you right-click over the axes.

Units	inches	centimeters {normalized	}
	points	pixels characters	

Position units. The units used to interpret the Positi on property. All units are measured from the lower-left corner of the figure window.

- normal i zed units map the lower-left corner of the figure window to (0,0) and the upper-right corner to (1.0, 1.0).
- inches, centimeters, and points are absolute units (one point equals $^{1\!/}_{72}$ of an inch).
- Character units are defined by characters from the default system font; the width of one character is the width of the letter x, the height of one character is the distance between the baselines of two lines of text.

UserData matrix

User specified data. This property can be any data you want to associate with the axes object. The axes does not use this property, but you can access it using the set and get functions.

View Obsolete

The functionality provided by the View property is now controlled by the axes camera properties – CameraPosition, CameraTarget, CameraUpVector, and CameraViewAngle. See the view command.

Visible {on} | off

Visibility of axes. By default, axes are visible. Setting this property to off prevents axis lines, tick marks, and labels from being displayed. The visible property does not affect children of axes.

XAxisLocation top | {bottom}

Location of x-axis tick marks and labels. This property controls where MATLAB displays the *x*-axis tick marks and labels. Setting this property to top moves the *x*-axis to the top of the plot from its default position at the bottom.

YAxisLocation right | {left}

Location of y-axis tick marks and labels. This property controls where MATLAB displays the *y*-axis tick marks and labels. Setting this property to right moves the *y*-axis to the right side of the plot from its default position on the left side. See the plotyy function for a simple way to use two y-axes.

Properties That Control the X-, Y-, or Z-Axis

XColor, YColor, ZColor ColorSpec

Color of axis lines. A three-element vector specifying an RGB triple, or a predefined MATLAB color string. This property determines the color of the axis lines, tick marks, tick mark labels, and the axis grid lines of the respective *x*-, *y*-, and *z*-axis. The default color axis color is black. See Col or Spec for details on specifying colors.

XDir, YDir, ZDir {normal} | reverse

Direction of increasing values. A mode controlling the direction of increasing axis values. axes form a right-hand coordinate system. By default:

• *x*-axis values increase from left to right. To reverse the direction of increasing *x* values, set this property to reverse.

```
set(gca, 'XDir', 'reverse')
```

• *y*-axis values increase from bottom to top (2-D view) or front to back (3-D view). To reverse the direction of increasing *y* values, set this property to reverse.

```
set(gca, 'YDir', 'reverse')
```

• *z*-axis values increase pointing out of the screen (2-D view) or from bottom to top (3-D view). To reverse the direction of increasing *z* values, set this property to reverse.

```
set(gca, 'ZDir', 'reverse')
```

XGrid, YGrid, ZGrid on | {off}

Axis gridline mode. When you set any of these properties to on, MATLAB draws grid lines perpendicular to the respective axis (i.e., along lines of constant *x*, *y*, or *z* values). Use the grid command to set all three properties on or off at once.

```
set(gca, 'XGrid', 'on')
```

XLabel, YLabel, ZLabel handle of text object

Axis labels. The handle of the text object used to label the *x*, *y*, or *z*-axis, respectively. To assign values to any of these properties, you must obtain the handle to the text string you want to use as a label. This statement defines a text object and assigns its handle to the XLabel property:

set(get(gca, 'XLabel'), 'String', 'axis label')

MATLAB places the string ' axi s l abel ' appropriately for an *x*-axis label. Any text object whose handle you specify as an XLabel, YLabel, or ZLabel property is moved to the appropriate location for the respective label.

Alternatively, you can use the xl abel, yl abel, and zl abel functions, which generally provide a simpler means to label axis lines.

XLim, YLim, ZLim [minimum maximum]

Axis limits. A two-element vector specifying the minimum and maximum values of the respective axis.

Changing these properties affects the scale of the *x*-, *y*-, or z-dimension as well as the placement of labels and tick marks on the axis. The default values for these properties are [0 1].

XLi mMode, YLi mMode, ZLi mMode{auto} | manual

MATLAB or user-controlled limits. The axis limits mode determines whether MATLAB calculates axis limits based on the data plotted (i.e., the XData, YData, or ZData of the axes children) or uses the values explicitly set with the XLi m, YLi m, or ZLi m property, in which case, the respective limits mode is set to manual.

XMinorGrid, YMinorGrid, ZMinorGrid on | {off}

Enable or disable minor gridlines. When set to on, MATLAB draws gridlines aligned with the minor tick marks of the respective axis. Note that you do not have to enable minor ticks to display minor grids.

XMinorTick, YMinorTick, ZMinorTick on | {off}

Enable or disable minor tick marks. When set to on, MATLAB draws tick marks between the major tick marks of the respective axis. MATLAB automatically determines the number of minor ticks based on the space between the major ticks.

XScale, **YScale**, **ZScale** {linear} | log

Axis scaling. Linear or logarithmic scaling for the respective axis. See also loglog, semilogx, and semilogy.

XTick, YTick, ZTick vector of data values locating tick marks

Tick spacing. A vector of x-, y-, or z-data values that determine the location of tick marks along the respective axis. If you do not want tick marks displayed, set the respective property to the empty vector, []. These vectors must contain monotonically increasing values.

XTickLabel, YTickLabel, ZTickLabel string

Tick labels. A matrix of strings to use as labels for tick marks along the respective axis. These labels replace the numeric labels generated by MATLAB. If you do not specify enough text labels for all the tick marks, MATLAB uses all of the labels specified, then reuses the specified labels.

For example, the statement,

set(gca, 'XTickLabel', {'One'; 'Two'; 'Three'; 'Four'})

labels the first four tick marks on the *x*-axis and then reuses the labels until all ticks are labeled.

Labels can be specified as cell arrays of strings, padded string matrices, string vectors separated by vertical slash characters, or as numeric vectors (where each number is implicitly converted to the equivalent string using num2str). All of the following are equivalent:

```
set(gca, 'XTi ckLabel', { '1'; '10'; '100' })
set(gca, 'XTi ckLabel', '1|10|100')
set(gca, 'XTi ckLabel', [1; 10; 100])
set(gca, 'XTi ckLabel', ['1 '; '10 '; '100'])
```

Note that tick labels do not interpret TeX character sequences (however, the Title, XLabel, YLabel, and ZLabel properties do).

XTickMode, YTickMode, ZTickMode {auto} | manual

MATLAB or user controlled tick spacing. The axis tick modes determine whether MATLAB calculates the tick mark spacing based on the range of data for the respective axis (auto mode) or uses the values explicitly set for any of the XTi ck, YTi ck, and ZTi ck properties (manual mode). Setting values for the XTi ck, YTi ck, or ZTi ck properties sets the respective axis tick mode to manual .

XTickLabel Mode, YTickLabel Mode, ZTickLabel Mode {auto} | manual

MATLAB or user determined tick labels. The axis tick mark labeling mode determines whether MATLAB uses numeric tick mark labels that span the range of the plotted data (auto mode) or uses the tick mark labels specified with the XTi ckLabel, YTi ckLabel, or ZTi ckLabel property (manual mode). Setting values for the XTi ckLabel, YTi ckLabel, or ZTi ckLabel property sets the respective axis tick label mode to manual.

```
Purpose
                    Axis scaling and appearance
Syntax
                    axis([xmin xmax ymin ymax])
                    axis([xmin xmax ymin ymax zmin zmax cmin cmax])
                    v = axis
                    axis auto
                    axis manual
                    axis tight
                    axis fill
                    axis ij
                    axis xy
                    axis equal
                    axis image
                    axis square
                    axis vis3d
                    axis normal
                    axis off
                    axis on
                    axis(axes_handl es,...)
                    [mode, visibility, direction] = axis('state')
Description
                    axi s manipulates commonly used axes properties. (See Algorithm section.)
                    axis([xmin xmax ymin ymax]) sets the limits for the x- and y-axis of the
                    current axes.
                    axis([xmin xmax ymin ymax zmin zmax cmin cmax]) sets the x-, y-, and
                    z-axis limits and the color scaling limits (see caxi s) of the current axes.
                    v = axi s returns a row vector containing scaling factors for the x-, y-, and
                    z-axis. v has four or six components depending on whether the current axes is
                    2-D or 3-D, respectively. The returned values are the current axes' XLi m, Yl i m,
                    and ZLi m properties.
```

axi s auto sets MATLAB to its default behavior of computing the current axes' limits automatically, based on the minimum and maximum values of *x*, *y*, and *z* data. You can restrict this automatic behavior to a specific axis. For example, axi s ' auto x' computes only the *x*-axis limits automatically; axi s ' auto yz' computes the *y*- and *z*-axis limits automatically.

axis manual and axis(axis) freezes the scaling at the current limits, so that if hold is on, subsequent plots use the same limits. This sets the XLimMode, YLimMode, and ZLimMode properties to manual.

axis tight sets the axis limits to the range of the data.

axis fill sets the axis limits and PlotBoxAspectRatio so that the axes fill the position rectangle. This option has an effect only if PlotBoxAspectRatioMode or DataAspectRatioMode are manual.

axi s ij places the coordinate system origin in the upper-left corner. The *i*-axis is vertical, with values increasing from top to bottom. The *j*-axis is horizontal with values increasing from left to right.

axi s xy draws the graph in the default Cartesian axes format with the coordinate system origin in the lower-left corner. The *x*-axis is horizontal with values increasing from left to right. The *y*-axis is vertical with values increasing from bottom to top.

axi s equal sets the aspect ratio so that the data units are the same in every direction. The aspect ratio of the *x*-, *y*-, and *z*-axis is adjusted automatically according to the range of data units in the *x*, *y*, and *z* directions.

 $\operatorname{axi} s$ i mage is the same as $\operatorname{axi} s$ equal except that the plot box fits tightly around the data.

axi s square makes the current axes region square (or cubed when three-dimensional). MATLAB adjusts the *x*-axis, *y*-axis, and *z*-axis so that they have equal lengths and adjusts the increments between data units accordingly.

axi s $\,$ vi s3d freezes aspect ratio properties to enable rotation of 3-D objects and overrides stretch-to-fill.

axi s normal automatically adjusts the aspect ratio of the axes and the relative scaling of the data units so that the plot fits the figures shape as best as possible.

axis off turns off all axis lines, tick marks, and labels.

axi s on turns on all axis lines, tick marks, and labels.

axi $s(axes_handl es, ...)$ applies the axi s command to the specified axes. For example, the following statements

h1 = subpl ot (221); h2 = subpl ot (222); axis([h1 h2], 'square')

set both axes to square.

[mode, visibility, direction] = axis('state') returns three strings indicating the current setting of axes properties:

Output Argument	Strings Returned
mode	'auto' 'manual'
visibility	'on' 'off'
di recti on	'xy' 'ij'

mode is auto if XLi mMode, YLi mMode, and ZLi mMode are all set to auto. If XLi mMode, YLi mMode, or ZLi mMode is manual, mode is manual.

Examples The statements

x = 0:.025:pi/2; plot(x,tan(x),'-ro')

use the automatic scaling of the *y*-axis based on ymax = tan(1.57), which is well over 1000:

The right figure shows a more satisfactory plot after typing

axis([0 pi/2 0 5])

Algorithm

When you specify minimum and maximum values for the *x*-, *y*-, and *z*-axes, axi s sets the XLi m, Yl i m, and ZLi m properties for the current axes to the respective minimum and maximum values in the argument list. Additionally, the XLi mMode, YLi mMode, and ZLi mMode properties for the current axes are set to manual.

axi s auto sets the current axes' XLi mMode, YLi mMode, and ZLi mMode properties to 'auto' .

axi s $\,$ manual sets the current axes' XLi mMode, YLi mMode, and ZLi mMode properties to 'manual ' .

Axes Property	axis equal	axis normal	axis square	axis tightequal
DataAspectRatio	[1 1 1]	not set	not set	[1 1 1]
DataAspectRatioMode	manual	auto	auto	manual
Pl otBoxAspectRati o	[3 4 4]	not set	[1 1 1]	auto
PlotBoxAspectRatioMode	manual	auto	manual	auto
Stretch-to-fill	di sabl ed	acti ve	di sabl ed	di sabl ed

The following table shows the values of the axes properties set by axis equal, axis normal, axis square, and axis image.

See Also

axes, get, grid, set, subplot

Properties of axes graphics objects

"Axes Operations" for related functions

balance

Purpose	Diagonal scaling to improve eigenvalue accuracy
Syntax	<pre>[T, B] = bal ance(A) B = bal ance(A)</pre>
Description	[T, B] = bal ance(A) returns a similarity transformation T such that B = T\A*T, and B has approximately equal row and column norms. T is a permutation of a diagonal matrix whose elements are integer powers of two to prevent the introduction of round-off error. If A is symmetric, then B == A and T is the identity matrix.
	B = balance(A) returns just the balanced matrix B.
Remarks	Nonsymmetric matrices can have poorly conditioned eigenvalues. Small perturbations in the matrix, such as roundoff errors, can lead to large perturbations in the eigenvalues. The condition number of the eigenvector matrix,
	cond(V) = norm(V) * norm(inv(V))
	where
	[V, T] = eig(A)
	relates the size of the matrix perturbation to the size of the eigenvalue perturbation. Note that the condition number of A itself is irrelevant to the eigenvalue problem.
	Balancing is an attempt to concentrate any ill conditioning of the eigenvector matrix into a diagonal scaling. Balancing usually cannot turn a nonsymmetric matrix into a symmetric matrix; it only attempts to make the norm of each row equal to the norm of the corresponding column.

Note The MATLAB eigenvalue function, $ei\,g(A)$, automatically balances A before computing its eigenvalues. Turn off the balancing with $ei\,g(A,\,'\,nobal\,ance'\,)$.

Examples This example shows the basic idea. The matrix A has large elements in the upper right and small elements in the lower left. It is far from being symmetric.

Balancing produces a diagonal matrix T with elements that are powers of two and a balanced matrix B that is closer to symmetric than A.

[T, B] = bal	ance(A)	
T =		
1.0e+03	*	
2.0480	0	0
0	0. 0320	0
0	0	0.0003
B =		
1.0000	1.5625	1. 2207
0.6400	1.0000	0. 7813
0.8192	1. 2800	1.0000

To see the effect on eigenvectors, first compute the eigenvectors of A, shown here as the columns of V.

[V, E] = eig(A); V	
V =		
- 1. 0000	0. 9999	0. 9937
0.0050	0. 0100	-0.1120
0.0000	0.0001	0.0010

Note that all three vectors have the first component the largest. This indicates V is badly conditioned; in fact cond(V) is 8. 7766e+003. Next, look at the eigenvectors of B.

```
\begin{bmatrix} V, E \end{bmatrix} = eig(B); V \\ V = \\ -0.8873 & 0.6933 & 0.0898 \\ 0.2839 & 0.4437 & -0.6482 \\ 0.3634 & 0.5679 & -0.7561 \end{bmatrix}
```

balance

	Now the eigenvectors are well behaved and cond(V) is 1. 4421. The ill conditioning is concentrated in the scaling matrix; cond(T) is 8192. This example is small and not really badly scaled, so the computed eigenvalues of A and B agree within roundoff error; balancing has little effect on the computed results.
Algorithm	bal ance uses LAPACK routines DGEBAL (real) and ZGEBAL (complex). If you request the output T, it also uses the LAPACK routines DGEBAK (real) and ZGEBAK (complex).
Limitations	Balancing can destroy the properties of certain matrices; use it with some care. If a matrix contains small elements that are due to roundoff error, balancing may scale them up to make them as significant as the other elements of the original matrix.
See Also	eig
References	 [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, <i>LAPACK User's Guide</i> (http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition, SIAM, Philadelphia, 1999.

Purpose	Bar chart
Syntax	<pre>bar(Y) bar(x, Y) bar(, width) bar(, 'style') bar(, LineSpec) h = bar() </pre>
	barh() h = $barh()$
Description	A bar chart displays the values in a vector or matrix as horizontal or vertical bars.
	bar (Y) draws one bar for each element in Y. If Y is a matrix, bar groups the bars produced by the elements in each row. The x-axis scale ranges from 1 to $l ength(Y)$ when Y is a vector, and 1 to $si ze(Y, 1)$, which is the number of rows, when Y is a matrix.
	bar (x, Y) draws a bar for each element in Y at locations specified in x, where x is a monotonically increasing vector defining the x-axis intervals for the vertical bars. If Y is a matrix, bar clusters the elements in the same row in Y at locations corresponding to an element in x.
	bar $(\ldots, wi dth)$ sets the relative bar width and controls the separation of bars within a group. The default wi dth is 0. 8, so if you do not specify x, the bars within a group have a slight separation. If wi dth is 1, the bars within a group touch one another.
	$bar(\dots, 'style')$ specifies the style of the bars. ' $style'$ is 'grouped' or 'stacked'.'group' is the default mode of display.
	• 'grouped' displays <i>n</i> groups of <i>m</i> vertical bars, where <i>n</i> is the number of rows and <i>m</i> is the number of columns in Y. The group contains one bar per column in Y.
	• 'stacked' displays one bar for each row in Y. The bar height is the sum of the elements in the row. Each bar is multi-colored, with colors corresponding

bar, barh

to distinct elements and showing the relative contribution each row element
makes to the total sum.bar(..., Li neSpec) displays all bars using the color specified by Li neSpec.h = bar(...) returns a vector of handles to patch graphics objects. bar creates
one patch graphics object per column in Y.barh(...), and h = barh(...) create horizontal bars. Y determines the bar
length. The vector x is a monotonic vector defining the y-axis intervals for
horizontal bars.ExamplesPlot a bell shaped curve:
x = -2.9: 0.2: 2.9;
bar(x, exp(-x. *x))
col ormap hsv

Create four subplots showing the effects of various bar arguments:

```
Y = round(rand(5, 3) *10);
subplot(2, 2, 1)
bar(Y, 'group')
title 'Group'
```

bar, barh

subplot(2, 2, 2)
bar(Y, 'stack')
title 'Stack'

subpl ot (2, 2, 3)
<pre>barh(Y, 'stack')</pre>
title 'Stack'

subplot(2, 2, 4)
bar(Y, 1.5)
title 'Width = 1.5'

bar, barh

See Alsobar3, Col orSpec, patch, stairs, hist"Area, Bar, and Pie Plots" for related functionsBar and Area Graphs for more examples

Purpose	Three-dimensional bar chart
Syntax	bar3(Y) $bar3(x, Y)$ $bar3(, width)$ $bar3(, 'style')$ $bar3(, LineSpec)$ $h = bar3()$ $bar3h()$
Description	bar3 and bar3h draw three-dimensional vertical and horizontal bar charts.
	bar3(Y) draws a three-dimensional bar chart, where each element in Y corresponds to one bar. When Y is a vector, the x-axis scale ranges from 1 to $l ength(Y)$. When Y is a matrix, the x-axis scale ranges from 1 to $si ze(Y, 2)$, which is the number of columns, and the elements in each row are grouped together.
	bar3(x, Y) draws a bar chart of the elements in Y at the locations specified in x, where x is a monotonic vector defining the <i>y</i> -axis intervals for vertical bars. If Y is a matrix, bar3 clusters elements from the same row in Y at locations corresponding to an element in x. Values of elements in each row are grouped together.
	$bar3(\ldots, wi dth)$ sets the width of the bars and controls the separation of bars within a group. The default wi dth is 0. 8, so if you do not specify x, bars within a group have a slight separation. If wi dth is 1, the bars within a group touch one another.
	$bar3(\dots, 'style')$ specifies the style of the bars. ' $style'$ is 'detached', 'grouped', or 'stacked'. 'detached' is the default mode of display.
	 'detached' displays the elements of each row in Y as separate blocks behind one another in the <i>x</i> direction. 'grouped' displays <i>n</i> groups of <i>m</i> vertical bars, where <i>n</i> is the number of rows and <i>m</i> is the number of columns in Y. The group contains one bar per column in Y.

	 'stacked' displays one bar for each row in Y. The bar height is the sum of the elements in the row. Each bar is multi-colored, with colors corresponding to distinct elements and showing the relative contribution each row element makes to the total sum. bar3(, Li neSpec) displays all bars using the color specified by Li neSpec. h = bar3() returns a vector of handles to patch graphics objects. bar3 creates one patch object per column in Y. bar3h() and h = bar3h() create horizontal bars. Y determines the bar length. The vector x is a monotonic vector defining the <i>y</i>-axis intervals for horizontal bars.
Examples	This example creates six subplots showing the effects of different arguments for bar3. The data Y is a seven-by-three matrix generated using the cool colormap: Y = cool (7);
	<pre>subplot(3, 2, 1) bar3(Y, 'detached') title('Detached')</pre>
	<pre>subplot(3, 2, 2) bar3(Y, 0. 25, 'detached') title('Width = 0. 25')</pre>
	<pre>subplot(3, 2, 3) bar3(Y, 'grouped') title('Grouped')</pre>
	<pre>subplot(3, 2, 4) bar3(Y, 0. 5, 'grouped') title('Width = 0. 5')</pre>

subplot(3, 2, 5)
bar3(Y,'stacked')
title('Stacked')

subplot(3, 2, 6)
bar3(Y, 0.3, 'stacked')
title('Width = 0.3')

colormap([1 0 0;0 1 0;0 0 1])

Bar and Area Graphs for more examples

Purpose	Base to decimal number conversion
Syntax	d = base2dec(' <i>strn</i> ', base)
Description	d = base2dec(' $strn$ ', base) converts the string number $strn$ of the specified base into its decimal (base 10) equivalent. base must be an integer between 2 and 36. If ' $strn$ ' is a character array, each row is interpreted as a string in the specified base.
Examples	The expression <code>base2dec('212', 3)</code> converts 212_3 to decimal, returning 23.
See Also	dec2base

beep

Purpose	Produce a beep sound
Syntax	beep on beep off s = beep
Description	<pre>beep produces you computer's default beep sound beep on turns the beep on beep off turn the beep off s = beep returns the current beep mode (on or off)</pre>

Purpose Bessel function of the third kind (Hankel function)

Syntax H = bessel h(nu, K, Z) H = bessel h(nu, Z) H = bessel h(nu, K, Z, 1) [H, ierr] = bessel h(...)

Definitions

The differential equation

$$z^{2}\frac{d^{2}y}{dz^{2}} + z\frac{dy}{dz} + (z^{2} - v^{2})y = 0$$

where v is a nonnegative constant, is called *Bessel's equation*, and its solutions are known as *Bessel functions*. $J_v(z)$ and $J_{-v}(z)$ form a fundamental set of solutions of Bessel's equation for noninteger v. $Y_v(z)$ is a second solution of Bessel's equation – linearly independent of $J_v(z)$ – defined by

$$Y_{\nu}(z) = \frac{J_{\nu}(z)\cos(\nu\pi) - J_{-\nu}(z)}{\sin(\nu\pi)}$$

The relationship between the Hankel and Bessel functions is

$$H_{v}^{(1)}(z) = J_{v}(z) + i Y_{v}(z)$$

$$H_{v}^{(2)}(z) = J_{v}(z) - i Y_{v}(z)$$

where $J_{v}(z)$ is besselj, and $Y_{v}(z)$ is bessely.

Description H = bessel h(nu, K, Z) computes the Hankel function $H_v^{(K)}(z)$, where K = 1 or 2, for each element of the complex array Z. If nu and Z are arrays of the same size, the result is also that size. If either input is a scalar, bessel h expands it to the other input's size. If one input is a row vector and the other is a column vector, the result is a two-dimensional table of function values.

H = bessel h(nu, Z) uses K = 1.

H = bessel h(nu, K, Z, 1) scales $H_v^{(K)}(z)$ by exp(-i*Z) if K = 1, and by exp(+i*Z) if K = 2.

[H, i err] = bessel h(...) also returns completion flags in an array the same size as H.

ierr	Description
0	bessel h successfully computed the Hankel function for this element.
1	Illegal arguments.
2	Overflow. Returns Inf.
3	Some loss of accuracy in argument reduction.
4	Unacceptable loss of accuracy, Z or nu too large.
5	No convergence. Returns NaN.

Examples This example generates the contour plots of the modulus and phase of the Hankel function $H_0^{(1)}(z)$ shown on page 359 of [1] Abramowitz and Stegun, Handbook of Mathematical Functions.

It first generates the modulus contour plot

$$\begin{split} & [X, Y] = meshgrid(-4: 0. \ 025: 2, -1. \ 5: 0. \ 025: 1. \ 5); \\ & H = besselh(0, 1, X+i *Y); \\ & contour(X, Y, abs(H), 0: 0. \ 2: 3. \ 2), \ hold \ on \end{split}$$

then adds the contour plot of the phase of the same function. contour(X, Y, (180/pi)*angle(H), -180: 10: 180); hold off

See Also

bessel j, bessel y, bessel i, bessel k

References [1] Abramowitz, M. and I. A. Stegun, *Handbook of Mathematical Functions*, National Bureau of Standards, Applied Math. Series #55, Dover Publications, 1965. Purpose Modified Bessel function of the first kind

Syntax I = bessel i (nu, Z) I = bessel i (nu, Z, 1)

Definitions

The differential equation

[I, ierr] = besseli(...)

$$z^{2}\frac{d^{2}y}{dz^{2}} + z\frac{dy}{dz} - (z^{2} + v^{2})y = 0$$

where v is a real constant, is called the *modified Bessel's equation*, and its solutions are known as *modified Bessel functions*.

 $I_{v}(z)$ and $I_{-v}(z)$ form a fundamental set of solutions of the modified Bessel's equation for noninteger v. $I_{v}(z)$ is defined by

$$I_{\nu}(z) = \left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{\left(\frac{z^2}{4}\right)^k}{k! \Gamma(\nu+k+1)}$$

where $\Gamma(a)$ is the gamma function.

 $K_{\rm v}(z)$ is a second solution, independent of $I_{\rm v}(z)$. It can be computed using bessel k.

Description I = bessel i (nu, Z) computes the modified Bessel function of the first kind, $I_{v}(z)$, for each element of the array Z. The order nu need not be an integer, but must be real. The argument Z can be complex. The result is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If either input is a scalar, it is expanded to the other input's size. If one input is a row vector and the other is a column vector, the result is a two-dimensional table of function values.

I = bessel i (nu, Z, 1) computes bessel i (nu, Z) . *exp(-abs(real(Z))).

[I, i err] = bessel i (...) also returns completion flags in an array the same size as I.

ierr	Description
0	bessel i succesfully computed the modified Bessel function for this element.
1	Illegal arguments.
2	Overflow. Returns Inf.
3	Some loss of accuracy in argument reduction.
4	Unacceptable loss of accuracy, Z or nu too large.
5	No convergence. Returns NaN.

Examples Example 1.

format long z = (0:0.2:1)';

besseli(1, z)

```
ans =
```

0 0. 10050083402813 0. 20402675573357 0. 31370402560492 0. 43286480262064 0. 56515910399249

Example 2. bessel i (3: 9, (0: . 2, 10) ', 1) generates the entire table on page 423 of [1] Abramowitz and Stegun, *Handbook of Mathematical Functions*.

Algorithm The bessel i functions uses a Fortran MEX-file to call a library developed by D. E. Amos [3] [4].

See Also airy, bessel h, bessel j, bessel k, bessel y

References [1] Abramowitz, M. and I.A. Stegun, *Handbook of Mathematical Functions*, National Bureau of Standards, Applied Math. Series #55, Dover Publications, 1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, *Functions of a Complex Variable: Theory and Technique*, Hod Books, 1983, section 5.5.

[3] Amos, D. E., "A Subroutine Package for Bessel Functions of a Complex Argument and Nonnegative Order," *Sandia National Laboratory Report*, SAND85-1018, May, 1985.

[4] Amos, D. E., "A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order," *Trans. Math. Software*, 1986.

besselk

Purpose Modified Bessel function of the second kind

Syntax

K = bessel k(nu, Z)
K = bessel k(nu, Z, 1)
[K, ierr] = bessel k(...)

Definitions

The differential equation

$$z^{2}\frac{d^{2}y}{dz^{2}} + z\frac{dy}{dz} - (z^{2} + v^{2})y = 0$$

where v is a real constant, is called the *modified Bessel's equation*, and its solutions are known as *modified Bessel functions*.

A solution $K_{v}(z)$ of the second kind can be expressed as

$$K_{v}(z) = \left(\frac{\pi}{2}\right) \frac{I_{-v}(z) - I_{v}(z)}{\sin(v\pi)}$$

where $I_v(z)$ and $I_{-v}(z)$ form a fundamental set of solutions of the modified Bessel's equation for noninteger v

$$I_{\nu}(z) = \left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{\left(\frac{z^2}{4}\right)^k}{k! \Gamma(\nu+k+1)}$$

and $\Gamma(a)$ is the gamma function. $K_{\nu}(z)$ is independent of $I_{\nu}(z)$.

 $I_{v}(z)$ can be computed using bessel i.

Description K = bessel k(nu, Z) computes the modified Bessel function of the second kind, $K_v(z)$, for each element of the array Z. The order nu need not be an integer, but must be real. The argument Z can be complex. The result is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If either input is a scalar, it is expanded to the other input's size. If one input is a row vector and the other is a column vector, the result is a two-dimensional table of function values. K = bessel k(nu, Z, 1) computes $bessel k(nu, Z) \cdot exp(Z)$.

[K, i err] = bessel k(...) also returns completion flags in an array the same size as K.

ierr	Description
0	bessel k succesfully computed the modified Bessel function for this element.
1	Illegal arguments.
2	Overflow. Returns I nf.
3	Some loss of accuracy in argument reduction.
4	Unacceptable loss of accuracy, Z or nu too large.
5	No convergence. Returns NaN.

Examples Example 1.

format long z = (0:0.2:1)';

bessel k(1, z)

ans =

Inf 4. 77597254322047 2. 18435442473269 1. 30283493976350 0. 86178163447218 0. 60190723019723

Example 2. bessel k(3: 9, (0: . 2: 10) ', 1) generates part of the table on page 424 of [1] Abramowitz and Stegun, *Handbook of Mathematical Functions*.

Algorithm The bessel k function uses a Fortran MEX-file to call a library developed by D. E. Amos [3] [4].

besselk

See Also	ai ry, bessel h, bessel i , bessel j , bessel y
References	[1] Abramowitz, M. and I.A. Stegun, <i>Handbook of Mathematical Functions</i> , National Bureau of Standards, Applied Math. Series #55, Dover Publications, 1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.
	[2] Carrier, Krook, and Pearson, <i>Functions of a Complex Variable: Theory and Technique</i> , Hod Books, 1983, section 5.5.
	[3] Amos, D. E., "A Subroutine Package for Bessel Functions of a Complex Argument and Nonnegative Order," <i>Sandia National Laboratory Report</i> , SAND85-1018, May, 1985.
	[4] Amos, D. E., "A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order," <i>Trans. Math. Software</i> , 1986.

Purpose Bessel function of the first kind

Syntax J = besselj(nu, Z) J = besselj(nu, Z, 1)

[J, i err] = bessel j (nu, Z)

Definition

The differential equation

$$z^{2}\frac{d^{2}y}{dz^{2}} + z\frac{dy}{dz} + (z^{2} - v^{2})y = 0$$

where v is a real constant, is called *Bessel's equation*, and its solutions are known as *Bessel functions*.

 $J_{\rm v}(z)$ and $J_{-\rm v}(z)$ form a fundamental set of solutions of Bessel's equation for noninteger v . $J_{\rm v}(z)$ is defined by

$$J_{\nu}(z) = \left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{\left(-\frac{z^2}{4}\right)^k}{k! \Gamma(\nu+k+1)}$$

where $\Gamma(a)$ is the gamma function.

 $Y_{\rm v}(z)$ is a second solution of Bessel's equation that is linearly independent of $J_{\rm v}(z)$. It can be computed using bessel y.

Description J = bessel j (nu, Z) computes the Bessel function of the first kind, $J_{v}(Z)$, for each element of the array Z. The order nu need not be an integer, but must be real. The argument Z can be complex. The result is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If either input is a scalar, it is expanded to the other input's size. If one input is a row vector and the other is a column vector, the result is a two-dimensional table of function values.

J = besselj(nu, Z, 1) computes besselj(nu, Z). *exp(-abs(imag(Z))).

[J, i err] = bessel j (nu, Z) also returns completion flags in an array the same size as J.

ierr	Description
0	besselj succesfully computed the Bessel function for this element.
1	Illegal arguments.
2	Overflow. Returns Inf.
3	Some loss of accuracy in argument reduction.
4	Unacceptable loss of accuracy, Z or nu too large.
5	No convergence. Returns NaN.

Remarks The Bessel functions are related to the Hankel functions, also called Bessel functions of the third kind,

$$H_{v}^{(1)}(z) = J_{v}(z) + i Y_{v}(z)$$
$$H_{v}^{(2)}(z) = J_{v}(z) - i Y_{v}(z)$$

where $H_v^{(K)}(z)$ is bessel h, $J_v(z)$ is bessel j, and $Y_v(z)$ is bessel y. The Hankel functions also form a fundamental set of solutions to Bessel's equation (see bessel h).

Examples Example 1.

format long z = (0:0.2:1)';

besselj(1, z)

```
ans =
```

0 0.09950083263924 0.19602657795532 0.28670098806392 0.36884204609417 0.44005058574493

	Example 2. bessel j (3: 9, (0: . 2: 10) ') generates the entire table on page 398 of [1] Abramowitz and Stegun, <i>Handbook of Mathematical Functions.</i>
Algorithm	The besselj function uses a Fortran MEX-file to call a library developed by D. E. Amos [3] [4].
See Also	bessel h, bessel i , bessel k, bessel y
References	[1] Abramowitz, M. and I.A. Stegun, <i>Handbook of Mathematical Functions</i> , National Bureau of Standards, Applied Math. Series #55, Dover Publications, 1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.
	[2] Carrier, Krook, and Pearson, <i>Functions of a Complex Variable: Theory and Technique</i> , Hod Books, 1983, section 5.5.
	[3] Amos, D. E., "A Subroutine Package for Bessel Functions of a Complex Argument and Nonnegative Order," <i>Sandia National Laboratory Report,</i> SAND85-1018, May, 1985.
	[4] Amos, D. E., "A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order," <i>Trans. Math. Software</i> , 1986.

bessely

Purpose Bessel functions of the second kind

Syntax

Y = bessely(nu, Z) Y = bessely(nu, Z, 1) [Y, i err] = bessely(nu, Z)

Definition

The differential equation

$$z^{2}\frac{d^{2}y}{dz^{2}} + z\frac{dy}{dz} + (z^{2} - v^{2})y = 0$$

where v is a real constant, is called *Bessel's equation*, and its solutions are known as *Bessel functions*.

A solution $Y_{\nu}(z)$ of the second kind can be expressed as

$$Y_{v}(z) = \frac{J_{v}(z)\cos(v\pi) - J_{-v}(z)}{\sin(v\pi)}$$

where $J_{\rm v}(z)$ and $J_{-\rm v}(z)$ form a fundamental set of solutions of Bessel's equation for noninteger $\rm v$

$$J_{\nu}(z) = \left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{\left(-\frac{z^2}{4}\right)^k}{k! \ \Gamma(\nu+k+1)}$$

and $\Gamma(a)$ is the gamma function. $Y_v(z)$ is linearly independent of $J_v(z)$ $J_v(z)$ can be computed using besselj.

Description Y = bessel y(nu, Z) computes Bessel functions of the second kind, $Y_v(z)$, for each element of the array Z. The order nu need not be an integer, but must be real. The argument Z can be complex. The result is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If either input is a scalar, it is expanded to the other input's size. If one input is a row vector and the other is a column vector, the result is a two-dimensional table of function values.

Y = bessel y(nu, Z, 1) computes bessel y(nu, Z). *exp(-abs(imag(Z))).

[Y, i err] = bessel y(nu, Z) also returns completion flags in an array the same size as Y.

ierr	Description
0	bessel y succesfully computed the Bessel function for this element.
1	Illegal arguments.
2	Overflow. Returns I nf.
3	Some loss of accuracy in argument reduction.
4	Unacceptable loss of accuracy, Z or nu too large.
5	No convergence. Returns NaN.

Remarks The Bessel functions are related to the Hankel functions, also called Bessel functions of the third kind,

$$H_{v}^{(1)}(z) = J_{v}(z) + i Y_{v}(z)$$
$$H_{v}^{(2)}(z) = J_{v}(z) - i Y_{v}(z)$$

where $H_v^{(K)}(z)$ is bessel h, $J_v(z)$ is bessel j, and $Y_v(z)$ is bessel y. The Hankel functions also form a fundamental set of solutions to Bessel's equation (see bessel h).

Examples Example 1.

format long z = (0:0.2:1)';

```
bessel y(1, z)
```

ans =

- Inf - 3. 32382498811185 - 1. 78087204427005

	- 1. 26039134717739 - 0. 97814417668336 - 0. 78121282130029
	Example 2. bessel $y(3: 9, (0: . 2: 10)')$ generates the entire table on page 399 of [1] Abramowitz and Stegun, <i>Handbook of Mathematical Functions.</i>
Algorithm	The bessely function uses a Fortran MEX-file to call a library developed by D. E Amos [3] [4].
See Also	bessel h, bessel i , bessel j , bessel k
References	[1] Abramowitz, M. and I.A. Stegun, <i>Handbook of Mathematical Functions</i> , National Bureau of Standards, Applied Math. Series #55, Dover Publications, 1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.
	[2] Carrier, Krook, and Pearson, <i>Functions of a Complex Variable: Theory and Technique</i> , Hod Books, 1983, section 5.5.
	[3] Amos, D. E., "A Subroutine Package for Bessel Functions of a Complex Argument and Nonnegative Order," <i>Sandia National Laboratory Report</i> , SAND85-1018, May, 1985.
	[4] Amos, D. E., "A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order," <i>Trans. Math. Software</i> , 1986.

Purpose	Beta function
Syntax	B = beta(Z, W)
Definition	The beta function is
	$B(z, w) = \int_0^1 t^{z-1} (1-t)^{w-1} dt = \frac{\Gamma(z)\Gamma(w)}{\Gamma(z+w)}$
	where $\Gamma(z)$ is the gamma function.
Description	B = beta(Z, W) computes the beta function for corresponding elements of arrays Z and W. The arrays must be real and nonnegative. They must be the same size, or either can be scalar.
Examples	In this example, which uses integer arguments,
	beta(n, 3) = (n-1)!*2!/(n+2)! = 2/(n*(n+1)*(n+2))
	is the ratio of fairly small integers, and the rational format is able to recover the exact result.
	format rat beta((0:10)',3)
	ans =
	1/0 1/3 1/12 1/30 1/60 1/105 1/168 1/252 1/360 1/495 1/660

Algorithm beta(z, w) = exp(gammal n(z) + gammal n(w) - gammal n(z+w))

See Also betainc, betaln, gammaln

Purpose	Incomplete beta function
Syntax	I = betainc(X, Z, W)
Definition	The incomplete beta function is
	$I_{x}(z, w) = \frac{1}{B(z, w)} \int_{0}^{x} t^{z-1} (1-t)^{w-1} dt$
	where $B(z, w)$, the beta function, is defined as
	$B(z, w) = \int_0^1 t^{z-1} (1-t)^{w-1} dt = \frac{\Gamma(z)\Gamma(w)}{\Gamma(z+w)}$
	and $\Gamma(z)$ is the gamma function.
Description	I = betainc(X, Z, W) computes the incomplete beta function for corresponding elements of the arrays X, Z and W. The elements of X must be in the closed interval [0,1]. The arrays Z and W must be nonnegative and real. All arrays must be the same size, or any of them can be scalar.
Examples	format long betainc(.5, (0:10)', 3)
	ans = 1.000000000000 0.875000000000 0.6875000000000 0.50000000000 0.343750000000 0.2265625000000 0.1445312500000 0.08984375000000 0.0546875000000 0.03271484375000 0.01928710937500
Soo Also	hoto hotoln

See Also beta, betal n

betaln

Purpose	Logarithm of beta function
Syntax	L = betaln(Z, W)
Description	L = betaln(Z, W) computes the natural logarithm of the beta function log(beta(Z, W)), for corresponding elements of arrays Z and W, without computing beta(Z, W). Since the beta function can range over very large or very small values, its logarithm is sometimes more useful.
	Z and W must be real and nonnegative. They must be the same size, or either can be scalar.
Examples	x = 510 betaln(x, x)
	ans = - 708. 8616
	- 708. 8616 is slightly less than $l og(real min)$. Computing $beta(x, x)$ directly would underflow (or be denormal).
Algorithm	betaln(z, w) = gammaln(z) + gammaln(w) - gammaln(z+w)
See Also	beta, betai nc, gammal n

Purpose	BiConjugate Gradients method
Syntax	<pre>x = bicg(A, b) bicg(A, b, tol) bicg(A, b, tol, maxit) bicg(A, b, tol, maxit, M) bicg(A, b, tol, maxit, M1, M2) bicg(A, b, tol, maxit, M1, M2, x0) bicg(afun, b, tol, maxit, mfun1, mfun2, x0, p1, p2,) [x, flag] = bicg(A, b,) [x, flag, relres] = bicg(A, b,) [x, flag, relres, iter] = bicg(A, b,) [x, flag, relres, iter, resvec] = bicg(A, b,)</pre>
Description	$x = bi cg(A, b)$ attempts to solve the system of linear equations $A^*x = b$ for x. The n-by-n coefficient matrix A must be square and should be large and sparse. The column vector b must have length n. A can be a function af un such that af un(x) returns A^*x and af un(x, 'transp') returns $A' *x$. If bi cg converges, it displays a message to that effect. If bi cg fails to converge after the maximum number of iterations or halts for any reason, it prints a warning message that includes the relative residual norm(b- A^*x) /norm(b) and the iteration number at which the method stopped or failed. bi cg(A, b, tol) specifies the tolerance of the method. If tol is [], then bi cg
	uses the default, 1e- 6. bi cg(A, b, tol, maxit) specifies the maximum number of iterations. If maxit is [], then bi cg uses the default, min(n, 20). bi cg(A, b, tol, maxit, M) and bi cg(A, b, tol, maxit, M1, M2) use the preconditioner M or M = M1*M2 and effectively solve the system i nv(M) *A*x = i nv(M) *b for x. If M is [] then bi cg applies no preconditioner. Mcan be a function mfun such that mfun(x) returns M\x and mfun(x, 'transp') returns M \x. bi cg(A, b, tol, maxit, M1, M2, x0) specifies the initial guess. If x0 is [], then bi cg uses the default, an all-zero vector.

```
bi cg(afun, b, tol, maxi t, m1fun, m2fun, x0, p1, p2, ...) passes parameters p1, p2, ... to functions afun(x, p1, p2, ...) and
```

 $afun(x,\,p1,\,p2,\,\ldots\,,\,'\,transp'\,)$, and similarly to the preconditioner functions m1fun and m2fun.

[x, flag] = bicg(A, b, ...) also returns a convergence flag.

Flag	Convergence
0	$\operatorname{bi}\operatorname{cg}$ converged to the desired tolerance tol within maxit iterations.
1	$\operatorname{bi}\operatorname{cg}$ iterated maxit times but did not converge.
2	Preconditioner M was ill-conditioned.
3	$\operatorname{bi}\operatorname{cg}$ stagnated. (Two consecutive iterates were the same.)
4	One of the scalar quantities calculated during bi cg became too small or too large to continue computing.

Whenever fl ag is not 0, the solution x returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the fl ag output is specified.

[x, flag, relres] = bicg(A, b, ...) also returns the relative residual norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x, flag, relres, iter] = bicg(A, b, ...) also returns the iteration number at which x was computed, where 0 <= iter <= maxit.

[x, flag, relres, iter, resvec] = bicg(A, b, ...) also returns a vector of the residual norms at each iteration including norm(b-A*x0).

Examples Example 1.

```
n = 100;
on = ones(n, 1);
A = spdiags([-2*on 4*on - on], -1:1, n, n);
b = sum(A, 2);
tol = 1e-8;
```

```
maxit = 15;
M1 = spdiags([on/(-2) on], -1:0, n, n);
M2 = spdiags([4*on -on], 0:1, n, n);
```

```
x = bicg(A, b, tol, maxit, M1, M2, []);
```

displays this message

```
bicg converged at iteration 9 to a solution with relative residual 5,\,3e\text{-}\,009
```

Alternatively, use this matrix-vector product function

```
function y = afun(x, n, transp_flag)
if (nargin > 2) & strcmp(transp_flag, 'transp')
    y = 4 * x;
    y(1:n-1) = y(1:n-1) - 2 * x(2:n);
    y(2:n) = y(2:n) - x(1:n-1);
el se
    y = 4 * x;
    y(2:n) = y(2:n) - 2 * x(1:n-1);
    y(1:n-1) = y(1:n-1) - x(2:n);
end
```

as input to bi cg.

x1 = bicg(@afun, b, tol, maxit, M1, M2, [], n);

Example 2. This examples demonstrates the use of a preconditioner. Start with A = west0479, a real 479-by-479 sparse matrix, and define b so that the true solution is a vector of all ones.

load west0479; A = west0479; b = sum(A, 2);

You can accurately solve $A^*x = b$ using backslash since A is not so large.

```
x = A \setminus b;
norm(b-A*x) / norm(b)
ans =
8.3154e-017
```

Now try to solve $A^*x = b$ with bicg.

The value of fl ag indicates that bi cg iterated the default 20 times without converging. The value of i ter shows that the method behaved so badly that the initial all-zero guess was better than all the subsequent iterates. The value of rel res supports this: rel res = norm(b-A*x) /norm(b) = norm(b) /norm(b) = 1. You can confirm that the unpreconditioned method oscillates rather wildly by plotting the relative residuals at each iteration.

```
semilogy(0:20, resvec/norm(b), '-o')
xlabel('Iteration Number')
ylabel('Relative Residual')
```


Now, try an incomplete LU factorization with a drop tolerance of 1e-5 for the preconditioner.

The zero on the main diagonal of the upper triangular U1 indicates that U1 is singular. If you try to use it as a preconditioner,

[x, flag, relres, iter, resvec] = bicg(A, b, 1e-6, 20, L1, U1)

```
flag =
2
relres =
1
iter =
0
resvec =
7.0557e+005
```

the method fails in the very first iteration when it tries to solve a system of equations involving the singular U1 using backslash. bi cg is forced to return the initial estimate since no other iterates were produced.

Try again with a slightly less sparse preconditioner.

[L2, U2] = luinc(A, 1e-6);

```
nnz(L2), nnz(U2)
ans =
6231
ans =
4559
```

This time U2 is nonsingular and may be an appropriate preconditioner.

and bi cg converges to within the desired tolerance at iteration number 8. Decreasing the value of the drop tolerance increases the fill-in of the incomplete factors but also increases the accuracy of the approximation to the original matrix. Thus, the preconditioned system becomes closer to i nv(U) *i nv(L) *L*U*x = i nv(U) *i nv(L) *b, where L and U are the true LU factors, and closer to being solved within a single iteration.

The next graph shows the progress of bi cg using six different incomplete LU factors as preconditioners. Each line in the graph is labeled with the drop tolerance of the preconditioner used in bi cg.

See Alsobi cgstab, cgs, gmres, l sqr, l ui nc, mi nres, pcg, qmr, symml q@ (function handle), \ (backslash)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., *Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods*, SIAM, Philadelphia, 1994.

bicgstab

Purpose	BiConjugate Gradients Stabilized method
Syntax	<pre>x = bicgstab(A, b) bicgstab(A, b, tol) bicgstab(A, b, tol, maxit) bicgstab(A, b, tol, maxit, M) bicgstab(A, b, tol, maxit, M1, M2) bicgstab(A, b, tol, maxit, M1, M2, x0) bicgstab(afun, b, tol, maxit, m1fun, m2fun, x0, p1, p2,) [x, flag] = bicgstab(A, b,) [x, flag, relres] = bicgstab(A, b,) [x, flag, relres, iter] = bicgstab(A, b,) [x, flag, relres, iter, resvec] = bicgstab(A, b,)</pre>
Description	$x = bi cgstab(A, b)$ attempts to solve the system of linear equations $A^*x=b$ for x. The n-by-n coefficient matrix A must be square and should be large and sparse. The column vector b must have length n. A can be a function af un such that afun(x) returns A^*x . If bi cgstab converges, a message to that effect is displayed. If bi cgstab fails to converge after the maximum number of iterations or halts for any reason, a warning message is printed displaying the relative residual norm(b-A*x)/norm(b) and the iteration number at which the method stopped or failed.
	<pre>bi cgstab(A, b, tol) specifies the tolerance of the method. If tol is [], then bi cgstab uses the default, 1e- 6. bi cgstab(A, b, tol, maxit) specifies the maximum number of iterations. If maxit is [], then bi cgstab uses the default, min(n, 20). bi cgstab(A, b, tol, maxit, M) and bi cgstab(A, b, tol, maxit, M1, M2) use preconditioner Mor M = M1*M2 and effectively solve the system inv(M) *A*x = inv(M) *b for x. If Mis [] then bi cgstab applies no</pre>
	preconditioner. M can be a function that returns $M \times A$ bi cgstab(A, b, tol, maxit, M1, M2, x0) specifies the initial guess. If x0 is [], then bi cgstab uses the default, an all zero vector.

bi cgstab(afun, b, tol, maxi t, mlfun, m2fun, x0, p1, p2, ...) passes parameters p1, p2, ... to functions afun(x, p1, p2, ...), mlfun(x, p1, p2, ...), and m2fun(x, p1, p2, ...).

[x, flag] = bicgstab(A, b, ...) also returns a convergence flag.

Flag	Convergence
0	bicgstab converged to the desired tolerance tol within maxit iterations.
1	bicgstab iterated maxit times but did not converge.
2	Preconditioner M was ill-conditioned.
3	bi cgstab stagnated. (Two consecutive iterates were the same.)
4	One of the scalar quantities calculated during bi cgstab became too small or too large to continue computing.

Whenever fl ag is not 0, the solution x returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the fl ag output is specified.

[x, flag, relres] = bicgstab(A, b, ...) also returns the relative residual norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x, fl ag, rel res, iter] = bicgstab(A, b, ...) also returns the iteration number at which x was computed, where 0 <= iter <= maxit. iter can be an integer + 0.5, indicating convergence half way through an iteration.

[x, flag, relres, iter, resvec] = bicgstab(A, b, ...) also returns a vector of the residual norms at each half iteration, including norm(b-A*x0).

Example Example 1. This example first solves Ax = b by providing A and the preconditioner M1 directly as arguments. It then solves the same system using functions that return A and the preconditioner.

A = gallery('wilk', 21);b = sum(A, 2); tol = 1e-12; maxit = 15; M1 = diag([10:-1:1 1 1:10]);

```
x = bicgstab(A, b, tol, maxit, M1, [], []);
```

displays this message

bicgstab converged at iteration 12.5 to a solution with relative residual 2.9e-014 $\,$

Alternatively, use this matrix-vector product function

function y = afun(x, n) y = [0; x(1:n-1)] + [((n-1)/2:-1:0)'; (1:(n-1)/2)'] .*x + [x(2:n); 0];

and this preconditioner backsolve function

function y = mfun(r, n) y = r . / [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

as inputs to bi cgstab

x1 = bicgstab(@afun, b, tol, maxit, @mfun, [], [], 21);

Note that both afun and mfun must accept bi cgstab's extra input n=21.

Example 2. This examples demonstrates the use of a preconditioner. Start with A = west0479, a real 479-by-479 sparse matrix, and define b so that the true solution is a vector of all ones.

load west0479; A = west0479; b = sum(A, 2); [x, flag] = bicgstab(A, b)

fl ag is 1 because bi cgst ab does not converge to the default tolerance 1e- 6 within the default 20 iterations.

```
[L1, U1] = luinc(A, 1e-5);
[x1, flag1] = bicgstab(A, b, 1e-6, 20, L1, U1)
```

fl ag1 is 2 because the upper triangular U1 has a zero on its diagonal. This causes bi cgst ab to fail in the first iteration when it tries to solve a system such as U1*y = r using backslash.

```
[L2, U2] = luinc(A, 1e-6);
[x2, flag2, relres2, iter2, resvec2] = bicgstab(A, b, 1e-15, 10, L2, U2)
```

fl ag2 is 0 because bi cgst ab converges to the tolerance of 3. 1757e-016 (the value of rel res2) at the sixth iteration (the value of i ter2) when preconditioned by the incomplete LU factorization with a drop tolerance of 1e-6. resvec2(1) = norm(b) and resvec2(13) = norm(b-A*x2). You can follow the progress of bi cgst ab by plotting the relative residuals at the halfway point and end of each iteration starting from the initial estimate (iterate number 0).

```
semilogy(0:0.5:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')
```


bicgstab

See Also	bi cg, cgs, gmres, l sqr, l ui nc, mi nres, pcg, qmr, symml q
	@ (function handle), \setminus (backslash)
References	[1] Barrett, R., M. Berry, T. F. Chan, et al., <i>Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods</i> , SIAM, Philadelphia, 1994.
	[2] van der Vorst, H. A., "BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems", <i>SIAM J. Sci. Stat.</i> <i>Comput.</i> , March 1992, Vol. 13, No. 2, pp. 631-644.

Purpose	Binary to decimal number conversion
Syntax	bin2dec(<i>binarystr</i>)
Description	bi $n2dec(bi narystr)$ interprets the binary string $bi narystr$ and returns the equivalent decimal number.
Examples	bin2dec('010111') returns 23.
See Also	dec2bi n

bitand

Purpose	Bit-wise AND
Syntax	C = bitand(A, B)
Description	C = bi tand(A, B) returns the bit-wise AND of two nonnegative integer arguments A and B. To ensure the operands are integers, use the ceil, fix, floor, and round functions.
Examples	The five-bit binary representations of the integers 13 and 27 are 01101 and 11011, respectively. Performing a bit-wise AND on these numbers yields 01001, or 9.
	C = bitand(13, 27)
	C =
	9
See Also	bitcmp, bitget, bitmax, bitor, bitset, bitshift, bitxor

bitcmp

Purpose	Complement bits
Syntax	C = bitcmp(A, n)
Description	C = bitcmp(A, n) returns the bit-wise complement of A as an n-bit floating-point integer (flint).
Example	With eight-bit arithmetic, the ones' complement of 01100011 (99, decimal) is 10011100 (156, decimal).
	C = bitcmp(99, 8)
	C =
	156
See Also	bitand, bitget, bitmax, bitor, bitset, bitshift, bitxor

bitget

Purpose	Get bit
Syntax	C = bitget(A, bit)
Description	C = bitget(A, bit) returns the value of the bit at position bit in A. Operand A must be a nonnegative integer, and bit must be a number between 1 and the number of bits in the floating-point integer (flint) representation of A (52 for IEEE flints). To ensure the operand is an integer, use the ceil, fix, floor, and round functions.
Example	The dec2bin function converts decimal numbers to binary. However, you can also use the bitget function to show the binary representation of a decimal number. Just test successive bits from most to least significant:
	di sp(dec2bin(13)) 1101 C = bitget(13, 4: -1: 1) C =
	C = 1 1 0 1
See Also	bitand, bitcmp, bitmax, bitor, bitset, bitshift, bitxor

Purpose	Maximum floating-point integer
Syntax	bitmax
Description	bi tmax returns the maximum unsigned floating-point integer for your computer. It is the value when all bits are set, namely the value $2^{53} - 1$.
See Also	bitand, bitcmp, bitget, bitor, bitset, bitshift, bitxor

bitor

Purpose	Bit-wise OR
Syntax	C = bitor(A, B)
Description	C = bitor(A, B) returns the bit-wise OR of two nonnegative integer arguments A and B. To ensure the operands are integers, use the ceil, fix, floor, and round functions.
Examples	The five-bit binary representations of the integers 13 and 27 are 01101 and 11011, respectively. Performing a bit-wise OR on these numbers yields 11111, or 31.
	C = bitor(13, 27)
	C =
	31
See Also	bitand, bitcmp, bitget, bitmax, bitset, bitshift, bitxor

Purpose	Set bit
Syntax	C = bitset(A, bit) C = bitset(A, bit, v)
Description	C = bitset(A, bit) sets bit position bit in A to 1 (on). A must be a nonnegative integer and bit must be a number between 1 and the number of bits in the floating-point integer (flint) representation of A (52 for IEEE flints). To ensure the operand is an integer, use the ceil, fix, floor, and round functions. C = bitset(A, bit, v) sets the bit at position bit to the value v, which must be either 0 or 1.
Examples	<pre>Setting the fifth bit in the five-bit binary representation of the integer 9 (01001) yields 11001, or 25. C = bitset(9, 5) C = 25</pre>
See Also	bitand, bitcmp, bitget, bitmax, bitor, bitshift, bitxor

bitshift

Purpose	Bit-wise shift
Syntax	C = bitshift(A, k, n) C = bitshift(A, k)
Description	$ \begin{array}{ll} C &= bitshift(A,k,n) returnsthevalueofAshiftedbykbits.Ifk{>}0,thisis\\ sameasamultiplicationby2^k(leftshift).Ifk{<}0,thisisthesameasadivision\\ by2^k(rightshift).Anequivalentcomputationforthisfunctionis\\ C &=fix(A^*2^{\Lambda}k). \end{array} $
	If the shift causes C to overflow n bits, the overflowing bits are dropped. A must contain nonnegative integers between 0 and BITMAX, which you can ensure by using the ceil, fix, floor, and round functions.
	C = bitshift(A, k) uses the default value of $n = 53$.
Examples	Shifting 1100 (12, decimal) to the left two bits yields 110000 (48, decimal). C = bitshift(12, 2)
	C =
	48
See Also	bitand, bitcmp, bitget, bitmax, bitor, bitset, bitxor, fix

bitxor

Purpose	Bit-wise XOR
Syntax	C = bitxor(A, B)
Description	C = bitxor(A, B) returns the bit-wise XOR of the two arguments A and B. Both A and B must be integers. You can ensure this by using the ceil, fix, floor, and round functions.
Examples	The five-bit binary representations of the integers 13 and 27 are 01101 and 11011, respectively. Performing a bit-wise XOR on these numbers yields 10110, or 22.
	C = bitxor(13, 27)
	C = 22
See Also	bitand, bitcmp, bitget, bitmax, bitor, bitset, bitshift

blanks

Purpose	A string of blanks
Syntax	bl anks(n)
Description	bl anks(n) is a string of n blanks.
Examples	bl anks is useful with the di spl ay function. For example, di sp(['xxx' bl anks(20) 'yyy'])
	displays twenty blanks between the strings ' $\mathbf{x}\mathbf{x}\mathbf{x}'$ and ' $\mathbf{y}\mathbf{y}\mathbf{y}'$.
	di $sp(bl anks(n)')$ moves the cursor down n lines.
See Also	clc, format, home

Purpose	Construct a block diagonal matrix from input arguments		
Syntax	out = $bl kdi ag(a, b, c, d,)$		
Description	out $=$ bl kdi ag(a, b, c, d,), where a, b, c, d, are matrices, outputs a block diagonal matrix of the form		
	a 0 0 0 0 0 b 0 0 0 0 0 c 0 0 0 0 0 d 0 0 0 0 0		
	The input matrices do not have to be square, nor do they have to be of equal size.		
	Note bl kdi ag works not only for matrices, but for any MATLAB objects that support horzcat and vertcat operations.		

See Also di ag, horzcat, vertcat

box

Purpose	Display axes border
Syntax	box on box off box box(axes_handl e,)
Description	<pre>box on displays the boundary of the current axes. box off does not display the boundary of the current axes. box toggles the visible state of the current axes' boundary. box(axes_handl e,) uses the axes specified by axes_handl e instead of the current axes.</pre>
Algorithm	The box function sets the axes Box property to on or off.
See Also	axes, grid "Axes Operations" for related functions

Purpose	Terminate execution of a for loop or while loop		
Syntax	break		
Description	break terminates the execution of a for or while loop. Statements in the loop that appear after the break statement, are not executed. In nested loops, break exits only from the loop in which it occurs. Control passes to the statement that follows the end of that loop.		
Remarks	break is not defined outside of a for or while loop. Use return in this context instead.		
Examples	The example below shows a while loop that reads the contents of the file fft. m into a MATLAB character array. A break statement is used to exit the while loop when the first empty line is encountered. The resulting character array contains the M-file help for the fft program.		
	<pre>fid = fopen('fft.m','r'); s = ''; while ~feof(fid) line = fgetl(fid); if isempty(line), break, end s = strvcat(s,line); end disp(s)</pre>		
See Also	for, while, end, continue, return		

brighten

Purpose	Brighten or darken colormap			
Syntax	<pre>brighten(beta) brighten(h, beta) newmap = brighten(beta) newmap = brighten(cmap, beta)</pre>			
Description	bri ght en increases or decreases the color intensities in a colormap. The modified colormap is brighter if $0 < beta < 1$ and darker if $-1 < beta < 0$.			
	bri ghten(beta) replaces the current colormap with a brighter or darker colormap of essentially the same colors. bri ghten(beta), followed by bri ghten($-beta$), where beta < 1, restores the original map.			
	bri ghten(h, beta) brightens all objects that are children of the figure having the handle h.			
	newmap $=$ brighten(beta) returns a brighter or darker version of the currer colormap without changing the display.			
	newmap = brighten(cmap, beta) returns a brighter or darker version of the colormap cmap without changing the display.			
Examples Brighten and then darken the current colormap:				
	<pre>beta = .5; brighten(beta); beta =5; brighten(beta);</pre>			
Algorithm	The values in the colormap are raised to the power of gamma, where gamma is			
	$\gamma = \begin{cases} 1 - \beta, & \beta > 0\\ \frac{1}{1 + \beta}, & \beta \le 0 \end{cases}$			
	bri ght en has no effect on graphics objects defined with true color.			
See Also	col ormap, rgbpl ot			
	"Color Operations" for related functions			

Altering Colormaps for more information

builtin

Purpose	Execute builtin function from overloaded method		
Syntax	<pre>builtin(function, x1,, xn) [y1,,yn] = builtin(function, x1,, xn)</pre>		
Description	bui l t i n is used in methods that overload builtin functions to execute the original builtin function. If <i>funct i on</i> is a string containing the name of a builtin function, then		
	builtin($function$, x1,, xn) evaluates that function at the given arguments.		
	[y1,, yn] = builtin(function, x1,, xn) returns multiple output arguments.		
Remarks	bui ltin() is the same as feval () except that it calls the original builtin version of the function even if an overloaded one exists. (For this to work you must never overload builtin.)		
See Also	feval		

Purpose	Solve two-point boundary value problems (BVPs) for ordinary differential equations			
Syntax	<pre>sol = bvp4c(odefun, bcfun, solinit) sol = bvp4c(odefun, bcfun, solinit, options) sol = bvp4c(odefun, bcfun, solinit, options, p1, p2)</pre>			
Arguments	odefun	have the form dydx = od dydx = od dydx = od	-	
		corresponding	calar corresponding to x , and y is a column vector g to y . parameters is a vector of unknown and p1, p2, are known parameters. The output mn vector.	
	м У р	<i>bc</i> (<i>y</i> (<i>a</i>), <i>y</i> (<i>b</i>) res = bcf res = bcf res = bcf	at computes the residual in the boundary conditions)). It can have the form un(ya, yb) un(ya, yb, p1, p2,) un(ya, yb, parameters) un(ya, yb, parameters, p1, p2,)	
		y(b).parame	yb are column vectors corresponding to $y(a)$ and ters is a vector of unknown parameters, and e known parameters. The output res is a column	
	sol i ni t	A structure with fields:		
		x	Ordered nodes of the initial mesh. Boundary conditions are imposed at $a = \text{solinit.} \mathbf{x}(1)$ and $b = \text{solinit.} \mathbf{x}(\text{end})$.	
		У	Initial guess for the solution such that solinit. $y(:, i)$ is a guess for the solution at the node solinit. $x(i)$.	

Description

	parameters Optional. A vector that provides an initial guess for unknown parameters.		
	The structure can have any name, but the fields must be named y, and parameters. You can form sol i nit with the helper function bvpi nit. See bvpi nit for details.		
opti ons	Optional integration argument. A structure you create using the bypset function. See bypset for details.		
p1, p2	Optional. Known parameters that the solver passes to odefun, bcfun, and all the functions specified in options.		
sol = bvp4c(odefun, bcfun, solinit) integrates a system of ordinary			

v' = f(x, y)

on the interval [a,b] subject to general two-point boundary conditions

bc(y(a), y(b)) = 0

differential equations of the form

The bvp4c solver can also find unknown parameters p for problems of the form

y' = f(x, y, p)bc(y(a), y(b), p) = 0

where p corresponds to parameters. You provide bvp4c an initial guess for any unknown parameters in sol i nit. parameters. The bvp4c solver returns the final values of these unknown parameters in sol. parameters.

bvp4c produces a solution that is continuous on [a,b] and has a continuous first derivative there. Use the function deval and the output sol of bvp4c to evaluate the solution at specific points xi nt in the interval [a,b].

```
sxint = deval(sol, xint)
```

The structure sol returned by bvp4c has the following fields:

sol.x	Mesh selected by bvp4c
sol.y	Approximation to $y(x)$ at the mesh points of sol. x
sol.yp	Approximation to $y'(x)$ at the mesh points of sol. x

sol.parameters	Values returned by $\mathrm{bvp4c}$ for the unknown parameters, if any
sol.solver	'bvp4c'
TTL	

The structure sol can have any name, and bvp4c creates the fields x, y, yp, parameters, and solver.

sol = bvp4c(odefun, bcfun, solinit, options) solves as above with default integration properties replaced by the values in options, a structure created with the bvpset function. See bvpset for details.

sol = bvp4c(odefun, bcfun, sol i nit, options, p1, p2...) passes constant *known* parameters, p1, p2, ..., to odefun, bcfun, and all the functions the user specifies in options. Use options = [] as a placeholder if no options are set.

Examples Example 1. Boundary value problems can have multiple solutions and one purpose of the initial guess is to indicate which solution you want. The second order differential equation

 $y^{\prime\prime} + |y| = 0$

has exactly two solutions that satisfy the boundary conditions

$$y(0) = 0$$
$$y(4) = -2$$

Prior to solving this problem with bvp4c, you must write the differential equation as a system of two first order ODEs

$$y_1' = y_2$$
$$y_2' = -|y_1|$$

Here $y_1 = y$ and $y_2 = y'$. This system has the required form

y' = f(x, y)bc(y(a), y(b)) = 0

The function f and the boundary conditions bc are coded in MATLAB as functions twoode and twobc.

```
function dydx = twoode(x, y)
    dydx = [ y(2)
        -abs(y(1))];
function res = twobc(ya, yb)
    res = [ ya(1)
            yb(1) + 2];
```

Form a guess structure consisting of an initial mesh of five equally spaced points in [0,4] and a guess of constant values $y_1(x) \equiv 1$ and $y_2(x) \equiv 0$ with the command

```
solinit = bvpinit(linspace(0, 4, 5), [1 0]);
```

Now solve the problem with

sol = bvp4c(@twoode, @twobc, solinit);

Evaluate the numerical solution at 100 equally spaced points and plot y(x) with

x = linspace(0, 4); y = deval(sol, x); plot(x, y(1,:));

You can obtain the other solution of this problem with the initial guess

solinit = bvpinit(linspace(0, 4, 5), [-1 0]);

Example 2. This boundary value problem involves an unknown parameter. The task is to compute the fourth (q = 5) eigenvalue λ of Mathieu's equation

$$y'' + (\lambda - 2 q \cos 2x) y = 0$$

Because the unknown parameter λ is present, this second order differential equation is subject to *three* boundary conditions

$$y'(0) = 0$$

 $y'(\pi) = 0$
 $y(0) = 1$

It is convenient to use subfunctions to place all the functions required by bvp4c in a single M-file.

```
function mat4bvp
lambda = 15;
solinit = bvpinit(linspace(0, pi, 10), @mat4init, lambda);
sol = bvp4c(@mat4ode, @mat4bc, solinit);
```

```
fprintf('The fourth eigenvalue is approximately \%7.3f. n',...
      sol.parameters)
xint = linspace(0, pi);
Sxint = deval(sol, xint);
plot(xint, Sxint(1, :))
axis([0 pi -1 1.1])
title('Eigenfunction of Mathieu''s equation.')
xl abel ('x')
ylabel('solution y')
% ------
function dydx = mat4ode(x, y, lambda)
q = 5;
dydx = [y(2)]
       - (lambda - 2*q*cos(2*x))*y(1) ];
% -----
function res = mat4bc(ya, yb, lambda)
res = [ya(2)]
       yb(2)
      ya(1)-1 ];
% ------
function yinit = mat4init(x)
yinit = [
        \cos(4^*x)
        -4*\sin(4*x) ];
```

The differential equation (converted to a first order system) and the boundary conditions are coded as subfunctions mat4ode and mat4bc, respectively. Because unknown parameters are present, these functions must accept three input arguments, even though some of the arguments are not used.

The guess structure sol i nit is formed with bvpi nit. An initial guess for the solution is supplied in the form of a function mat4i nit. We chose $y = \cos 4x$ because it satisfies the boundary conditions and has the correct qualitative behavior (the correct number of sign changes). In the call to bvpi nit, the third argument (l ambda = 15) provides an initial guess for the unknown parameter λ .

After the problem is solved with bvp4c, the field sol . parameters returns the value $\lambda = 17.097$, and the plot shows the eigenfunction associated with this eigenvalue.

Algorithmsbvp4c is a finite difference code that implements the three-stage Lobatto IIIa
formula. This is a collocation formula and the collocation polynomial provides
a C¹-continuous solution that is fourth order accurate uniformly in [a,b]. Mesh
selection and error control are based on the residual of the continuous solution.

See Also @ (function_handle), bvpget, bvpinit, bvpset, deval

References [1] Shampine, L.F., M.W. Reichelt, and J. Kierzenka, "Solving Boundary Value Problems for Ordinary Differential Equations in MATLAB with bvp4c," available at ftp: //ftp. mathworks. com/pub/doc/papers/bvp/.

bvpget

Purpose	Extract properties from the options structure created with \mathbf{bvpset}	
Syntax	<pre>val = bvpget(options, 'name') val = bvpget(options, 'name', default)</pre>	
Description	val = bvpget(options, 'name') extracts the value of the named property from the structure options, returning an empty matrix if the property value is not specified in options. It is sufficient to type only the leading characters that uniquely identify the property. Case is ignored for property names. [] is a valid options argument.	
	<pre>val = bvpget(options, 'name', default) extracts the named property as above, but returns val = default if the named property is not specified in options. For example,</pre>	
	<pre>val = bvpget(opts, 'RelTol', 1e-4);</pre>	
	returns val = 1e-4 if the Rel Tol is not specified in opts.	
See Also	bvp4c, bvpi ni t, bvpset, deval	

Purpose	Form the initial guess for bvp4c		
Syntax	<pre>solinit = bvpinit(x, v) solinit = bvpinit(x, v, parameters) solinit = bvpinit(sol, [anew bnew]) solinit = bvpinit(sol, [anew bnew], parameters)</pre>		
Description	sol i ni t = bvpi ni t (x, v) forms the initial guess for bvp4c in common circumstances.		
	x is a vector that specifies an initial mesh. If you want to solve the boundary value problem (BVP) on $[a, b]$, then specify $x(1)$ as a and $x(end)$ as b . The function bvp4c adapts this mesh to the solution, so often a guess like $x = 1i$ nspace($a, b, 10$) suffices. However, in difficult cases, you must place mesh points where the solution changes rapidly. The entries of x must be ordered and distinct, so if $a < b$, then $x(1) < x(2) < \ldots < x(end)$, and similarly for $a > b$.		
	${\bf v}$ is a guess for the solution. It can be either a vector, or a function:		
	• Vector – For each component of the solution, bvpi nit replicates the corresponding element of the vector as a constant guess across all mesh points. That is, $v(i)$ is a constant guess for the i th component $y(i, :)$ of the solution at all the mesh points in x.		
	• Function – For a given mesh point, the function must return a vector whose elements are guesses for the corresponding components of the solution. The function must be of the form		
	y = guess(x)		
	where x is a mesh point and y is a vector whose length is the same as the number of components in the solution. For example, if you use @guess, bvpi nit calls this function for each mesh point $y(:,j) = guess(x(j))$.		
	solinit = $bvpinit(x, v, parameters)$ indicates that the BVP involves unknown parameters. Use the vector parameters to provide a guess for all unknown parameters.		

	sol i nit is a structure with the following fields. The structure can have any name, but the fields must be named x , y , and parameters.		
	х	Ordered nodes of the initial mesh.	
	у	Initial guess for the solution with solinit. $y(:,i)$ a guess for the solution at the node solinit. $x(i)$.	
parameters Optional. A vector that provides an initial parameters.		Optional. A vector that provides an initial guess for unknown parameters.	
	solinit = bvpinit(sol, [anew bnew]) forms an initial guess on the interv [anew bnew] from a solution sol on an interval [a , b]. The new interval mu be larger than the previous one, so either anew <= $a < b <=$ bnew or anew >= $a > b >=$ bnew. The solution sol is extrapolated to the new interval If sol contains parameters, they are copied to solinit. solinit = bvpinit(sol, [anew bnew], parameters) forms solinit as described above, but uses parameters as a guess for unknown parameters in solinit.		
See Also	@ (functi on_handl e), bvp4c, bvpget, bvpset, deval		

Purpose	Create/alter boundary value problem (BVP) options structure
Syntax	<pre>options = bvpset('name1', value1, 'name2', value2,) options = bvpset(oldopts'name1', value1,) options = bvpset(oldopts, newopts) bvpset</pre>
Description	options = $bvpset('name1', value1, 'name2', value2,)$ creates a structure options in which the named properties have the specified values. Any unspecified properties have default values. It is sufficient to type only the leading characters that uniquely identify the property. Case is ignored for property names.
	options = $bvpset(ol dopts, 'name1', value1,)$ alters an existing options structure ol dopts.
	options = bvpset(oldopts, newopts) combines an existing options structure oldopts with a new options structure newopts. Any new properties overwrite corresponding old properties.
	bypset with no input arguments displays all property names and their possible values.

BVP Properties These properties are available.

Property	Value	Description
Rel Tol	Positive scalar {1e-3}	A relative tolerance that applies to all components of the residual vector. The computed solution $S(x)$ is the exact solution of $S'(x) = F(x, S(x)) + \operatorname{res}(x)$. On each subinterval of the mesh, the residual $\operatorname{res}(x)$ satisfies $\ (\operatorname{res}(i)/\max(\operatorname{abs}(F(i)),\operatorname{AbsTol}(i)/\operatorname{RelTol}))\ \leq \operatorname{RelTol}$
AbsTol	Positive scalar or vector {1e- 6}	An absolue tolerance that applies to all components of the residual vector. Elements of a vector of tolerances apply to corresponding components of the residual vector.

bvpset

Property	Value	Description
Vectori zed	on {off}	Set on to inform bvp4c that you have coded the ODE function F so that $F([x1 \ x2 \], [y1 \ y2 \])$ returns $[F(x1, y1) \ F(x2, y2) \]$. That is, your ODE function can pass to the solver a whole array of column vectors at once. This allows the solver to reduce the number of function evaluations, and may significantly reduce solution time.
Singul arTerm	Matrix	Singular term of singular BVPs. Set to the constant matrix S for equations of the form $y' = S \frac{y}{x} + f(x, y, p)$ that are posed on the interval [0, <i>b</i>] where $b > 0$.
FJacobi an	Function matrix cell array	Analytic partial derivatives of ODEFUN. For example, when solving $y' = f(x, y)$, set this property to @FJAC if DFDY = FJAC(X, Y) evaluates the Jacobian of with respect to y . If the problem involves unknown parameters p , [DFDY, DFDP] = FJAC(X, Y, P) must also return the partial derivative of f with respect to p . For problems with constant partial derivatives, set this property to the value of DFDY or to a cell array {DFDY, DFDP}.
BCJacobi an	Function cell array	Analytic partial derivatives of BCFUN. For example, for boundary conditions $bc(ya, yb) = 0$, set this property to @BCJAC if [DBCDYA, DBCDYB] = BCJAC(YA, YB) evaluates the partial derivatives of bc with respect to ya and to yb . If the problem involves unknown parameters p , then [DBCDYA, DBCDYB, DBCDP] = BCJAC(YA, YB, P) must also return the partial derivative of bc with respect to p . For problems with constant partial derivatives, set this property to a cell array {DBCDYA, DBCDYB} or {DBCDYA, DBCDYB, DBCDP}.

Property	Value	Description
Nmax	<pre>positive integer {fl oor(1000/n)}</pre>	Maximum number of mesh points allowed.
Stats	on {off}	Display computational cost statistics.

See Also @ (function_handle), bvp4c, bvpget, bvpinit, deval

bvpval

Purpose	Evaluate the numerical solution of a boundary value problem (BVP) using the output of $b\nu p4c$		
	Note bypval is obsolete and will be removed in the future. Please use deval instead.		
Syntax	<pre>sxint = bvpval (sol, xint)</pre>		
Description	sxint = bvpval(sol, xint) uses sol , the output of $bvp4c$, to evaluate the solution of a boundary value problem at each element of the vector $xint$. For each i , $sxint(:,i)$ is the solution corresponding to $xint(i)$.		
See Also	bvp4c, bvpi ni t, bvpget, bvpset		

Purpose	Calendar							
Syntax	c = cal enda	r						
-	c = cal enda	r(d)						
	c = cal enda							
	calendar(.)						
Description	c = cal enda month. The c			v			0	endar for the current urday.
	c = cal enda calendar for				rial da	te num	ber or a	date string, returns a
	c = cal enda specified mor					ntegers	s, returr	ns a calendar for the
	cal endar(.) disp	olays tl	he calen	idar on	the scr	een.	
Examples	The comman	d:						
	cal endar	(1957,	10)					
	reveals that Sputnik 1 wa	-		e began	on a F	riday (o	on Octob	oer 4, 1957, when
				0ct 19	57			
	S	М	Tu	W	Th	F	S	
	0	0	1	2	3	<u>4</u>	5	
	6	7	8	9	10	11	12	
	13	14	15	16	17	18	19	
	20	21	22	23	24	25	26	
	27	28	29	30	31	0	0	
	0	0	0	0	0	0	0	

datenum

camdolly

Purpose	Move the camera position and target
Syntax	<pre>camdolly(dx, dy, dz) camdolly(dx, dy, dz, 'targetmode') camdolly(dx, dy, dz, 'targetmode', 'coordsys') camdolly(axes_handle,)</pre>
Description	camdolly moves the camera position and the camera target by the specified amounts.
	camdol ly(dx, dy, dz) moves the camera position and the camera target by the specified amounts (see "Coordinate Systems").
	camdolly(dx, dy, dz, 'targetmode') The $targetmode$ argument can take on two values that determine how MATLAB moves the camera:
	 movetarget (default) – move both the camera and the target fixtarget – move only the camera
	camdolly(dx,dy,dz,'targetmode','coordsys')~ The $coordsysargumentcan$ take on three values that determine how MATLAB interprets dx, dy, and dz:
	Coordinate Systems
	• camera (default) – move in the camera's coordinate system. dx moves left/right, dy moves down/up, and dz moves along the viewing axis. The units are normalized to the scene.
	For example, setting dx to 1 moves the camera to the right, which pushes the scene to the left edge of the box formed by the axes position rectangle. A negative value moves the scene in the other direction. Setting dz to 0.5 moves the camera to a position halfway between the camera position and the camera target
	• pi xel s – interpret dx and dy as pixel offsets. dz is ignored.
	• data – interpret dx, dy, and dz as offesets in axes data coordinates.
	camdol $ly(axes_handle,)$ operates on the axes identified by the first argument, axes_handle. When you do not specify an axes handle, camdol ly operates on the current axes.

Remarks	camdolly sets the axes CameraPosition and CameraTarget properties, which in turn causes the CameraPositionMode and CameraTargetMode properties to be set to manual.
Examples	This example moves the camera along the <i>x</i> - and <i>y</i> -axes in a series of steps.
	<pre>surf(peaks) axis vis3d t = 0: pi /20: 2*pi; dx = sin(t). /40; dy = cos(t). /40; for i = 1:length(t); camdolly(dx(i), dy(i), 0) drawnow end</pre>
See Also	axes, campos, camproj, camtarget, camup, camva
	The axes properties CameraPosition, CameraTarget, CameraUpVector, CameraViewAngle, Projection
	"Controlling the Camera Viewpoint" for related functions
	See Defining Scenes with Camera Graphics for more information on camera properties.

camlight

Purpose	Create or move a light object in camera coordinates
Syntax	<pre>camlight headlight camlight right camlight left camlight camlight camlight camlight(az, el) camlight('style') camlight(light_handle,) light_handle = camlight()</pre>
Description	<pre>caml i ght (' headl i ght') creates a light at the camera position. caml i ght (' ri ght') creates a light right and up from camera. caml i ght (' l eft') creates a light left and up from camera. caml i ght with no arguments is the same as caml i ght (' ri ght'). caml i ght (az, el) creates a light at the specified azimuth (az) and elevation (el) with respect to the camera position. The camera target is the center of rotation and az and el are in degrees. caml i ght (, ' styl e') The style argument can take on the two values: local (default) - the light is a point source that radiates from the location in all directions. i nf i ni te - the light shines in parallel rays. caml i ght (l i ght_handl e,) uses the light specified in l i ght_handl e.</pre>
Remarks	<pre>light_handle = camlight() returns the light's handle. camlight sets the light object Position and Style properties. A light created with camlight will not track the camera. In order for the light to stay in a constant position relative to the camera, you must call camlight whenever you move the camera.</pre>

Examples	This example creates a light positioned to the left of the camera and then repositions the light each time the camera is moved:					
	surf(peaks)					
	axis vis3d					
	h = camlight('left');					
	for $i = 1:20;$					
	camorbit(10,0)					
	<pre>caml i ght(h, 'left')</pre>					
	drawnow;					
	end					
See Also	light, lightangle					
	"Lighting" for related functions					
	Lighting as a Visualization Tool for more information on using lights					

camlookat

Purpose	Position the camera to view an object or group of objects		
Syntax	caml ookat (obj ect_handl es) caml ookat (axes_handl e) caml ookat		
Description	caml ookat (obj ect_handl es) views the objects identified in the vector obj ect_handl es. The vector can contain the handles of axes children.		
	caml ookat (axes_handl e) views the objects that are children of the axes identified by axes_handl e.		
	caml ookat views the objects that are in the current axes.		
Remarks	caml ookat moves the camera position and camera target while preserving the relative view direction and camera view angle. The object (or objects) being viewed roughly fill the axes position rectangle.		
	caml ookat sets the axes CameraPosition and CameraTarget properties.		
Examples	This example creates three spheres at different locations and then progressively positions the camera so that each sphere is the object around which the scene is composed:		
	<pre>[x y z] = sphere; s1 = surf(x, y, z); hold on s2 = surf(x+3, y, z+3); s3 = surf(x, y, z+6); daspect([1 1 1]) view(30, 10) camproj perspective camlookat(gca) % Compose the scene around the current axes pause(2) camlookat(s1) % Compose the scene around sphere s1 pause(2) camlookat(s2) % Compose the scene around sphere s2 pause(2) camlookat(s3) % Compose the scene around sphere s3 pause(2) camlookat(s3) % Compose the scene around sphere s3 pause(2) camlookat(gca)</pre>		

camlookat

See Alsocampos, camtarget"Controlling the Camera Viewpoint" for related functionsDefining Scenes with Camera Graphics for more information

camorbit

Purpose	Rotate the camera position around the camera target
Syntax	<pre>camorbit(dtheta, dphi) camorbit(dtheta, dphi, 'coordsys') camorbit(dtheta, dphi, 'coordsys', 'direction') camorbit(axes_handle,)</pre>
Description	<code>camorbit(dtheta, dphi)</code> rotates the camera position around the camera target by the amounts specified in dtheta and dphi (both in degrees). dtheta is the horizontal rotation and dphi is the vertical rotation.
	<code>camorbit(dtheta, dphi, ' $coordsys'$) The $coordsys$ argument determines the center of rotation. It can take on two values: </code>
	 data (default) - rotate the camera around an axis defined by the camera target and the di recti on (default is the positive z direction). camera - rotate the camera about the point defined by the camera target.
	camorbit(dtheta, dphi, ' <i>coordsys</i> ', 'di recti on') The di recti on argument, in conjunction with the camera target, defines the axis of rotation for the data coordinate system. Specify di recti on as a three-element vector containing the x, y, and z-components of the direction or one of the characters, x, y, or z, to indicate [1 0 0], [0 1 0], or [0 0 1] respectively.
	<code>camorbit(axes_handle,)</code> operates on the axes identified by the first argument, <code>axes_handle</code> . When you do not specify an axes handle, <code>camorbit</code> operates on the current axes.
Examples	Compare rotation in the two coordinate systems with these for loops. The first rotates the camera horizontally about a line defined by the camera target point and a direction that is parallel to the <i>y</i> -axis. Visualize this rotation as a cone formed with the camera target at the apex and the camera position forming the base:
	<pre>surf(peaks) axis vis3d for i=1:36 camorbit(10,0,'data',[0 1 0]) drawnow</pre>

 $\quad \text{end} \quad$

Rotation in the camera coordinate system orbits the camera around the axes along a circle while keeping the center of a circle at the camera target.

```
surf(peaks)
axis vis3d
for i=1:36
    camorbit(10,0,'camera')
    drawnow
end
```

See Also	axes, axis('vis3d'), camdolly, campan, camzoom, camroll
	"Controlling the Camera Viewpoint" for related functions
	Defining Scenes with Camera Graphics for more information

campan

Purpose	Rotate the camera target around the camera position
Syntax	<pre>campan(dtheta, dphi) campan(dtheta, dphi, 'coordsys') campan(dtheta, dphi, 'coordsys', 'direction') campan(axes_handle,)</pre>
Description	campan(dtheta, dphi) rotates the camera target around the camera position by the amounts specified in dtheta and dphi (both in degrees). dtheta is the horizontal rotation and dphi is the vertical rotation.
	campan(dtheta, dphi , ' <i>coordsys</i> ') The coordsys argument determines the center of rotation. It can take on two values:
	• data (default) – rotate the camera target around an axis defined by the camera position and the di recti on (default is the positive z direction)
	• camera – rotate the camera about the point defined by the camera target.
	campan(dtheta, dphi, ' <i>coordsys</i> ', ' di recti on') The di recti on argument, in conjunction with the camera position, defines the axis of rotation for the data coordinate system. Specify di recti on as a three-element vector containing the x, y, and z-components of the direction or one of the characters, x, y, or z, to indicate $[1 \ 0 \ 0], [0 \ 1 \ 0], or [0 \ 0 \ 1]$ respectively.
	campan(axes_handl e,) operates on the axes identified by the first argument, axes_handl e. When you do not specify an axes handle, campan operates on the current axes.
See Also	axes, camdolly, camorbit, camtarget, camzoom, camroll
	"Controlling the Camera Viewpoint" for related functions
	Defining Scenes with Camera Graphics for more information

Purpose	Set or query the camera position
Syntax	<pre>campos campos([camera_position]) campos('mode') campos('auto' campos('manual') campos(axes_handle,)</pre>
Description	campos with no arguments returns the camera position in the current axes.
	$campos([camera_position])$ sets the position of the camera in the current axes to the specified value. Specify the position as a three-element vector containing the x-, y-, and z-coordinates of the desired location in the data units of the axes.
	$\tt campos('mode') returns the value of the camera position mode, which can be either auto (the default) or manual .$
	campos('auto') sets the camera position mode to auto.
	${\tt campos('manual')}$ sets the camera position mode to manual.
	$campos(axes_handle,)$ performs the set or query on the axes identified by the first argument, axes_handle. When you do not specify an axes handle, campos operates on the current axes.
Remarks	campos sets or queries values of the axes CameraPosition and CameraPositionMode properties. The camera position is the point in the Cartesian coordinate system of the axes from which you view the scene.
Examples	This example moves the camera along the <i>x</i> -axis in a series of steps:
	<pre>surf(peaks) axis vis3d off for x = -200: 5: 200</pre>

campos

See Alsoaxi s, camproj , camtarget, camup, camvaThe axes properties CameraPosi ti on, CameraTarget, CameraUpVector,
CameraVi ewAngl e, Proj ecti on"Controlling the Camera Viewpoint" for related functions
Defining Scenes with Camera Graphics for more information

camproj

Purpose	Set or query the projection type
Syntax	camproj camproj (<i>proj ecti on_type</i>) camproj (axes_handl e,)
Description	The projection type determines whether MATLAB uses a perspective or orthographic projection for 3-D views.
	camproj with no arguments returns the projection type setting in the current axes.
	camproj (' $proj ecti on_type$ ') sets the projection type in the current axes to the specified value. Possible values for $proj ecti on_type$ are: orthographic and perspective.
	camproj (axes_handl e,) performs the set or query on the axes identified by the first argument, axes_handl e. When you do not specify an axes handle, camproj operates on the current axes.
Remarks	camproj sets or queries values of the axes object Projection property.
See Also	campos, camtarget, camup, camva
	The axes properties CameraPosition, CameraTarget, CameraUpVector, CameraVi ewAngle, Projection
	"Controlling the Camera Viewpoint" for related functions
	Defining Scenes with Camera Graphics for more information

camroll

Purpose	Rotate the camera about the view axis
Syntax	camroll(dtheta) camroll(axes_handle, dtheta)
Description	camroll(dtheta) rotates the camera around the camera viewing axis by the amounts specified in dtheta (in degrees). The viewing axis is defined by the line passing through the camera position and the camera target.camroll(axes_handle, dtheta) operates on the axes identified by the first argument, axes_handle. When you do not specify an axes handle, camroll operates on the current axes.
Remarks	camroll set the axes CameraUpVector property and thereby also sets the CameraUpVectorMode property to manual.
See Also	axes, axi s(' vi s3d'), camdolly, camorbit, camzoom, campan "Controlling the Camera Viewpoint" for related functions Defining Scenes with Camera Graphics for more information

Purpose	Set or query the location of the camera target
Syntax	<pre>camtarget camtarget([camera_target]) camtarget('mode') camtarget('auto') camtarget('manual') camtarget(axes_handle,)</pre>
Description	The camera target is the location in the axes that the camera points to. The camera remains oriented toward this point regardless of its position.
	$\operatorname{camtarget}$ with no arguments returns the location of the camera target in the current axes.
	camtarget([camera_target]) sets the camera target in the current axes to the specified value. Specify the target as a three-element vector containing the x-, y-, and z-coordinates of the desired location in the data units of the axes.
	${\tt camtarget('mode')}$ returns the value of the camera target mode, which can be either auto (the default) or manual .
	camtarget('auto') sets the camera target mode to auto.
	camtarget('manual') sets the camera target mode to manual.
	camtarget (axes_handl e,) performs the set or query on the axes identified by the first argument, axes_handl e. When you do not specify an axes handle, camtarget operates on the current axes.
Remarks	camtarget sets or queries values of the axes object Cameratarget and CameraTargetMode properties.
	When the camera target mode is auto, MATLAB positions the camera target at the center of the axes plot box.
Examples	This example moves the camera position and the camera target along the <i>x</i> -axis in a series of steps:
	<pre>surf(peaks);</pre>

Purpose	Set or query the camera up vector
Syntax	<pre>camup camup([up_vector]) camup('mode') camup('auto') camup('manual') camup(axes_handle,)</pre>
Description	The camera up vector specifies the direction that is oriented up in the scene.
	camup with no arguments returns the camera up vector setting in the current axes.
	<pre>camup([up_vector]) sets the up vector in the current axes to the specified value. Specify the up vector as x-, y-, and z-components. See Remarks.</pre>
	camup('mode') returns the current value of the camera up vector mode, which can be either auto (the default) or manual .
	camup(' auto') sets the camera up vector mode to auto. In auto mode, MATLAB uses a value for the up vector of [0 1 0] for 2-D views. This means the z-axis points up.
	camup('manual') sets the camera up vector mode to manual. In manual mode, MATLAB does not change the value of the camera up vector.
	$camup(axes_handle,)$ performs the set or query on the axes identified by the first argument, axes_handle. When you do not specify an axes handle, camup operates on the current axes.
Remarks	camup sets or queries values of the axes object CameraUpVector and CameraUpVectorMode properties.
	Specify the camera up vector as the x-, y-, and z-coordinates of a point in the axes coordinate system that forms the directed line segment PQ, where P is the point $(0,0,0)$ and Q is the specified x-, y-, and z-coordinates. This line always points up. The length of the line PQ has no effect on the orientation of the scene. This means a value of $[0 \ 0 \ 1]$ produces the same results as $[0 \ 0 \ 25]$.

camup

See Alsoaxi s, camproj , campos, camtarget, camvaThe axes properties CameraPosi ti on, CameraTarget, CameraUpVector,
CameraVi ewAngl e, Proj ecti on"Controlling the Camera Viewpoint" for related functions
Defining Scenes with Camera Graphics for more information

Purpose	Set or query the camera view angle
Syntax	<pre>camva camva(vi ew_angl e) camva(' mode') camva(' auto') camva(' manual ') camva(axes_handl e,)</pre>
Description	The camera view angle determines the field of view of the camera. Larger angles produce a smaller view of the scene. You can implement zooming by changing the camera view angle. camva with no arguments returns the camera view angle setting in the current axes.
	camva(vi ew_angl e) sets the view angle in the current axes to the specified value. Specify the view angle in degrees.
	camva('mode') returns the current value of the camera view angle mode, which can be either auto (the default) or manual. See Remarks.
	camva('auto') sets the camera view angle mode to auto.
	camva('manual') sets the camera view angle mode to manual. See Remarks.
	<code>camva(axes_handle,)</code> performs the set or query on the axes identified by the first argument, <code>axes_handle</code> . When you do not specify an axes handle, <code>camva</code> operates on the current axes.
Remarks	camva sets or queries values of the axes object CameraVi ewAngl e and CameraVi ewAngl eMode properties.
	When the camera view angle mode is auto, MATLAB adjusts the camera view angle so that the scene fills the available space in the window. If you move the camera to a different position, MATLAB changes the camera view angle to maintain a view of the scene that fills the available area in the window.

camva

	Setting a camera view angle or setting the camera view angle to manual disables the MATLAB stretch-to-fill feature (stretching of the axes to fit the window). This means setting the camera view angle to its current value, camva(camva) can cause a change in the way the graph looks. See the Remarks section of the axes reference page for more information.
Examples	This example creates two pushbuttons, one that zooms in and another that zooms out.
	<pre>uicontrol('Style', 'pushbutton', 'String', 'Zoom In', 'Position', [20 20 60 20], 'Callback', 'if camva <= 1; return; else; camva(camva-1); end'); uicontrol('Style', 'pushbutton', 'String', 'Zoom Out', 'String', 'Zoom Out', 'Position', [100 20 60 20], 'Callback', 'if camva >= 179; return; else; camva(camva+1); end');</pre>
	Now create a graph to zoom in and out on:
	<pre>surf(peaks);</pre>
	Note the range checking in the callback statements. This keeps the values for the camera view angle in the range, greater than zero and less than 180.
See Also	axis, camproj, campos, camup, camtarget
	The axes properties CameraPosition, CameraTarget, CameraUpVector, CameraViewAngle, Projection
	"Controlling the Camera Viewpoint" for related functions
	Defining Scenes with Camera Graphics for more information

Purpose	Zoom in and out on a scene
Syntax	<pre>camzoom(zoom_factor) camzoom(axes_handl e,)</pre>
Description	camzoom(zoom_factor) zooms in or out on the scene depending on the value specified by zoom_factor. If zoom_factor is greater than 1, the scene appears larger; if zoom_factor is greater than zero and less than 1, the scene appears smaller.
	camzoom(axes_handl e,) operates on the axes identified by the first argument, axes_handl e. When you do not specify an axes handle, camzoom operates on the current axes.
Remarks	camzoom sets the axes CameraVi ewAngl e property, which in turn causes the CameraVi ewAngl eMode property to be set to manual. Note that setting the CameraVi ewAngl e property disables the MATLAB stretch-to-fill feature (stretching of the axes to fit the window). This may result in a change to the aspect ratio of your graph. See the axes function for more information on this behavior.
See Also	axes, camdolly, camorbit, campan, camroll, camva
	"Controlling the Camera Viewpoint" for related functions
	Defining Scenes with Camera Graphics for more information

capture

Purpose	capture is obsolete in Release 11 (5.3). getframe provides the same functionality and supports TrueColor displays by returning TrueColor images.
Syntax	<pre>capture capture(h) [X, cmap] = capture(h)</pre>
Description	capture creates a bitmap copy of the contents of the current figure, including any uicontrol graphics objects. It creates a new figure and displays the bitmap copy as an image graphics object in the new figure.
	capture(h) creates a new figure that contains a copy of the figure identified by h.
	[X, cmap] = capture(h) returns an image matrix X and a colormap. You display this information using the statements
	<pre>colormap(cmap) i mage(X)</pre>
Remarks	The resolution of a bitmap copy is less than that obtained with the print command.
See Also	i mage, pri nt
	"Figure Windows" for related functions

Purpose Transform Cartesian coordinates to polar or cylindrical

Syntax [THETA, RHO, Z] = cart2pol(X, Y, Z) [THETA, RHO] = cart2pol(X, Y)

Description [THETA, RHO, Z] = cart2pol (X, Y, Z) transforms three-dimensional Cartesian coordinates stored in corresponding elements of arrays X, Y, and Z, into cylindrical coordinates. THETA is a counterclockwise angular displacement in radians from the positive *x*-axis, RHO is the distance from the origin to a point in the *x*-*y* plane, and Z is the height above the *x*-*y* plane. Arrays X, Y, and Z must be the same size (or any can be scalar).

[THETA, RHO] = cart2pol(X, Y) transforms two-dimensional Cartesian coordinates stored in corresponding elements of arrays X and Y into polar coordinates.

Algorithm The mapping from two-dimensional Cartesian coordinates to polar coordinates, and from three-dimensional Cartesian coordinates to cylindrical coordinates is

Two-Dimensional Mapping theta = atan2(y, x)rho = $sqrt(x. ^2 + y. ^2)$

Three-Dimensional Mapping theta = atan2(y, x)rho = $sqrt(x. ^2 + y. ^2)$ z = z

cart2sph, pol2cart, sph2cart

cart2sph

Purpose	Transform Cartesian coordinates to spherical
Syntax	[THETA, PHI, R] = cart2sph(X, Y, Z)
Description	[THETA, PHI, R] = cart2sph(X, Y, Z) transforms Cartesian coordinates stored in corresponding elements of arrays X, Y, and Z into spherical coordinates. Azimuth THETA and elevation PHI are angular displacements in radians measured from the positive <i>x</i> -axis, and the <i>x-y</i> plane, respectively; and R is the distance from the origin to a point. Arrays X, Y, and Z must be the same size.
Algorithm	The mapping from three-dimensional Cartesian coordinates to spherical coordinates is

theta =
$$atan2(y, x)$$

phi = $atan2(z, sqrt(x. ^2 + y. ^2))$
r = $sqrt(x. ^2+y. ^2+z. ^2)$

cart2pol, pol2cart, sph2cart

Purpose	Case switch
Description	${\rm case}$ is part of the ${\rm switch}$ statement syntax, which allows for conditional execution.
	A particular case consists of the case statement itself, followed by a case expression, and one or more statements.
	A case is executed only if its associated case expression (case_expr) is the first to match the switch expression (switch_expr).
Examples	The general form of the switch statement is:
	<pre>switch switch_expr case case_expr statement,, statement case {case_expr1, case_expr2, case_expr3,} statement,, statement otherwise</pre>
	statement,, statement
	end
See Also	switch

cat

Purpose	Concatenate arrays
Syntax	C = cat(dim, A, B) C = cat(dim, A1, A2, A3, A4)
Description	C = cat(dim, A, B) concatenates the arrays A and B along dim.
	$C = cat(dim, A1, A2, A3, A4, \dots)$ concatenates all the input arrays (A1, A2, A3, A4, and so on) along dim.
	cat(2, A, B) is the same as $[A, B]$ and $cat(1, A, B)$ is the same as $[A; B]$.
Remarks	When used with comma separated list syntax, $cat(dim, C\{:\})$ or $cat(dim, C. field)$ is a convenient way to concatenate a cell or structure array containing numeric matrices into a single matrix.
Examples	Given,
	A = B = $1 2 5 6$ $3 4 7 8$ concatenating along different dimensions produces:
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	C = cat(1, A, B) $C = cat(2, A, B)$ $C = cat(3, A, B)$
	The commands
	A = magic(3); B = pascal(3); C = cat(4, A, B);
	produce a 3-by-3-by-1-by-2 array.
See Also	num2cell The special character []

Purpose	Begin catch block
Description	The general form of a try statement is:
	<pre>try, statement, , statement, catch, statement, , statement, end Normally, only the statements between the try and catch are executed. However, if an error occurs while executing any of the statements, the error is captured into l asterr, and the statements between the catch and end are executed. If an error occurs within the catch statements, execution stops unless caught by another trycatch block. The error string produced by a failed try block can be obtained with l asterr.</pre>

See Also end, eval, evalin, try

caxis

Purpose	Color axis scaling
Syntax	<pre>caxis([cmin cmax]) caxis auto caxis manual caxis(caxis) v = caxis caxis(axes_handle,)</pre>
Description	caxi s controls the mapping of data values to the colormap. It affects any surfaces, patches, and images with indexed CData and CDataMapping set to scaled. It does not affect surfaces, patches, or images with true color CData or with CDataMapping set to direct.
	caxis([cmin cmax]) sets the color limits to specified minimum and maximum values. Data values less than cmin or greater than cmax map to cmin and cmax, respectively. Values between cmin and cmax linearly map to the current colormap.
	caxi s auto lets MATLAB compute the color limits automatically using the minimum and maximum data values. This is the default behavior. Color values set to I nf map to the maximum color, and values set to $-I$ nf map to the minimum color. Faces or edges with color values set to NaN are not drawn.
	caxis manual and caxis(caxis) freeze the color axis scaling at the current limits. This enables subsequent plots to use the same limits when hold is on.
	v = caxis returns a two-element row vector containing the [cmin cmax] currently in use.
	$caxis(axes_handle,\ldots)$ uses the axes specified by $axes_handle$ instead of the current axes.
Remarks	caxis changes the CLim and CLimMode properties of axes graphics objects.
	How Color Axis Scaling Works Surface, patch, and image graphics objects having indexed CData and CDataMappi ng set to scal ed, map CData values to colors in the figure colormap each time they render. CData values equal to or less than cmin map to the first

color value in the colormap, and CData values equal to or greater than cmax map to the last color value in the colormap. MATLAB performs the following linear transformation on the intermediate values (referred to as C below) to map them to an entry in the colormap (whose length is m, and whose row index is referred to as i ndex below).

```
i ndex = fi x((C-cmi n) / (cmax-cmi n) *m) + 1
```

Examples

bles Create (X, Y, Z) data for a sphere and view the data as a surface.

```
[X, Y, Z] = sphere;
C = Z;
surf(X, Y, Z, C)
```

Values of C have the range $[-1 \ 1]$. Values of C near -1 are assigned the lowest values in the colormap; values of C near 1 are assigned the highest values in the colormap.

To map the top half of the surface to the highest value in the color table, use

```
caxis([-1 \ 0])
```

To use only the bottom half of the color table, enter

```
caxis([-1 3])
```

which maps the lowest CData values to the bottom of the colormap, and the highest values to the middle of the colormap (by specifying a cmax whose value is equal to cmi n plus twice the range of the CData).

The command

caxis auto

resets axis scaling back to auto-ranging and you see all the colors in the surface. In this case, entering

```
caxi s
```

returns

[-1 1]

Adjusting the color axis can be useful when using images with scaled color data. For example, load the image data and colormap for Cape Cod, Massachusetts.

load cape

This command loads the images data X and the image's colormap map into the workspace. Now display the image with CDataMapping set to scaled and install the image's colormap.

```
i mage(X, 'CDataMappi ng', 'scaled')
colormap(map)
```

MATLAB sets the color limits to span the range of the image data, which is 1 to 192:

```
caxi s
ans =
1 192
```

The blue color of the ocean is the first color in the colormap and is mapped to the lowest data value (1). You can effectively move sealevel by changing the lower color limit value. For example,

See Also

axes, axi s, col ormap, get, mesh, pcol or, set, surf The CLi m and CLi mMode properties of axes graphics objects. The Col ormap property of figure graphics objects. "Color Operations" for related functions Axes Color Limits for more examples

cd	
Purpose	Change working directory
Graphical Interface	As an alternative to the cd function, use the Current Directory field in the MATLAB desktop toolbar.
Syntax	cd w = cd cd('directory') cd('') cd directory or cd
Description	cd displays the current working directory.
	w = cd assigns the current working directory to w.
	$cd('di\ rectory')\ sets$ the current working directory to $di\ rectory.$ Use the full pathname for $di\ rectory.$ On UNIX platforms, the character \sim is interpreted as the user's root directory.
	$cd(\mbox{\ }\mbox{\ }) changes$ the current working directory to the directory above it.
	cd directory or cd is the unquoted form of the syntax.
Examples	On UNIX
	cd('/usr/local/matlab/toolbox/demos')
	changes the current working directory to demos.
	On Windows
	cd('c:/toolbox/matlab/demos')
	changes the current working directory to demos. Then typing
	cd
	changes the current working directory to matlab.
See Also	dir, path, pwd, what

Purpose	Convert complex diagonal form to real block diagonal form
Syntax	[V, D] = cdf2rdf(V, D)
Description	If the eigensystem $[V, D] = eig(X)$ has complex eigenvalues appearing in complex-conjugate pairs, cdf2rdf transforms the system so D is in real diagonal form, with 2-by-2 real blocks along the diagonal replacing the complex pairs originally there. The eigenvectors are transformed so that X = V*D/V
	continues to hold. The individual columns of V are no longer eigenvectors, but each pair of vectors associated with a 2-by-2 block in D spans the corresponding invariant vectors.
Examples	The matrix X = 1 2 3 0 4 5 0 -5 4
	has a pair of complex eigenvalues. [V, D] = eig(X)
	V =
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	D =
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Converting this to real block diagonal form produces

[V, D] = cdf2rdf(V, D)

V =			
1.000	00 - 0. 01	191 - 0 . 4	1002
	0	0 - 0. 6	6479
	0 0.64	179	0
D =			
1.000	00	0	0
	0 4.00	000 5.0	0000
	0 - 5.00	000 4.0	0000

Algorithm The real diagonal form for the eigenvalues is obtained from the complex form using a specially constructed similarity transformation.

See Also eig, rsf2csf

Purpose	Construct a cdfepoch object for Common Data Format (CDF) export		
Syntax	<pre>E = cdfepoch(date)</pre>		
Description	E = cdfepoch(date) constructs a cdfepoch object, where date is a valid string (datestr), a number (datenum) representing a date, or a cdfepoch object.		
	When writing data to a CDF using cdfwrite, use cdfepoch to convert MATLAB formatted dates to CDF formatted dates. The MATLAB cdfepoch object simulates the CDFEPOCH datatype in CDF files		
	Note A CDF epoch is the number of milliseconds since 1-Jan-0000. MATLAB datenums are the number of days since 0-Jan-0000.		
See also	cdfinfo, cdfread, cdfwrite, datenum		

cdfinfo

Purpose	Return information about a CDF file	
Syntax	<pre>info = cdfinfo(file)</pre>	
Description	info = cdfinfo(file) returns information about the Common Data Format (CDF) file specified in the string, file. The function returns a structure, info, that contains the fields shown in the following table.	

Field	Description	Return Type
FileModDate	Date the file was last modified	String
Filename	Name of the file	String
FileSettings	Library settings used to create the file	Structure array
Fi l eSi ze	Size of the file, in bytes	Double
Format	File format (CDF)	String
Format Versi on	Version of the CDF library used to create the file	String
Gl obal Attri butes	Global metadata	Structure array
Subfiles	Filenames containing the CDF file's data, if it is a multifile CDF	Cell array
Vari abl eAttri butes	Metadata for the variables	Structure array
Vari abl es	Details about the variables in the file	Cell array

The GlobalAttributes and VariableAttributes Fields

Gl obal Attri butes and Vari abl eAttri butes are structure arrays that each contain one field for each global or variable attribute respectively. The name of the field corresponds to the name of an attribute. The data in that field, contained in a cell array, represents the entry values for that attribute.

For Vari abl eAttri butes, the attribute data resides in an N-by-2 cell array, where N is the number of variables. The first column of this cell array contains the variable names associated with the entries. The second column contains the entry values.

Note Attribute names may not match the names of the attributes in the CDF file exactly. Because attribute names can contain characters that are illegal in MATLAB field names, they may be translated into legal field names. Illegal characters that appear at the beginning of attributes are removed; other illegal characters are replaced with underscores ('_'). If an attribute's name is modified, the attribute's internal number is appended to the end of the field name. For example, Vari abl e%Attri bute might become Vari abl e_Attri bute_013.

The Variables Field

The Vari abl es field of the returned i nfo structure is an N-by-6 cell array, where N is the number of variables. The six columns of the cell array contain the following information.

Column No.	Description	Return Type
1	Name of the variable	String
2	Dimensions of the variable, as returned by the size function	Double array
3	Number of records assigned for the variable	Double
4	Data type of the variable, as stored in the CDF file	String

cdfinfo

	Column No.	Description	Return Type
	5	Record and dimension variance settings for the variable. The single T or F to the left of the slash designates whether values vary by record. The zero or more T or F letters to the right of the slash designate whether values vary at each dimension. Here are some examples.T/(scal ar vari abl e) F/T (one- di mensi onal vari abl e)T/TFF(three- di mensi onal vari abl e)	String
	6	Sparsity of the variable's records. This is a string holding one of three possible values:	String
		 'Full' 'Sparse (padded)' 'Sparse (nearest)' 	
Examples	info = Fo	<pre>info('example.cdf') Filename: 'example.cdf' FileModDate: '29-Jun-1995 05:51:58' FileSize: 230513 Format: 'CDF' ormatVersion: '2.4.8' FileSettings: [1x1 struct] Subfiles: {} Variables: {7x6 cell} alAttributes: [1x1 struct] leAttributes: [1x1 struct]</pre>	
	info.Varial ans = 'L_gse' 'Status 'B_gse% 'B_nsig	[1x2 double] [1] 'char' %C1' [1x2 double] [7493] 'uint8' %C1' [1x2 double] [7493] 'single'	' F/T' ' Ful l ' ' T/T' ' Ful l ' ' T/T' ' Ful l ' ' T/' ' Ful l '

See Also cdfread

cdfread

Purpose	Read data from a CDF file
Syntax	<pre>data = cdfread(file) data = cdfread(file, 'records', recnums,) data = cdfread(file, 'variables', varnames,) data = cdfread(file, 'slices', dimensionvalues,) [data, info] = cdfread(file,)</pre>
Description	data = cdfread(file) reads all of the variables from each record of the Common Data Format (CDF) file specified in the string, file. The return value, data, is a cell array in which each row contains a record and each column represents a variable.
	data = $cdfread(file, 'records', recnums,)$ reads only those records specified in the vector, recnums. The record numbers are zero-based. The return value, data, is a cell array having length(recnums) number of rows and as many columns as there are variables.
	data = cdfread(file, 'variables', varnames,) reads only those variables specified in the 1-by-N or N-by-1 cell array of strings, varnames. The return alue, data, is returned in a cell array having l ength(varnames) number of columns and a row for each record requested.
	data = $cdfread(file, 'slices', dimensionvalues,)$ reads specific values from the records of one variable in the CDF file. The N-by-3 matrix, dimensionvalues, indicates which records are to be read by specifying start, interval, and count parameters for each of the N dimensions of the variable. The start parameter is zero-based.
	The number of rows in dimensionvalues must be less than or equal to the number of dimensions of the variable. Unspecified rows default to $[0 \ 1 \ N]$, where N is the total number of values in a record. This causes cdfread to read every value from those dimensions.
	Because you can read just one variable at a time, you must also include a ' vari abl es' parameter with this syntax.
	[data, info] = cdfread(file,) also returns details about the CDF file in the info structure.

Examples Read all of the data from the file.

```
data = cdfread('example.cdf');
```

Read just the data from variable 'Time'.

```
data = cdfread('example.cdf', 'Variable', {'Time'});
```

Read the first value in the first dimension, the second value in the second dimension, the first and third values in the third dimension, and all values in the remaining dimension of the variable ' multidimension or '.

```
data = cdfread('example.cdf', 'Variable', ...
{'multidimensional'}, 'Slices', [0 1 1; 1 1 1; 0 2 2]);
```

This is similar to reading the whole variable into ' \mbox{data} ', and then using the MATLAB command

data{1}(1, 2, [1 3], :)

See Also cdfinfo, cdfwrite, cdfepoch

cdfwrite

Purpose	Write data to a CDF file	
Syntax	<pre>cdfwrite(file, variablelist) cdfwrite(, 'PadValues', padvals) cdfwrite(, 'GlobalAttributes', gattrib) cdfwrite(, 'VariableAttributes', vattrib) cdfwrite(, 'WriteMode', mode) cdfwrite(, 'Format', format)</pre>	
Description	cdfwrite(file, variablelist) writes out a Common Data Format (CDF) file, specified in the string, file. The variablelist argument is a cell array of ordered pairs, which are comprised of a CDF variable name (a string) and the corresponding CDF variable value. To write out multiple records for a variable, put the values in a cell array, where each element in the cell array represents a record.	
	cdfwrite(, 'PadValues', padvals) writes out pad values for given variable names. padvals is a cell array of ordered pairs, which are comprised of a variable name (a string) and a corresponding pad value. Pad values are the default value associated with the variable when an out-of-bounds record is accessed. Variable names that appear in padvals must appear in vari ablelist.	
	$cdfwrite(\ldots, 'Gl obal Attri butes', gattrib)$ writes the structure gattrib as global metadata for the CDF file. Each field of the structure is the name of a global attribute. The value of each field contains the value of the attribute. To write out multiple values for an attribute, put the values in a cell array where each element in the cell array represents a record.	
	Note To specify a global attribute name that is illegal in MATLAB, create a field called 'CDFAttri buteRename' in the attribute structure. The value of this field must have a value that is a cell array of ordered pairs. The ordered pair consists of the name of the original attribute, as listed in the GlobalAttributes structure and the corresponding name of the attribute to be written to the CDF file.	

 $cdfwrite(\ldots, \ 'Variable Attributes', \ vattrib) writes the structure vattrib as variable metadata for the CDF. Each field of the struct is the name of a variable attribute. The value of each field should be an M-by-2 cell array where M is the number of variables with attributes. The first element in the cell array should be the name of the variable and the second element should be the value of the attribute.$

Note To specify a variable attribute name that is illegal in MATLAB, create a field called 'CDFAttri buteRename' in the attribute structure. The value of this field must have a value that is a cell array of ordered pairs. The ordered pair consists of the name of the original attribute, as listed in the Vari abl eAttri butes struct, and the corresponding name of the attribute to be written to the CDF file. If you are specifying a variable attribute of a CDF variable that you are renaming, the name of the variable in the Vari abl eAttri butes structure must be the same as the renamed variable.

cdfwrite(..., 'WriteMode', *mode*) where *mode* is either 'overwrite' or 'append', indicates whether or not the specified variables should be appended to the CDF file if the file already exists. By default, cdfwrite overwrites existing variables and attributes.,

cdfwrite(..., 'Format', format) where format is either 'multifile' or 'singlefile', indicates whether or not the data is written out as a multifile CDF. In a multifile CDF, each variable is stored in a separate file with the name *. vN, where N is the number of the variable that is written out to the CDF. By default, cdfwrite writes out a single file CDF. When 'WriteMode' is set to 'Append', the 'Format' option is ignored, and the format of the pre-existing CDF is used.

Examples Write out a file ' exampl e. cdf' containing a variable ' Longi tude' with the value [0: 360].

cdfwrite('example', {'Longitude', 0:360});

Write out a file ' exampl e. cdf' containing variables ' Longi tude' and ' Lati tude' with the variable ' Lati tude' having a pad value of 10 for all out-of-bounds records that are accessed.

cdfwrite

	cdfwrite('example', {'Longitude', 0:360, 'Latitude', 10:20}, 'PadValues', {'Latitude', 10});
	Write out a file ' $exampl e. cdf'$, containing a variable ' Longi tude' with the value [0: 360], and with a variable attribute of ' val i dmi n' with the value 10.
	<pre>varAttribStruct.validmin = {'longitude' [10]}; cdfwrite('example', {'Longitude' 0:360}, 'VarAttribStruct', varAttribStruct);</pre>
See Also	cdfread, cdfinfo, cdfepoch

Purpose	Round toward infinity
Syntax	$B = \operatorname{ceil}(A)$
Description	$B = \operatorname{cei} l(A)$ rounds the elements of A to the nearest integers greater than or equal to A. For complex A, the imaginary and real parts are rounded independently.
Examples	a = [-1.9, -0.2, 3.4, 5.6, 7, 2.4+3.6i]
	a = Columns 1 through 4 -1.9000 -0.2000 3.4000 5.6000 Columns 5 through 6 7.0000 2.4000 + 3.6000i ceil(a)
	ans = Columns 1 through 4 -1.0000 0 4.0000 6.0000 Columns 5 through 6 7.0000 3.0000 + 4.0000i
See Also	fix, floor, round

Purpose	Create cell array
Syntax	<pre>c = cell(n) c = cell(m, n) or c = cell([m n]) c = cell(m, n, p,) or c = cell([m n p]) c = cell(size(A)) c = cell(javaobj)</pre>
Description	c = cell(n) creates an n-by-n cell array of empty matrices. An error message appears if n is not a scalar.
	c = cell(m, n) or $c = cell([m, n])$ creates an m-by-n cell array of empty matrices. Arguments m and n must be scalars.
	c = cell(m, n, p,) or $c = cell([m n p])$ creates an m-by-n-by-p cell array of empty matrices. Arguments m, n, p, must be scalars.
	c = cell(size(A)) creates a cell array the same size as A containing all empty matrices.
	c = cell(javaobj) converts a Java array or Java object, javaobj, into a MATLAB cell array. Elements of the resulting cell array will be of the MATLAB type (if any) closest to the Java array elements or Java object.
Examples	This example creates a cell array that is the same size as another array, A.
	A = ones(2, 2)
	$\begin{array}{cccc} A &= & & \\ & 1 & 1 & \\ & 1 & 1 & \\ \end{array}$
	c = cell(size(A))
	c = [] [] [] []

The next example converts an array of $j \mbox{ ava. } l \mbox{ ang. } String \mbox{ objects into a MATLAB cell array.}$

See Also num2cel1, ones, rand, randn, zeros

cell2mat

Purpose	Convert cell array of matrie	ces into single matrix
---------	------------------------------	------------------------

cell2mat(c)

Syntax m = cell2mat(c)

Description m = cell2mat(c) converts a multidimensional cell array, c, with contents of the same data type into a single matrix, m. The contents of c must be able to concatenate into a hyperrectangle. Moreover, for each pair of neighboring cells, the dimensions of the cell's contents must match, excluding the dimension in which the cells are neighbors.

The example shown below combines matrices in a 3-by-2 cell array into a single 60-by-50 matrix:

Remarks The dimensionality (or number of dimensions) of m will match the highest dimensionality contained in the cell array.

cell2mat is not supported for cell arrays containing cell arrays or objects.

Examples Combine the matrices in four cells of cell array C into the single matrix, M:

 $C = \{ [1] [2 3 4]; [5; 9] [6 7 8; 10 11 12] \}$ C = [1] [1x3 double] [2x1 double] [2x3 double]

C{1,1}				C{1,2}		
ans =				ans =		
1				2	3	4
C{2, 1}				C{2, 2}		
ans =				ans =		
5				6	7	8
9				10	11	12
M = cell	2mat(C)				
M =						
1	2	3	4			
5	6	7	8			
9	10	11	12			
mat2cell, nu	um2cel]	l				

See Also

cell2struct

Purpose	Convert cell array to structure array				
Syntax	s = cell2struct(c, fields, dim)				
Description	s = cell2struct(c, fields, dim) creates a structure array, s, from the information contained within cell array, c.				
	The fields argument specifies field names for the structure array. fields can be a character array or a cell array of strings.				
	The dimargument controls which axis of the cell array is to be used in creating the structure array. The length of c along the specified dimension must match the number of fields named in fields. In other words, the following must be true.				
	<pre>size(c, dim) == length(fields) % if fields is a cell array size(c, dim) == size(fields, 1) % if fields is a char array</pre>				
Examples	The cell array, c , in this example contains information on trees. The three columns of the array indicate the common name, genus, and average height of a tree.				
	c = { 'birch', 'betula', 65; 'maple', 'acer', 50} c = 'birch' 'betula' [65] 'maple' 'acer' [50]				
	To put this information into a structure with the fields name, genus, and hei ght, use cell2struct along the second dimension of the 2-by-3 cell array.				
	<pre>fields = {'name', 'genus', 'height'}; s = cell2struct(c, fields, 2);</pre>				
	This yields the following 2-by-1 structure array.				
See Also	fieldnames, struct2cell				

celldisp

Purpose	Display cell array contents.
Syntax	celldisp(C) celldisp(C, <i>nam</i> e)
Description	$\operatorname{cel} l \operatorname{di} \operatorname{sp}(C)$ recursively displays the contents of a cell array.
	celldisp(C, <i>name</i>) uses the string <i>name</i> for the display instead of the name of the first input (or ans).
Example	Use celldisp to display the contents of a 2-by-3 cell array:
	C = {[1 2] 'Tony' 3+4i; [1 2;3 4] -5 'abc'}; celldisp(C)
	$C\{1, 1\} = 1 2$
	$C\{2, 1\} = 1 2 3 4$
	C{1,2} = Tony
	$C\{2, 2\} = -5$
	$C\{1, 3\} =$ 3. 0000+ 4. 0000i
	$C\{2, 3\} = abc$
See Also	cel l pl ot

cellfun

Purpose	Apply a function to each element in a cell array
Syntax	<pre>D = cellfun('fname', C) D = cellfun('size', C, k) D = cellfun('isclass', C, classname)</pre>
Description	D = cellfun('fname', C) applies the function fname to the elements of the cell array C and returns the results in the double array D. Each element of D contains the value returned by fname for the corresponding element in C. The output array D is the same size as the cell array C.

FunctionReturn Valuei semptytrue for an empty cell elementi sl ogi caltrue for a logical cell elementi srealtrue for a real cell elementl engthLength of the cell elementndi msNumber of dimensions of the cell elementprodof si zeNumber of elements in the cell element

These functions are supported:

D = cellfun('size', C, k) returns the size along the k-th dimension of each element of C.

D = cellfun('isclass', C, 'classname') returns true for each element of C that matches classname. This function syntax returns false for objects that are a subclass of classname.

Limitations If the cell array contains objects, cellfun does not call overloaded versions of the function fname.

Example Consider this 2-by-3 cell array:

 $C\{1, 1\} = [1 2; 4 5];$ $C\{1, 2\} = 'Name';$

 $C\{1, 3\} = pi;$ $C\{2, 1\} = 2 + 4i;$ $C\{2, 2\} = 7;$ $C{2, 3} = magic(3);$ cellfun returns a 2-by-3 double array: D = cellfun('isreal',C) D = 1 1 1 1 0 1 len = cellfun('length', C) len = 2 4 1 1 1 3 isdbl = cellfun('isclass', C, 'double') isdbl = 1 0 1 1 1 1

See Also is empty, is logical, is real, length, ndims, size

cellplot

Purpose	Graphically display the structure of cell arrays
Syntax	<pre>cellplot(c) cellplot(c, 'legend') handles = cellplot()</pre>
Description	cel l pl ot (c) displays a figure window that graphically represents the contents of c. Filled rectangles represent elements of vectors and arrays, while scalars and short text strings are displayed as text.
	$\operatorname{cellplot}(c, '\operatorname{legend}')$ also puts a legend next to the plot.
	handles $=$ cellplot(c) displays a figure window and returns a vector of surface handles.
Limitations	The cellplot function can display only two-dimensional cell arrays.
Examples	Consider a 2-by-2 cell array containing a matrix, a vector, and two text strings: $c{1, 1} = '2-by-2';$ $c{1, 2} = 'eigenvalues of eye(2)';$ $c{2, 1} = eye(2);$ $c{2, 2} = eig(eye(2));$

The command cellplot(c) produces:

2-by-2	

Purpose	Create cell array of strings from character array						
Syntax	c = cellstr(S)	c = cellstr(S)					
Description		-		character array S into separate cells of k to a string matrix.			
Examples	Given the string	Given the string matrix					
	S=['abc ';'	defg';'hi ']					
	S = abc defg hi						
	whos S						
	Name Size Bytes Class						
	S 3x4 24 char array						
	The following command returns a 3-by-1 cell array.						
	c = cellstr(S)						
	c = ' abc' ' defg' ' hi '						
	whos c						
	Name	Si ze		Class			
	С	3x1	294	cell array			
See Also	iscellstr, strings						

Purpose	Conjugate Gradients Squared method
Syntax	x = cgs(A, b) $cgs(A, b, tol)$ $cgs(A, b, tol, maxit)$ $cgs(A, b, tol, maxit, M)$ $cgs(A, b, tol, maxit, M1, M2)$ $cgs(A, b, tol, maxit, M1, M2, x0)$ $cgs(afun, b, tol, maxit, m1fun, m2fun, x0, p1, p2,)$ $[x, flag] = cgs(A, b,)$ $[x, flag, relres] = cgs(A, b,)$ $[x, flag, relres, iter] = cgs(A, b,)$ $[x, flag, relres, iter, resvec] = cgs(A, b,)$
Description	<pre>x = cgs(A, b) attempts to solve the system of linear equations A*x = b for x. The n-by-n coefficient matrix A must be square and should be large and sparse. The column vector b must have length n. A can be a function af un such that afun(x) returns A*x. If cgs converges, a message to that effect is displayed. If cgs fails to converge after the maximum number of iterations or halts for any reason, a warning message is printed displaying the relative residual norm(b-A*x) /norm(b) and the iteration number at which the method stopped or failed. cgs(A, b, tol) specifies the tolerance of the method, tol. If tol is [], then cgs uses the default, 1e- 6. cgs(A, b, tol, maxit) specifies the maximum number of iterations, maxit. If maxit is [] then cgs uses the default, min(n, 20).</pre>
	cgs(A, b, tol, maxit, M) and $cgs(A, b, tol, maxit, M1, M2)$ use the preconditioner M or M = M1*M2 and effectively solve the system i nv(M) *A*x = i nv(M) *b for x. If M is [] then cgs applies no preconditioner. M can be a function that returns M\x. cgs(A, b, tol, maxit, M1, M2, x0) specifies the initial guess x0. If x0 is [], then cgs uses the default, an all-zero vector.

cgs(afun, b, tol, maxit, mlfun, m2fun, x0, p1, p2, ...) passes parameters p1, p2, ... to functions afun(x, p1, p2, ...), mlfun(x, p1, p2, ...), and m2fun(x, p1, p2, ...)

[x, flag] = cgs(A, b, ...) returns a solution x and a flag that describes the convergence of cgs.

Flag	Convergence
0	cgs converged to the desired tolerance tol within maxit iterations.
1	cgs iterated maxit times but did not converge.
2	Preconditioner M was ill-conditioned.
3	cgs stagnated. (Two consecutive iterates were the same.)
4	One of the scalar quantities calculated during cgs became too small or too large to continue computing.

Whenever fl ag is not 0, the solution x returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the fl ag output is specified.

```
[x, flag, relres] = cgs(A, b, ...) also returns the relative residual norm(b-A*x)/norm(b). If flag is 0, then relres <= tol.
```

[x, flag, relres, iter] = cgs(A, b, ...) also returns the iteration number at which x was computed, where 0 <= iter <= maxit.

[x, flag, relres, iter, resvec] = cgs(A, b, ...) also returns a vector of the residual norms at each iteration, including norm(b-A*x0).

Examples Example 1.

A = gallery('wilk', 21); b = sum(A, 2); tol = 1e-12; maxit = 15; M1 = diag([10:-1:1 1 1:10]); x = cgs(A, b, tol, maxit, M1, [], []); Alternatively, use this matrix-vector product function

```
function y = afun(x, n)
y = [ 0;
x(1:n-1)] + [((n-1)/2:-1:0)';
(1:(n-1)/2)'] .*x + [x(2:n);
0];
```

and this preconditioner backsolve function

function y = mfun(r, n) y = r . / [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

as inputs to cgs.

x1 = cgs(@afun, b, tol, maxit, @mfun, [], [], 21);

Note that both afun and mfun must accept cgs's extra input n=21.

Example 2.

load west0479
A = west0479
b = sum(A, 2)
[x, flag] = cgs(A, b)

fl ag is 1 because cgs does not converge to the default tolerance 1e-6 within the default 20 iterations.

[L1, U1] = luinc(A, 1e-5) [x1, flag1] = cgs(A, b, 1e-6, 20, L1, U1)

fl ag1 is 2 because the upper triangular U1 has a zero on its diagonal, and cgs fails in the first iteration when it tries to solve a system such as U1*y = r for y with backslash.

```
[L2, U2] = luinc(A, 1e-6)
[x2, flag2, relres2, iter2, resvec2] = cgs(A, b, 1e-15, 10, L2, U2)
```

fl ag2 is 0 because cgs converges to the tolerance of 6. 344e-16 (the value of rel res2) at the fifth iteration (the value of i ter2) when preconditioned by the incomplete LU factorization with a drop tolerance of 1e-6.

resvec2(1) = norm(b) and resvec2(6) = norm(b-A*x2). You can follow the

progress of ${\rm cgs}$ by plotting the relative residuals at each iteration starting from the initial estimate (iterate number 0) with

```
semilogy(0:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')
```


See Alsobi cg, bi cgstab, gmres, l sqr, l ui nc, mi nres, pcg, qmr, symml q@ (function handle), \ (backslash)

References[1] Barrett, R., M. Berry, T. F. Chan, et al., *Templates for the Solution of Linear*
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Sonneveld, Peter, "CGS: A fast Lanczos-type solver for nonsymmetric linear systems", *SIAM J. Sci. Stat. Comput.*, January 1989, Vol. 10, No. 1, pp. 36-52.

char

Purpose	Create character array (string)
Syntax	S = char(X) S = char(C) S = char(t1, t2, t3)
Description	S = char(X) converts the array X that contains positive integers representing character codes into a MATLAB character array (the first 127 codes are ASCII). The actual characters displayed depend on the character set encoding for a given font. The result for any elements of X outside the range from 0 to 65535 is not defined (and may vary from platform to platform). Use doubl e to convert a character array into its numeric codes.
	S = char(C) when C is a cell array of strings, places each element of C into the rows of the character array s. Use cellstr to convert back.
	S = char(t1, t2, t3,) forms the character array S containing the text strings T1,T2,T3, as rows, automatically padding each string with blanks to form a valid matrix. Each text parameter, T <i>i</i> , can itself be a character array. This allows the creation of arbitrarily large character arrays. Empty strings are significant.
Remarks	Ordinarily, the elements of A are integers in the range 32:127, which are the printable ASCII characters, or in the range 0:255, which are all 8-bit values. For noninteger values, or values outside the range 0:255, the characters printed are determined by $fix(rem(A, 256))$.
Examples	To print a 3-by-32 display of the printable ASCII characters: ascii = char(reshape(32:127, 32, 3)') ascii = ! " # \$ % & ' () *+, / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z [\] ^ _ ' a b c d e f g h i j k l m n o p q r s t u v w x y z { } ~

See Also cellstr, double, get, set, strings, strvcat, text

checkin

Purpose	Check file into source control system			
Graphical Interface	As an alternative to the checkin function, use Source Control Check In in the Editor, Simulink, or Stateflow File menu.			
Syntax	<pre>checkin('filename', 'comments', 'string') checkin({'filename1', 'filename2', 'filename3',}, 'comments', 'string') checkin('filename', 'option', 'value',)</pre>			
Description	checkin('filename', 'comments', 'string') checks in the file named filename to the source control system. Use the full pathname for the filename. You must save the file before checking it in. The file can be open or closed when you use checkin. The string argument is a MATLAB string containing check-in comments for the source control system. You must supply the comments argument and 'string'.			
	checkin({'filename1', 'filename2', 'filename3',}, ' comments ', 'string') checks in the files named filename1 through filenamen to the source control system. Use the full pathnames for the files. Additional arguments apply to all files checked in.			

checki n(' fi l ename', ' opti on', ' val ue', ...) provides additional checki n options. The opti on and val ue arguments are shown in the table below.

option Argument	Purpose	value Argument
'force'	When set to on, filename is checked in even if the file has not changed since it was checked out. The default value for force is off.	'on' 'off' (default)
'lock'	When set to on, filename remains checked out. Comments are submitted. The default value for lock is off.	'on' 'off' (default)

You can check in a file that you checked out in a previous MATLAB session or that you checked out directly from your source control system.

Examples Check in a File with Comments

Typing

```
\label{eq:checkin} checkin('\mbox{matlab/mymfiles/clock.m', 'comments', 'Adjustment for Y2K')
```

checks in the file <code>/matl</code> <code>ab/mymfil</code> <code>es/cl</code> <code>ock.</code> <code>m</code> to the source control system with the comment Adj ustment for Y2K.

Check in Multiple Files with Comments

Typing

```
checkin({'/matlab/mymfiles/clock.m', ...
'/matlab/mymfiles/calendar.m'}, 'comments', 'Adjustment for Y2K')
```

checks two files into the source control system using the same comment for each.

Check a File in and Keep It Checked out

Typing

checkin('/matlab/mymfiles/clock.m','comments','Adjustment for Y2K','lock','on')

checks the file <code>/matlab/mymfiles/clock.m</code> into the source control system and keeps the file checked out.

See Also checkout, cmopts, undocheckout

checkout

Purpose	Check file out of source control system		
Graphical Interface	As an alternative to the checkout function, use Source Control Check Out in the Editor, Simulink, or Stateflow File menu.		
Syntax	<pre>checkout('filename') checkout({'filename1','filename2','filename3',}) checkout('filename','option','value',)</pre>		
Description	checkout('filename') checks out the file named filename from the source control system. filename must be the full pathname for the file. The file can be open or closed when you use checkout.		
	$checkout({'filename1', 'filename2', 'filename3',}) checks out the files named filename1 through filenamen from the source control system. Use the full pathnames for the files. Additional arguments apply to all files checked out.$		
	checkout ('filename', ' <i>option'</i> , 'value',) provides additional checkout options. The <i>opti on</i> and <i>value</i> arguments are shown in the following table.		

option Argument	Purpose	value Argument		
'force'	When set to on, the checkout is forced, even if you already have the file checked out. This is effectively an undocheckout followed by a checkout. When force is set to of f, you can't check out the file if you already have it checked out.	'on' 'off' (default)		
'lock' When set to on, the checkout gets the file, allows you to write to it, and locks the file so that access to the file for others is read only. When set to off, the checkout gets a read-only version of the file, allowing another user to check out the file for updating. With lock set to off, you don't have to check in a file after checking it out.		'on' (default) 'off'		
' revision'	Checks out the specified revision of the file.	'version_num'		

If you end the MATLAB session, the file remains checked out. You can check in the file from within MATLAB during a later session, or directly from your source control system.

Examples

Check out a File Typing

checkout('/matlab/mymfiles/clock.m')

checks out the file /matl ab/mymf i les/cl ock. m from the source control system.

	Check out Multiple Files
	Typing
	<pre>checkout({'/matlab/mymfiles/clock.m', '/matlab/mymfiles/calendar.m'})</pre>
	checks out /matlab/mymfiles/clock.mand /matlab/mymfiles/calendar.mfrom the source control system.
	Force a Checkout, Even If File Is Already Checked out Typing
	<pre>checkout('/matlab/mymfiles/clock.m','force','on')</pre>
	checks out /matlab/mymfiles/clock.meven if clock.mis already checked out to you.
	Check out Specified Revision of File
	Typing
	<pre>checkout('/matlab/mymfiles/clock.m', 'revision', '1.1')</pre>
	checks out revision 1. 1 of clock.m.
See Also	checkin, cmopts, undocheckout

chol

Purpose	Cholesky factorization					
Syntax	R = chol(X) $[R, p] = chol(X)$					
Description	The chol function uses only the diagonal and upper triangle of X. The lower triangular is assumed to be the (complex conjugate) transpose of the upper. That is, X is Hermitian.					
						definite produces an upper triangular R so definite, an error message is printed.
	[R, p] = chol(X), with two output arguments, never produces an error message. If X is positive definite, then p is 0 and R is the same as above. If X is not positive definite, then p is a positive integer and R is an upper triangular matrix of order $q = p-1$ so that R' *R = X(1: q, 1: q).					then p is 0 and R is the same as above. If X is ostitive integer and R is an upper triangular
Examples	The binomial coefficients arranged in a symmetric array create an interesting positive definite matrix.					
	n = 5;					
	X = pascal(n)					
	X =					
			1		1	
			3			
	1 1		6 10	10 20	15 35	
	1	4 5	10	20 35	35 70	
	_					
	It is interesting because its Cholesky factor consists of the same coefficients, arranged in an upper triangular matrix.					
	R = cho R =	l (X)				

_		
-		
	1	

1	1	1	1	1
0	1	2	3	4
0	0	1	3	6
0	0	0	1	4
0	0	0	0	1

Destroy the positive definiteness (and actually make the matrix singular) by subtracting 1 from the last element. X(n, n) = X(n, n) - 1X = 1 1 1 1 1 1 2 3 4 5 1 3 6 10 15 1 4 20 35 10 1 5 15 35 69 Now an attempt to find the Cholesky factorization fails. Algorithm chol uses the the LAPACK subroutines DPOTRF (real) and ZPOTRF (complex). References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User's Guide (http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition, SIAM, Philadelphia, 1999. See Also cholinc, cholupdate

Purpose	Sparse incomplete Cholesky and Cholesky-Infinity factorizations				
Syntax	R = chol i nc(X, droptol) $R = chol i nc(X, options)$ $R = chol i nc(X, '0')$ $[R, p] = chol i nc(X, '0')$ $R = chol i nc(X, 'inf')$				
Description	chol i nc produces two different kinds of incomplete Cholesky factorizations: the drop tolerance and the 0 level of fill-in factorizations. These factors may be useful as preconditioners for a symmetric positive definite system of linear equations being solved by an iterative method such as pcg (Preconditioned Conjugate Gradients). chol i nc works only for sparse matrices.				
	R = chol i nc(X, droptol) performs the incomplete Cholesky factorization of X, with drop tolerance droptol.				
	R = chol i nc(X, options) allows additional options to the incomplete Cholesky factorization. options is a structure with up to three fields:				
	droptol Drop tolerance of the incomplete factorization				
	mi chol Modified incomplete Cholesky				
	rdi ag Replace zeros on the diagonal of R				
	Only the fields of interest need to be set.				
	droptol is a non-negative scalar used as the drop tolerance for the incomplete Cholesky factorization. This factorization is computed by performing the incomplete LU factorization with the pivot threshold option set to 0 (which forces diagonal pivoting) and then scaling the rows of the incomplete upper triangular factor, U, by the square root of the diagonal entries in that column. Since the nonzero entries U(i,j) are bounded below by droptol *norm(X(:,j)) (see l ui nc), the nonzero entries R(i,j) are bounded below by the local drop tolerance droptol *norm(X(:,j))/R(i,i).				

Setting droptol = 0 produces the complete Cholesky factorization, which is the default.

mi chol stands for modified incomplete Cholesky factorization. Its value is either 0 (unmodified, the default) or 1 (modified). This performs the modified incomplete LU factorization of X and scales the returned upper triangular factor as described above.

rdi ag is either 0 or 1. If it is 1, any zero diagonal entries of the upper triangular factor R are replaced by the square root of the local drop tolerance in an attempt to avoid a singular factor. The default is 0.

R = chol i nc(X, '0') produces the incomplete Cholesky factor of a real sparse matrix that is symmetric and positive definite using no fill-in. The upper triangular R has the same sparsity pattern as tri u(X), although R may be zero in some positions where X is nonzero due to cancellation. The lower triangle of X is assumed to be the transpose of the upper. Note that the positive definiteness of X does not guarantee the existence of a factor with the required sparsity. An error message results if the factorization is not possible. If the factorization is successful, R' *R agrees with X over its sparsity pattern.

[R, p] = chol i nc(X, '0') with two output arguments, never produces an error message. If R exists, p is 0. If R does not exist, then p is a positive integer and R is an upper triangular matrix of size q-by-n where q = p-1. In this latter case, the sparsity pattern of R is that of the q-by-n upper triangle of X. R' *R agrees with X over the sparsity pattern of its first q rows and first q columns.

R = chol i nc(X, 'inf') produces the Cholesky-Infinity factorization. This factorization is based on the Cholesky factorization, and additionally handles real positive semi-definite matrices. It may be useful for finding a solution to systems which arise in interior-point methods. When a zero pivot is encountered in the ordinary Cholesky factorization, the diagonal of the Cholesky-Infinity factor is set to I nf and the rest of that row is set to 0. This forces a 0 in the corresponding entry of the solution vector in the associated system of linear equations. In practice, X is assumed to be positive semi-definite so even negative pivots are replaced with a value of I nf.

Remarks The incomplete factorizations may be useful as preconditioners for solving large sparse systems of linear equations. A single 0 on the diagonal of the upper triangular factor makes it singular. The incomplete factorization with a drop tolerance prints a warning message if the upper triangular factor has zeros on the diagonal. Similarly, using the rdi ag option to replace a zero diagonal only

gets rid of the symptoms of the problem, but it does not solve it. The preconditioner may not be singular, but it probably is not useful, and a warning message is printed.

The Cholesky-Infinity factorization is meant to be used within interior-point methods. Otherwise, its use is not recommended.

Examples Example 1.

Start with a symmetric positive definite matrix, S.

S = del sq(numgrid('C', 15));

S is the two-dimensional, five-point discrete negative Lapacian on the grid generated by numgri d('C', 15).

Compute the Cholesky factorization and the incomplete Cholesky factorization of level 0 to compare the fill-in. Make S singular by zeroing out a diagonal entry and compute the (partial) incomplete Cholesky factorization of level 0.

C = chol (S); R0 = chol i nc(S, '0'); S2 = S; S2(101, 101) = 0; [R, p] = chol i nc(S2, '0');

Fill-in occurs within the bands of S in the complete Cholesky factor, but none in the incomplete Cholesky factor. The incomplete factorization of the singular S2 stopped at row p = 101 resulting in a 100-by-139 partial factor.

D1 = (R0' *R0). *spones(S) - S; D2 = (R' *R). *spones(S2) - S2;

D1 has elements of the order of eps, showing that R0' *R0 agrees with S over its sparsity pattern. D2 has elements of the order of eps over its first 100 rows and first 100 columns, D2(1: 100, :) and D2(:, 1: 100).

cholinc

Example 2.

The first subplot below shows that chol i nc(S, 0), the incomplete Cholesky factor with a drop tolerance of 0, is the same as the Cholesky factor of S. Increasing the drop tolerance increases the sparsity of the incomplete factors, as seen below.

Unfortunately, the sparser factors are poor approximations, as is seen by the plot of drop tolerance versus norm(R' *R-S, 1) / norm(S, 1) in the next figure.

Example 3.

The Hilbert matrices have (i,j) entries 1/(i+j-1) and are theoretically positive definite:

H3 = hilb(3)H3 = 1.0000 0.5000 0.3333 0.5000 0.3333 0.2500 0.3333 0.2500 0.2000 R3 = chol(H3)R3 = 1.0000 0.5000 0.3333 0 0.2887 0.2887 0 0.0745 0

In practice, the Cholesky factorization breaks down for larger matrices:

H20 = sparse(hilb(20)); [R,p] = chol(H20); p = 14 For hilb(20), the Cholesky factorization failed in the computation of row 14 because of a numerically zero pivot. You can use the Cholesky-Infinity factorization to avoid this error. When a zero pivot is encountered, cholinc places an Inf on the main diagonal, zeros out the rest of the row, and continues with the computation:

```
Rinf = cholinc(H20, 'inf');
```

In this case, all subsequent pivots are also too small, so the remainder of the upper triangular factor is:

full(Rinf(14: end, 14: end))						
ans =						
Inf	0	0	0	0	0	0
0	Inf	0	0	0	0	0
0	0	Inf	0	0	0	0
0	0	0	Inf	0	0	0
0	0	0	0	Inf	0	0
0	0	0	0	0	Inf	0
0	0	0	0	0	0	Inf

Limitations chol i nc works on square sparse matrices only. For chol i nc(X, '0') and chol i nc(X, 'inf'), X must be real.

AlgorithmR = chol i nc(X, droptol) is obtained from [L, U] = l ui nc(X, options), where
options. droptol = droptol and options. thresh = 0. The rows of the
uppertriangular U are scaled by the square root of the diagonal in that row, and
this scaled factor becomes R.

R = chol i nc(X, opti ons) is produced in a similar manner, except the rdi ag option translates into the udi ag option and the milu option takes the value of the mi chol option.

R = chol i nc(X, '0') is based on the "KJI" variant of the Cholesky factorization. Updates are made only to positions which are nonzero in the upper triangle of X.

R = chol i nc(X, 'i nf') is based on the algorithm in Zhang [2].

See Also chol, luinc, pcg

References[1] Saad, Yousef, Iterative Methods for Sparse Linear Systems, PWS Publishing
Company, 1996. Chapter 10, "Preconditioning Techniques."

[2] Zhang, Yin, *Solving Large-Scale Linear Programs by Interior-Point Methods Under the MATLAB Environment,* Department of Mathematics and Statistics, University of Maryland Baltimore County, Technical Report TR96-01

cholupdate

Purpose	Rank 1 update to Cholesky factorization				
Syntax	<pre>R1 = chol update(R, x) R1 = chol update(R, x, '+') R1 = chol update(R, x, '-') [R1, p] = chol update(R, x, '-')</pre>				
Description	R1 = chol update(R, x) where $R = chol(A)$ is the original Cholesky factorization of A, returns the upper triangular Cholesky factor of $A + x^*x'$, where x is a column vector of appropriate length. chol update uses only the diagonal and upper triangle of R. The lower triangle of R is ignored.				
	R1 = cholupdate(R, x, +) is the same as $R1 = cholupdate(R, x)$.				
	$R1 = chol update(R, x, '-')$ returns the Cholesky factor of A - x^*x' . An error message reports when R is not a valid Cholesky factor or when the downdated matrix is not positive definite and so does not have a Cholesky factoriza- tion.				
	[R1, p] = chol update(R, x, '-') will not return an error message. If p is 0, R1 is the Cholesky factor of A - x^*x' . If p is greater than 0, R1 is the Cholesky factor of the original A. If p is 1, chol update failed because the downdated matrix is not positive definite. If p is 2, chol update failed because the upper triangle of R was not a valid Cholesky factor.				
Remarks	chol update works only for full matrices.				
Example	$\begin{array}{l} A = pascal(4) \\ A = \end{array}$				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	R = chol(A)				

R =

1	1	1	1
0	1	2	3
0	0	1	3
0	0	0	1
$x = [0 \ 0$	0 1]';		

This is called a rank one update to A since $rank(x^*x')$ is 1:

A $+$	$\mathbf{x}^*\mathbf{x}'$			
ans	=			
	1	1	1	1
	1	2	3	4
	1	3	6	10
	1	4	10	21

Instead of computing the Cholesky factor with $R1 = chol(A + x^*x')$, we can use chol update:

R1 = cholupd R1 =	ate(R, x)		
1.0000	1.0000	1.0000	1.0000
0	1.0000	2.0000	3. 0000
0	0	1.0000	3. 0000
0	0	0	1.4142

Next destroy the positive definiteness (and actually make the matrix singular) by subtracting 1 from the last element of A. The downdated matrix is:

Α -	$\mathbf{x}^*\mathbf{x}'$			
ans	=			
	1	1	1	1
	1	2	3	4
	1	3	6	10
	1	4	10	19

Compare chol with chol update:

R1 = chol(A-x*x')
??? Error using ==> chol
Matrix must be positive definite.
R1 = cholupdate(R, x, '-')
??? Error using ==> cholupdate
Downdated matrix must be positive definite.

However, subtracting 0. 5 from the last element of A produces a positive definite matrix, and we can use chol update to compute its Cholesky factor:

$x = [0 \ 0 \ 0 \ 1/sqrt(2)]';$						
R1 =	chol upda	ate(R, x, ' - ')			
R1 =						
1	. 0000	1.0000	1.0000	1.0000		
	0	1.0000	2.0000	3.0000		
	0	0	1.0000	3. 0000		
	0	0	0	0.7071		

Algorithmchol update uses the algorithms from the LINPACK subroutines ZCHUD and
ZCHDD. chol update is useful since computing the new Cholesky factor from
scratch is an $O(N^3)$ algorithm, while simply updating the existing factor in
this way is an $O(N^2)$ algorithm.

See Also chol, qrupdate

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, *LINPACK Users' Guide*, SIAM, Philadelphia, 1979.

circshift

Durnoso	Shift amor aircularly				
Purpose	Shift array circularly				
Syntax	B = circshift(A, shiftsize)				
Description	B = ci rcshift(A, shiftsize) circularly shifts the values in the array, A, by shiftsize elements. shiftsize is a vector of integer scalars where the n-th element specifies the shift amount for the n-th dimension of array A. If an element in shiftsize is positive, the values of A are shifted down (or to the right). If it is negative, the values of A are shifted up (or to the left). If it is 0, the values in that dimension are not shifted.				
Example	Circularly shift first dimension values down by 1.				
	$A = \begin{bmatrix} 1 & 2 & 3; 4 & 5 & 6; & 7 & 8 & 9 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$				
	$B = \operatorname{circshift}(A, 1)$ B =				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	Circularly shift first dimension values down by 1 and second dimension values to the left by 1.				
	B = circshift(A, [1 -1]); B =				

В	=	ci rcsł	nift(A,	[1	-1])
B	=				
		8	9	7	
		2	3	1	
		5	6	4	

See Also fftshift, shiftdim

cla

Purpose	Clear current axes
Syntax	cla cla reset
Description	cl a deletes from the current axes all graphics objects whose handles are not hidden (i.e., their Handl eVi si bility property is set to on).
	cl a reset deletes from the current axes all graphics objects regardless of the setting of their Handl eVi si bility property and resets all axes properties, except Position and Units, to their default values.
Remarks	The cl a command behaves the same way when issued on the command line as it does in callback routines – it does not recognize the Handl eVi si bility setting of callback. This means that when issued from within a callback routine, cl a deletes only those objects whose Handl eVi si bility property is set to on.
See Also	clf, hold, newplot, reset "Axes Operations" for related functions

Purpose	Contour plot elevation labels		
Syntax	cl abel (C, h) cl abel (C, h, v) cl abel (C, h, 'manual')		
	clabel(C) clabel(C,v) clabel(C,'manual')		
Description	The cl abel function adds height labels to a two-dimensional contour plot.		
	cl abel (C, h) rotates the labels and inserts them in the contour lines. The function inserts only those labels that fit within the contour, depending on the size of the contour.		
	cl abel (C, h, v) creates labels only for those contour levels given in vector v, then rotates the labels and inserts them in the contour lines.		
	cl abel (C, h, 'manual ') places contour labels at locations you select with a mouse. Press the left mouse button (the mouse button on a single-button mouse) or the space bar to label a contour at the closest location beneath the center of the cursor. Press the Return key while the cursor is within the figure window to terminate labeling. The labels are rotated and inserted in the contour lines.		
	cl abel (C) adds labels to the current contour plot using the contour structure C output from contour. The function labels all contours displayed and randomly selects label positions.		
	cl abel (C, v) labels only those contour levels given in vector v.		
	cl abel (C, 'manual') places contour labels at locations you select with a mouse.		
Remarks	When the syntax includes the argument h, this function rotates the labels and inserts them in the contour lines (see Example). Otherwise, the labels are displayed upright and a '+' indicates which contour line the label is annotating.		

clabel

Examples Generate, draw, and label a simple contour plot.

[x, y] = meshgrid(-2:.2:2); z = x. ^exp(-x. ^2-y. ^2); [C, h] = contour(x, y, z); cl abel(C, h);

See Also

contour, contourc, contourf

"Annotating Plots" for related functions

Drawing Text in a Box for an example that illustrates the use of contour labels

Purpose	Create object or return class of object				
Syntax	<pre>str = class(object) obj = class(s, 'class_name') obj = class(s, 'class_name', parent1, parent2) obj = class(struct([]), 'class_name', parent1, parent2)</pre>				
Description	str = $class(obj ect)$ returns a string specifying the class of $obj ect$.				
	The following table lists the object class names that may be returned. All except the last one are MATLAB classes.				
	logical Logical array of true and false values				
	char	Characters array			
	i nt 8	8-bit signed integer array			
	ui nt8	8-bit unsigned integer array			
	i nt 16	16-bit signed integer array			
	ui nt 16	16-bit unsigned integer array			
	i nt 32	32-bit signed integer array			
	ui nt 32	32-bit unsigned integer array			
	i nt 64	64-bit signed integer array			
	ui nt 64	64-bit unsigned integer array			
	si ngl e	Single-precision floating point number array			
	doubl e	Double-precision floating point number array			
	cel l	Cell array			
	structStructure arrayfunction handleArray of values for calling functions indirectly'class_name'Custom MATLAB object class or Java class				

obj = class(s, 'class_name') creates an object of MATLAB class 'class_name' using structure s as a template. This syntax is valid only in a

	function named class_name. m in a directory named @class_name (where 'class_name' is the same as the string passed into class).		
	$obj = class(s, 'class_name', parent1, parent2,)$ creates an object of MATLAB class 'class_name' that inherits the methods and fields of the parent objects parent1, parent2, and so on. Structure s is used as a template for the object.		
	$obj = class(struct([]), 'class_name', parent1, parent2,)$ creates an object of MATLAB class 'class_name' that inherits the methods and fields of the parent objects parent1, parent2, and so on. Specifying the empty structure, struct([]), as the first argument ensures that the object created contains no fields other than those that are inherited from the parent objects.		
Examples	To return in nameStr the name of the class of Java object j		
	nameStr = class(j)		
	To create a user-defined MATLAB object of class pol ynom		
	<pre>p = class(p, 'polynom')</pre>		
See Also	inferiorto, i sa, superiorto		
	The "MATLAB Classes and Objects" and the "Calling Java from MATLAB" chapters in <i>Programming and Data Types</i> .		

Purpose	Clear Command Window	
Graphical Interface	As an alternative to the cl c function, use Clear Command Window in the MATLAB desktop Edit menu.	
Syntax	cl c	
Description	${\rm cl}{\rm c}$ clears all input and output from the Command Window display, giving you a "clean screen."	
	After using cl c, you cannot use the scroll bar to see the history of functions, but still can use the up arrow to recall statements from the command history.	
Examples	Use ${\rm cl}{\rm c}$ in an M-file to always display output in the same starting position on the screen.	
See Also	clear, clf, close, home	

clear

Purpose	Remove items from workspace, freeing up system memory		
Graphical Interface	As an alternative to the cl ear function, use Clear Workspace in the MATLAB desktop Edit menu, or in the context menu in the Workspace browser.		
Syntax	clear clear name clear name1 name2 name3 clear global name clear <i>keyword</i> clear('name1','name2','name3',)		
Description	 cl ear removes all variables from the workspace. This frees up system memory. cl ear name removes just the M-file or MEX-file function or variable name from the workspace. You can use wildcards (*) to remove items selectively. For example, cl ear my* removes any variables whose names begin with the string my. It removes debugging breakpoints in M-files and reinitializes persistent variables, since the breakpoints for a function and persistent variables are cleared whenever the M-file is changed or cleared. If name is global, it is removed from the current workspace, but left accessible to any functions declaring it global. If name has been locked by ml ock, it remains in memory. Use a partial path to distinguish between different overloaded versions of a function. For example, cl ear inl i ne/di spl ay clears only the di spl ay method for i nl i ne objects, leaving any other implementations in memory. cl ear name1 name2 name3 removes name1, name2, and name3 from the workspace. cl ear gl obal name removes the global variable name. If name is global, cl ear name removes name from the current workspace, but leaves it accessible to any 		
	name removes name from the current workspace, but leaves it accessible to any functions declaring it global. Use clear global name to completely remove a global variable.		

Keyword	eyword Items Cleared				
all	Removes all variables, functions, and MEX-files from memory, leaving the workspace empty. Using cl ear all removes debugging breakpoints in M-files and reinitializes persistent variables, since the breakpoints for a function and persistent variables are cleared whenever the M-file is changed or cleared. When issued from the Command Window prompt, also removes the Java packages import list.				
cl asses	The same as clear all, but also clears MATLAB class definitions. If any objects exist outside the workspace (for example, in user data or persistent variables in a locked M-file), a warning is issued and the class definition is not cleared. Issue a clear classes function if the number or names of fields in a class are changed.				
functi ons	Clears all the currently compiled M-functions and MEX-functions from memory. Using clear function removes debugging breakpoints in the function M-file and reinitializes persistent variables, since the breakpoints for a function and persistent variables are cleared whenever the M-file is changed or cleared.				
gl obal	Clears all global variables from the workspace.				
i mport	Removes the Java packages import list. It can only be issued from the Command Window prompt. It cannot be used in a function.				
vari abl es	Clears all variables from the workspace.				

clear *keyword* clears the items indicated by *keyword*.

cl ear('name1', 'name2', 'name3', ...) is the function form of the syntax. Use this form when the variable name or function name is stored in a string.

clear

Remarks	When you use clear in a function, it has the following effect on items in your function and base workspaces:				
	 clear name—If name is the name of a function, the function is cleared in both the function workspace and in your base workspace. clear functions—All functions are cleared in both the function workspace and in your base workspace. 				
	 clear global—All global variables are cleared in both the function workspace and in your base workspace. clear all—All functions, global variables, and classes are cleared in both the function workspace and in your base workspace. 				
Limitations	cl ear does not affect the amount of memory allocated to the MATLAB process under UNIX.				
Examples	Given a workspace containing the following variables				
	Name	Si ze	Bytes	Class	
	c frame gbl 1 gbl 2 xi nt	3x4 1x1 1x1 1x1 1x1 1x1	8	cell array java.awt.Frame double array (global) double array (global) int8 array	
	you can clear a single variable, xint, by typing				
	clear xint				
	To clear all global variables, type clear global whos				
	Name	Si ze	Bytes	Class	
	c frame	3x4 1x1	1200	cell array java.awt.Frame	

To clear all compiled M- and MEX-functions from memory, type clear functions. In the case shown below, clear functions was unable to clear one M-file function from memory, testfun, because the function is locked.

	clear functions	% Attempt to clear all functions.
	i nmem	
	ans =	
	'testfun'	% One M-file function remains in memory.
	mislocked testfun	
	ans =	
	1	% This function is locked in memory.
	Once you unlock the function	n from memory, you can clear it.
	munlock testfun	
	clear functions	
	i nmem	
	ans =	
	Empty cell array: 0	- by- 1
See Also	clc, close, import, mlock, m	unlock, pack, persistent, who, whos

clear (serial)

Purpose	Remove a serial port object from the MATLAB workspace		
Syntax	clear obj		
Arguments	obj A serial port object or an array of serial port objects.		
Description	clear obj removes obj from the MATLAB workspace.		
Remarks	If obj is connected to the device and it is cleared from the workspace, then obj remains connected to the device. You can restore obj to the workspace with the i nstrfind function. A serial port object connected to the device has a Status property value of open.		
	To disconnect obj from the device, use the fcl ose function. To remove obj from memory, use the del et e function. You should remove invalid serial port objects from the workspace with cl ear.		
	If you use the ${\rm hel}~{\rm p}$ command to display help for ${\rm cl}~{\rm ear},$ then you need to supply the pathname shown below.		
	help serial/private/clear		
Example	This example creates the serial port object s , copies s to a new variable $scopy$, and clears s from the MATLAB workspace. s is then restored to the workspace with i nstrfind and is shown to be identical to $scopy$.		
	<pre>s = serial('COM1'); scopy = s; clear s s = instrfind; isequal(scopy, s) ans = 1</pre>		
See Also	Functions del ete, fcl ose, i nstrfind, i sval i d		
	Properties Status		

Purpose	Clear current figure window
Syntax	clf clf reset
Description	cl f deletes from the current figure all graphics objects whose handles are not hidden (i.e., their Handl eVi si bi l i ty property is set to on).
	clf reset deletes from the current figure all graphics objects regardless of the setting of their Handl eVi si bility property and resets all figure properties, except Position, Units, PaperPosition, and PaperUnits to their default values.
Remarks	The cl f command behaves the same way when issued on the command line as it does in callback routines – it does not recognize the Handl eVi si bility setting of callback. This means that when issued from within a callback routine, cl f deletes only those objects whose Handl eVi si bility property is set to on.
See Also	cl a, cl c, hol d, reset "Figure Windows" for related functions

clipboard

Purpose	Copy and paste strings to and from the system clipboard.	
Graphical Interface	As an alternative to cl i pboard, use the Import Wizard. To use the Import Wizard to copy data from the clipboard, select Paste Special from the Edit menu.	
Syntax	clipboard('copy',data) str = clipboard('paste') data = clipboard('pastespecial')	
Description	<pre>clipboard('copy', data) sets the clipboard contents to data. If data is not a character array, clipboard uses mat2str to convert it to a string. str = clipboard('paste') returns the current contents of the clipboard as a</pre>	
	string or as an empty string (' '), if the current clipboard content cannot be converted to a string.	
	data = $clipboard('pastespecial')$ returns the current contents of the clipboard as an array using uiimport.	
	Note Requires an active X display on Unix and Java elsewhere.	
See Also	load, ui i mport	

clock

Purpose	Current time as a date vector	
Syntax	c = cl ock	
Description	$c\ =\ cl\ ock\ returns\ a\ 6-element\ date\ vector\ containing\ the\ current\ date\ and\ time\ in\ decimal\ form:$	
	c = [year month day hour minute seconds]	
	The first five elements are integers. The seconds element is accurate to several digits beyond the decimal point. The statement $fix(clock)$ rounds to integer display format.	
See Also	cputime, datenum, datevec, etime, tic, toc	

close

Purpose	Delete specified figure
Syntax	<pre>close close(h) close name close all close all hidden status = close()</pre>
Description	${\rm cl}$ ose deletes the current figure or the specified figure(s). It optionally returns the status of the close operation.
	cl ose deletes the current figure (equivalent to $cl ose(gcf)$).
	close(h) deletes the figure identified by h. If h is a vector or matrix, $close$ deletes all figures identified by h.
	close name deletes the figure with the specified name.
	close all deletes all figures whose handles are not hidden.
	close all hidden deletes all figures including those with hidden handles.
	status = $close()$ returns 1 if the specified windows have been deleted and 0 otherwise.
Remarks	The close function works by evaluating the specified figure's CloseRequestFcn property with the statement:
	eval (get(h, 'CloseRequestFcn'))
	The default Cl oseRequestFcn, cl osereq, deletes the current figure using del ete(get(0, 'CurrentFigure')). If you specify multiple figure handles, cl ose executes each figure's Cl oseRequestFcn in turn. If MATLAB encounters an error that terminates the execution of a Cl oseRequestFcn, the figure is not deleted. Note that using your computer's window manager (i.e., the Close menu item) also calls the figure's Cl oseRequestFcn.
	If a figure's handle is hidden (i.e., the figure's Handl eVi si bility property is set to call back or off and the root ShowHiddenHandles property is set on), you

must specify the hidden option when trying to access a figure using the all option. To delete all figures unconditionally, use the statements: set(0, 'ShowHi ddenHandl es', 'on') del ete(get(0, 'Children')) The delete function does not execute the figure's CloseRequestFcn; it simply deletes the specified figure. The figure CloseRequestFcn allows you to either delay or abort the closing of a figure once the close function has been issued. For example, you can display a dialog box to see if the user really wants to delete the figure or save and clean up before closing. See Also del ete, figure, gcf The figure Handl eVi si bility property The root ShowHi ddenHandl es property "Figure Windows" for related functions

close

Purpose	Close Audio Video Interleaved (AVI) file	
Syntax	avi obj = close(avi obj)	
Description	avi obj $=$ close(avi obj) finishes writing and closes the AVI file associated with avi obj, which is an AVI file object, created using the avi file function.	
See Also	avifile, addframe, movie2avi	

Purpose	Default figure close request function
Syntax	closereq
Description	cl osereq delete the current figure.
See Also	The figure Cl oseRequestFcn property
	"Figure Windows" for related functions

cmopts

Purpose	Get name of source control system		
Graphical Interface	As an alternative to cmopts, use preferences. Select File -> Preferences in the MATLAB desktop, and then select General -> Source Control .		
Syntax	cmopts		
Description	cmopts returns the name of the source control system you selected using preferences, which is one of the following:		
	clearcase customverctrl		
	pvcs		
	rcs sourcesafe		
	If you have not selected a source control system, <code>cmopts</code> returns		
	none		
	Specifying a Source Control System		
	To specify the source control system:		
	1 From the MATLAB Editor window or from a Simulink or Stateflow model window, select File -> Preferences .		
	The Preferences dialog box opens.		
	2 In the left pane, click the + for General , and then select Source Control . The currently selected system is shown.		
	3 Select the system you want to use from the Source control system list.		
	4 Click OK .		
	For more information, see source control preferences.		
Examples	Type $cmopts$ and MATLAB returns rcs , meaning the source control system specified in preferences is RCS.		
See Also	checkin, checkout, customverctrl		

Purpose	Column approximate minimum degree permutation		
Syntax	<pre>p = col amd(p = col amd([p, stats] = [p, stats] =</pre>	(S, knobs)	
Description	p = col amd(S) returns the column approximate minimum degree permutation vector for the sparse matrix S. For a non-symmetric matrix S, S(:, p) tends to have sparser LU factors than S. The Cholesky factorization of S(:, p)' * S(:, p) also tends to be sparser than that of S' *S.		
	knobs is a two-element vector. If S is m-by-n, then rows with more than $(knobs(1)) *n$ entries are ignored. Columns with more than $(knobs(2)) *m$ entries are removed prior to ordering, and ordered last in the output permutation p. If the knobs parameter is not present, then $knobs(1) = knobs(2) = spparms('wh_frac')$. stats is an optional vector that provides data about the ordering and the validity of the matrix S.		
	stats(1)	Number of dense or empty rows ignored by col and	
	stats(2)	Number of dense or empty columns ignored by col amd	
	stats(3)	Number of garbage collections performed on the internal data structure used by col amd (roughly of size 2. 2*nnz(S) + 4*m + 7*n integers)	
	stats(4)	0 if the matrix is valid, or 1 if invalid	
	stats(5)	Rightmost column index that is unsorted or contains duplicate entries, or 0 if no such column exists	
	stats(6)	Last seen duplicate or out-of-order row index in the column index given by stats(5), or 0 if no such row index exists	
	stats(7)	Number of duplicate and out-of-order row indices	

Although, MATLAB built-in functions generate valid sparse matrices, a user may construct an invalid sparse matrix using the MATLAB C or Fortran APIs and pass it to col amd. For this reason, col amd verifies that S is valid:

	• If a row index appears two or more times in the same column, col amd ignores the duplicate entries, continues processing, and provides information about the duplicate entries in stats(4:7).
	• If row indices in a column are out of order, col and sorts each column of its internal copy of the matrix S (but does not repair the input matrix S), continues processing, and provides information about the out-of-order entries in stats(4: 7).
	• If S is invalid in any other way, col amd cannot continue. It prints an error message, and returns no output arguments (p or stats).
	The ordering is followed by a column elimination tree post-ordering.
	Note col amd tends to be faster than col mmd and tends to return a better ordering.
See Also	col mmd, col perm, spparms, symamd, symmmd, symrcm
References	[1] The authors of the code for col amd are Stefan I. Larimore and Timothy A. Davis (davi s@ci se. ufl. edu), University of Florida. The algorithm was developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory. Sparse Matrix Algorithms Research at the University of Florida: http://www.cise.ufl.edu/research/sparse/

colmmd

colmmd

Comparing the spy plot of the LU factorization of the original matrix with that of the reordered matrix shows that minimum degree reduces the time and storage requirements by better than a factor of 2.8. The nonzero counts are 16777 and 5904, respectively.

spy(lu(A))
spy(lu(A(:,p)))

colmmd

See Alsocol amd, col perm, lu, spparms, symamd, symmd, symrcm
The arithmetic operator \References[1] George, Alan and Liu, Joseph, "The Evolution of the Minimum Degree
Ordering Algorithm," SIAM Review, 1989, 31:1-19.[2] Gilbert, John R., Cleve Moler, and Robert Schreiber, "Sparse Matrices in
MATLAB: Design and Implementation," SIAM Journal on Matrix Analysis
and Applications 13, 1992, pp. 333-356.

colorbar

Purpose	Display colorbar showing the color scale
Syntax	<pre>col orbar col orbar('vert') col orbar('hori z') col orbar(h) h = col orbar() col orbar(, 'peer', axes_handl e)</pre>
Description	The col orbar function displays the current colormap in the current figure and resizes the current axes to accommodate the colorbar.
	col orbar updates the most recently created colorbar or, when the current axes does not have a colorbar, col orbar adds a new vertical colorbar.
	col orbar('vert') adds a vertical colorbar to the current axes.
	colorbar('horiz') adds a horizontal colorbar to the current axes.
	col orbar(h) uses the axes h to create the colorbar. The colorbar is horizontal if the width of the axes is greater than its height, as determined by the axes Positi on property.
	h = col orbar() returns a handle to the colorbar, which is an axes graphics object.
	$col orbar(\ldots, 'peer', axes_handl e)$ creates a colorbar associated with the axes $axes_handl e$ instead of the current axes.
Remarks	col orbar works with two-dimensional and three-dimensional plots.
Examples	Display a colorbar beside the axes. surf(peaks(30)) colormap cool

colorbar

colordef

Purpose	Sets default property values to display different color schemes
Syntax	<pre>colordef white colordef black colordef none colordef(fig, color_option) h = colordef('new', color_option)</pre>
Description	col ordef enables you to select either a white or black background for graphics display. It sets axis lines and labels to show up against the background color.
	col ordef white sets the axis background color to white, the axis lines and labels to black, and the figure background color to light gray.
	col ordef bl ack sets the axis background color to black, the axis lines and labels to white, and the figure background color to dark gray.
	col ordef none sets the figure coloring to that used by MATLAB Version 4 (essentially a black background).
	$col ordef(fig, col or_opti on)$ sets the color scheme of the figure identified by the handle fig to the color option ' white' , ' $bl ack'$, or ' none' .
	$h = col ordef('new', col or_option)$ returns the handle to a new figure created with the specified color options (i.e., 'white', 'black', or 'none').
Remarks	col ordef affects only subsequently drawn figures, not those currently on the display. This is because col ordef works by setting default property values (on the root or figure level). You can list the currently set default values on the root level with the statement:
	get(0, 'defaults')
	You can remove all default values using the reset command: reset(0)
	See the get and reset references pages for more information.
See Also	whitebg

"Color Operations" for related functions

colormap

Purpose	Set and get the current colormap
Syntax	<pre>colormap(map) colormap('default') cmap = colormap</pre>
Description	A colormap is an <i>m</i> -by-3 matrix of real numbers between 0.0 and 1.0. Each row is an RGB vector that defines one color. The k^{th} row of the colormap defines the <i>k</i> -th color, where map(k, :) = [r(k) g(k) b(k)]) specifies the intensity of red, green, and blue.
	colormap(map) sets the colormap to the matrix map. If any values in map are outside the interval $[0\ 1]$, MATLAB returns the error: Colormap must have values in $[0, 1]$.
	col ormap(' defaul t') sets the current colormap to the default colormap.
	cmap = colormap; retrieves the current colormap. The values returned are in the interval [0 1].
	Specifying Colormaps M-files in the col or directory generate a number of colormaps. Each M-file accepts the colormap size as an argument. For example,
	colormap(hsv(128))
	creates an hsv colormap with 128 colors. If you do not specify a size, MATLAB creates a colormap the same size as the current colormap.
	Supported Colormaps MATLAB supports a number of colormaps.
	 autumn varies smoothly from red, through orange, to yellow. bone is a grayscale colormap with a higher value for the blue component. This colormap is useful for adding an "electronic" look to grayscale images. col orcube contains as many regularly spaced colors in RGB colorspace as possible, while attempting to provide more steps of gray, pure red, pure green, and pure blue.

- cool consists of colors that are shades of cyan and magenta. It varies smoothly from cyan to magenta.
- copper varies smoothly from black to bright copper.
- fl ag consists of the colors red, white, blue, and black. This colormap completely changes color with each index increment.
- gray returns a linear grayscale colormap.
- hot varies smoothly from black, through shades of red, orange, and yellow, to white.
- hsv varies the hue component of the hue-saturation-value color model. The colors begin with red, pass through yellow, green, cyan, blue, magenta, and return to red. The colormap is particularly appropriate for displaying periodic functions. hsv(m) is the same as hsv2rgb([h ones(m, 2)]) where h is the linear ramp, h = (0: m-1)'/m.
- j et ranges from blue to red, and passes through the colors cyan, yellow, and orange. It is a variation of the hsv colormap. The j et colormap is associated with an astrophysical fluid jet simulation from the National Center for Supercomputer Applications. See the "Examples" section.
- lines produces a colormap of colors specified by the axes ColorOrder property and a shade of gray.
- pi nk contains pastel shades of pink. The pink colormap provides sepia tone colorization of grayscale photographs.
- pri sm repeats the six colors red, orange, yellow, green, blue, and violet.
- spring consists of colors that are shades of magenta and yellow.
- summer consists of colors that are shades of green and yellow.
- white is an all white monochrome colormap.
- winter consists of colors that are shades of blue and green.
- **Examples** The images and colormaps demo, i magedemo, provides an introduction to colormaps. Select **Color Spiral** from the menu. This uses the pcol or function to display a 16-by-16 matrix whose elements vary from 0 to 255 in a rectilinear spiral. The hsv colormap starts with red in the center, then passes through yellow, green, cyan, blue, and magenta before returning to red at the outside end of the spiral. Selecting **Colormap Menu** gives access to a number of other colormaps.

colormap

The rgbpl ot function plots colormap values. Try rgbpl ot (hsv), rgbpl ot (gray), and rgbpl ot (hot).

The following commands display the fluj et data using the j et colormap.

load flujet image(X) colormap(jet)

The demos directory contains a CAT scan image of a human spine. To view the image, type the following commands:

load spine image(X)

colormap

colormap bone

AlgorithmEach figure has its own Col ormap property. col ormap is an M-file that sets and
gets this property.

See Also brighten, caxis, colormapeditor, colorbar, contrast, hsv2rgb, pcolor, rgb2hsv, rgbpl ot

The Col ormap property of figure graphics objects.

"Color Operations" for related functions

Coloring Mesh and Surface Plots for more information about colormaps and other coloring methods.

colormapeditor

Purpose Start colormap editor

Syntax colormapeditor

Description colormapeditor displays the current figure's colormap as a strip of rectangular cells in the colormap editor. Node pointers are colored cells below the colormap strip that indicate points in the colormap where the rate of the variation of R, G, and B values change. You can also work in the HSV colorspace by setting the **Interpolating Colorspace** selector to HSV.

You can also start the colormap editor by selecting **Colormap** from the **Edit** menu.

Node Pointer Operations

You can select and move node pointers to change a range of colors in the colormap. The color of a node pointer remains constant as you move it, but the colormap changes by linearly interpolating the RGB values between nodes.

Change the color at a node by double-clicking the node pointer. MATLAB displays a color picker from which you can select a new color. After you select a new color at a node, MATLAB reinterpolates the colors in between nodes.

Operation	How to Perform	
Add a node	Click below the corresponding cell in the colormap strip	
Select a node	Left-click on the node	
Select multiple nodes	Adjacent: left-click on first node, Shift+click on the last node Nonadjacent: left-click on first node, Ctrl+click on subsequent nodes	
Move a node	Select and drag with the mouse or select and use the left and right arrow keys.	

Operation	How to Perform		
Move multiple nodes	Select multiple nodes and use the left and right arrow keys to move nodes as a group. Movement stops when one of the selected nodes hits an unselected node or an end node.		
Delete a node	Select the node and then press the Delete key, or select Delete from the Edit menu, or type Ctrl+x .		
Delete multiple nodes	Select the nodes and then press the Delete key, or select Delete from the Edit menu, or type Ctrl+x .		
Display color picker for a node	Double click on the node pointer.		

Current Color Info

When you put the mouse over a color cell or node pointer, the colormap editor displays the following information about that colormap element:

- The element's index in the colormap
- The value from the graphics object color data that is mapped to the node's color (i.e., data from the CData property of any image, patch, or surface objects in the figure)
- The color's RGB and HSV color value

Interpolating Colorspace

The colorspace determines what values are used to calculate the colors of cells between nodes. For example, in the RGB colorspace, internode colors are calculated by linearly interpolating the red, green, and blue intensity values from one node to the next. Switching to the HSV colorspace causes the colormap editor to recalculate the colors between nodes using the hue, saturation, and value components of the color definition.

Note that when you switch from one colorspace to another, the color editor preserves the number, color, and location of the node pointers, which can cause the colormap to change.

Interpolating in HSV: Since hue is conceptually mapped about a color circle, the interpolation between hue values can be ambiguous. To minimize this ambiguity, the interpolation uses the shortest distance around the circle. For example, interpolating between two nodes, one with at hue of 2 (slightly orange red) and another with a hue of 356 (slightly magenta red), does not result in hues 3,4,5...353,354,355 (orange/red-yellow-green-cyan-blue-magenta/red).

Taking the shortest distance around the circle gives 357,358,1,2 (orange/red-red-magenta/red).

Color Data Min and Max

The **Color Data Min** and **Color Data Max** text fields enable you to specify values for the axes CLi m property. These values change the mapping of object color data (the CData property of images, patches, and surfaces) to the colormap. See Axes Color Limits — The Clim Property for discussion and examples of how to use this property.

Examples This example modifies a default MATLAB colormap so that ranges of data values are displayed in specific ranges of color. The graph is a slice plane illustrating a cross section of fluid flow through a jet nozzle. See the sl i ce reference page for more information on this type of graph.

Example Objectives

The objectives are as follows:

- Regions of flow from left to right (positive data) are mapped to colors from yellow through orange to dark red. Yellow is slowest and dark red is the fastest moving fluid.
- Regions that have a speed close to zero are colored green.
- Regions where the fluid is actually moving right to left (negative data) are shades of blue (darker blue is faster).

The following picture shows the desired coloring of the slice plane. The colorbar shows the data to color mapping.

Running the Example

Note If you are viewing this documentation in the MATLAB help browser, you can display the graph used in this example by running this M-file from the MATLAB editor (select **Run** from the **Debug** menu).

Click Run Demo if you want to run a demonstration of the example.

Initially, the default colormap (j et) colored the slice plane, as illustrated in the following picture. Note that this example uses a colormap that is 48 elements to display wider bands of color (the default is 64 elements).

1 Start the colormap editor using the colormapeditor command. The color map editor displays the current figure's colormap, as shown in the following picture.

2 Since we want the regions of left-to-right flow (positive speed) to range from yellow to dark red, we can delete the cyan node pointer. To do this, first select it by clicking with the left mouse button and press **Delete**. The colormap now looks like this.

	olorn	nap Edi	tor				_ 🗆 ×
File	Edit	<u>T</u> ools	Help				
			.U		<u> </u>		
				Current Color Info-			
				Index: 10	R: 42	H: 238	
				CData: 0.1464	G: 42	S: 80	
					B: 212	V: 84	
					Colo	or Data Min:-2.483	2
	Inte	erpolati	ing Co	lorspace: RGB 💌			
					C010	r Data Max: <mark>11.541</mark>	/
		Immed	liate A	pply Apply	ок	Cancel	Help

The **Immediate Apply** box is checked so the graph displays the results of the changes made to the colormap.

3 We want the fluid speed values around zero to stand out, so we need to find the color cell where the negative-to-positive transition occurs. Dragging the cursor over the color strip enables you to read the data values in the **Current Color Info** panel.

In this case, cell 10 is the first positive value, so we click below that cell and create a node pointer. Double-clicking on the node pointer displays the color picker. Set the color of this node to green.

The graph continues to update to the modified colormap.

4 In the current state, the colormap colors are interpolated from the green node to the yellowish node about 20 cells away. We actually want only the single cell that is centered around zero to be colored green. To limit the color green to one cell, move the blue and yellow node pointers next to the green pointer.

🥠 (Colorn	nap Edi	itor				
File	Edit	Tools	Help				
			M				
			12				
-							
				Current Color Info			
				Index: 10	R: 0	H: 119	
				CData: 0.1464	G: 255	S: 100	
					B: 0	V: 100	
Color Data Min: -2.4832							
	Color Data Max: 11.5417						
	R	Immed	liato Ar	oply Apply	Ок	Cancel	Help
	I.	miniet	nate A	Abbia Ybbia			

5 Before making further adjustments to the colormap, we need to move the green cell so that it is centered around zero. Use the colorbar to locate the green cell.

To recenter the green cell around zero, select the blue, green, and yellow node pointers (left-click on blue, **Shift+click** on yellow) and move them as a group using the left arrow key. Watch the colorbar in the figure window to see when the green color is centered around zero.

🥠 (olorn	nap Edi	tor				_ 🗆 🗵
File	Edit	<u>T</u> ools	Help				
		ď	n				
			7				
-							
				-Current Color Info-			
				Index: 9	R: 0	H: 119	
				CData: -0.1458	G: 255	S: 100	
					B: 0	V: 100	
				L			
Color Data Min: -2.4832							
		npolau	ng oolo		Co	lor Data Max: 11.541	7
	_				1	1	
		Immed	liate Ap	ply Apply	ок	Cancel	Help

The slice plane now has the desired range of colors for negative, zero, and positive data.

6 Increase the orange-red coloring in the slice by moving the red node pointer towards the yellow node.

📣 Co	olorm	ap Edil	tor					- D ×
<u>File</u> !	Edit	Tools	Help					
		- M	ń		1			
				l	6			
				Current Color Info			1	
				Index: 28	R: 255	H: 0		
				CData: 5.4058	G: 0	S: 100		
					B: 0	V: 100		
							-	
Color Data Min: -2.4832								
			-		C	olor Data Max: 11.54	17	
		mmed	iate Ap	ply Apply	01	Cancel	Help	

7 Darken the end points to bring out more detail in the extremes of the data. Double-click on the end nodes to display the color picker. Set the red end point to the RGB value [50 0 0] and set the blue end point to the RGB value [0 0 50].

The slice plane coloring now matches the example objectives.

colormapeditor

ColorSpec

Purpose Color specification

Description

tion Col or Spec is not a command; it refers to the three ways in which you specify color in MATLAB:

- RGB triple
- Short name
- Long name

The short names and long names are MATLAB strings that specify one of eight predefined colors. The RGB triple is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color; the intensities must be in the range [0 1]. The following table lists the predefined colors and their RGB equivalents.

RGB Value	Short Name	Long Name
[1 1 0]	у	yellow
[1 0 1]	m	magenta
[0 1 1]	с	cyan
[1 0 0]	r	red
[0 1 0]	g	green
[0 0 1]	b	bl ue
[1 1 1]	w	white
[0 0 0]	k	bl ack

Remarks The eight predefined colors and any colors you specify as RGB values are not part of a figure's colormap, nor are they affected by changes to the figure's colormap. They are referred to as *fixed* colors, as opposed to *colormap* colors.

Examples To change the background color of a figure to green, specify the color with a short name, a long name, or an RGB triple. These statements generate equivalent results:

whitebg('g')

whitebg('green')
whitebg([0 1 0]);

You can use Col or Spec anywhere you need to define a color. For example, this statement changes the figure background color to pink:

set(gcf, 'Color', [1, 0. 4, 0. 6])

See Also bar, bar3, colordef, colormap, fill, fill3, whitebg "Color Operations" for related functions

colperm

Purpose	Sparse column permutation based on nonzero count
Syntax	j = col perm(S)
Description	j = col perm(S) generates a permutation vector j such that the columns of $S(:, j)$ are ordered according to increasing count of nonzero entries. This is sometimes useful as a preordering for LU factorization; in this case use $lu(S(:, j))$.
	If S is symmetric, then $j = \text{col perm}(S)$ generates a permutation j so that both the rows and columns of $S(j, j)$ are ordered according to increasing count of nonzero entries. If S is positive definite, this is sometimes useful as a preordering for Cholesky factorization; in this case use chol $(S(j, j))$.
Algorithm	The algorithm involves a sort on the counts of nonzeros in each column.
Examples	The n-by-n <i>arrowhead</i> matrix A = [ones(1, n); ones(n-1, 1) speye(n-1, n-1)] has a full first row and column. Its LU factorization, lu(A), is almost completely full. The statement j = col perm(A) returns j = [2: n 1]. So A(j, j) sends the full row and column to the bottom and the rear, and lu(A(j, j)) has the same nonzero structure as A itself. On the other hand, the Bucky ball example, B = bucky has exactly three nonzero elements in each row and column, so j = col perm(B) is the identity permutation and is no help at all for reducing fill-in with subsequent factorizations.
See Also	chol, col amd, col mmd, lu, spparms, symamd, symmmd, symrcm

comet

Purpose	Two-dimensional comet plot
Syntax	<pre>comet(y) comet(x, y) comet(x, y, p)</pre>
Description	A comet plot is an animated graph in which a circle (the comet <i>head</i>) traces the data points on the screen. The comet <i>body</i> is a trailing segment that follows the head. The <i>tail</i> is a solid line that traces the entire function.
	comet(y) displays a comet plot of the vector y.
	comet(x, y) displays a comet plot of vector y versus vector x.
	comet(x, y, p) specifies a comet body of length $p*length(y)$. p defaults to 0. 1.
Remarks	Note that the trace left by comet is created by using an EraseMode of none, which means you cannot print the plot (you get only the comet head) and it disappears if you cause a redraw (e.g., by resizing the window).
Examples	Create a simple comet plot:
	t = 0:.01:2*pi; $x = cos(2*t).*(cos(t).^2);$ $y = sin(2*t).*(sin(t).^2);$ comet(x, y);
See Also	comet3
	"Direction and Velocity Plots" for related functions

comet3

Purpose	Three-dimensional comet plot
Syntax	<pre>comet3(z) comet3(x, y, z) comet3(x, y, z, p)</pre>
Description	A comet plot is an animated graph in which a circle (the comet <i>head</i>) traces the data points on the screen. The comet <i>body</i> is a trailing segment that follows the head. The <i>tail</i> is a solid line that traces the entire function.
	comet 3(z) displays a three-dimensional comet plot of the vector z.
	comet $3(x, y, z)$ displays a comet plot of the curve through the points $[x(i), y(i), z(i)]$.
	comet3(x, y, z, p) specifies a comet body of length $p*length(y)$.
Remarks	Note that the trace left by comet 3 is created by using an EraseMode of none, which means you cannot print the plot (you get only the comet head) and it disappears if you cause a redraw (e.g., by resizing the window).
Examples	Create a three-dimensional comet plot.
	t = -10*pi: pi / 250: 10*pi; comet3((cos(2*t).^2).*sin(t), (sin(2*t).^2).*cos(t), t);
See Also	comet
	"Direction and Velocity Plots" for related functions

Purpose	Companion matrix	
Syntax	A = compan(u)	
Description	A = $compan(u)$ returns the corresponding companion matrix whose first row is $-u(2:n)/u(1)$, where u is a vector of polynomial coefficients. The eigenvalues of $compan(u)$ are the roots of the polynomial.	
Examples	les The polynomial $(x-1)(x-2)(x+3) = x^3 - 7x + 6$ has a companion matrix given by	
	$u = \begin{bmatrix} 1 & 0 & -7 & 6 \end{bmatrix}$ A = compan(u) $A = \begin{bmatrix} 0 & 7 & -6 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	
	The eigenvalues are the polynomial roots:	
	eig(compan(u))	
	ans = -3.0000 2.0000 1.0000	
	This is also roots(u).	
See Also	eig, poly, polyval, roots	

compass

Purpose	Plot arrows emanating from the origin		
Syntax	<pre>compass(X, Y) compass(Z) compass(, LineSpec) h = compass()</pre>		
Description	A compass plot displays direction or velocity vectors as arrows emanating from the origin. X, Y, and Z are in Cartesian coordinates and plotted on a circular grid.		
	compass(X, Y) displays a compass plot having <i>n</i> arrows, where <i>n</i> is the number of elements in X or Y. The location of the base of each arrow is the origin. The location of the tip of each arrow is a point relative to the base and determined by $[X(i), Y(i)]$.		
compass(Z) displays a compass plot having <i>n</i> arrows, where <i>n</i> is the n elements in Z. The location of the base of each arrow is the origin. Th of the tip of each arrow is relative to the base as determined by the n imaginary components of Z. This syntax is equivalent to compass(real (Z), i mag(Z)).			
	$compass(\dots, LineSpec)$ draws a compass plot using the line type, marker symbol, and color specified by LineSpec.		
	h = compass() returns handles to line objects.		
Examples	<pre>Draw a compass plot of the eigenvalues of a matrix. Z = eig(randn(20, 20)); compass(Z)</pre>		

complex

Purpose	Construct complex data from real and imaginary components		
Syntax	c = complex(a, b) c = complex(a)		
Description	c = complex(a, b) creates a complex output, c, from the two real inputs. c = a + bi The output is the same size as the inputs, which must be scalars or equally		
	sized vectors, matrices, or multi-dimensional arrays of the same data type.		
	Note If b is all zeros, c is complex and the value of all its imaginary components is 0. In contrast, the result of the addition a+0i returns a strictly real result.		
	c = complex(a) for real a returns the complex result c with real part a and 0 as the value of all imaginary components. Even though the value of all imaginary components is 0, c is complex and i sreal (c) returns false.		
	The $\operatorname{compl} \operatorname{ex}$ function provides a useful substitute for expressions such as		
	a + i * b or $a + j * b$		
	in cases when the names "i " and "j " may be used for other variables (and do not equal $\sqrt{-1}$), when a and b are not double-precision, or when b is all zero.		
Example	Create complex ui nt8 vector from two real ui nt8 vectors.		
	a = uint8([1; 2; 3; 4]) b = uint8([2; 2; 7; 7])		
	c = complex(a, b)		
	C = 1.0000 + 2.0000i 2.0000 + 2.0000i 3.0000 + 7.0000i 4.0000 + 7.0000i		

See Also abs, angle, conj, i, i mag, i sreal, j, real

computer

Purpose	Identify information about computer on which MATLAB is running			
Syntax	str = computer [str, maxsize] = computer [str, maxsize, endian] = c	omputer		
Description	str = computer returns the string str with the computer type on which MATLAB is running.			
	<pre>[str, maxsi ze] = computer returns the integer maxsi ze, which contains the maximum number of elements allowed in an array with this version of MATLAB. [str, maxsi ze, endian] = computer also returns either 'L' for little endian</pre>			
	byte ordering or ' B' for big e			
The list of supported computers changes as new computers are a others become obsolete. A typical list follows.				
	str	Computer		
	ALPHA	Compaq Alpha (OSF1)		
	НР700	HP 9000/700 (HP-UX 10.20)		
	HPUX	HP PA-RISC (HP-UX 11.00)		
	I BM_RS	IBM RS6000 workstation (AIX)		
	GLNX86	Linux on PC		
	PCWI N	Microsoft Windows		
	SGI	Silicon Graphics (IRIX/IRIX64)		
	S0L2	Sun Solaris 2 SPARC workstation		
Remarks	•	ust migrate to SGI with R12. ust migrate to GLNX86 with R12.		
See Also	i spc, i suni x			

Purpose	Condition number with respect to inversion		
Syntax	c = cond(X) c = cond(X, p)		
Description	The <i>condition number</i> of a matrix measures the sensitivity of the solution of a system of linear equations to errors in the data. It gives an indication of the accuracy of the results from matrix inversion and the linear equation solution. Values of cond(X) and cond(X, p) near 1 indicate a well-conditioned matrix. c = cond(X) returns the 2-norm condition number, the ratio of the largest singular value of X to the smallest. c = cond(X, p) returns the matrix condition number in p-norm: norm(X, p) * norm(inv(X), p		
	If p is	Then cond(X, p) returns the	
	1	1-norm condition number	
	2	2-norm condition number	
	'fro'	Frobenius norm condition number	
	i nf	Infinity norm condition number	
Algorithm	The algorithm for cond (when $p = 2$) uses the singular value decomposition, svd.		
See Also	condeig, condest, norm, normest, rank, rcond, svd		
References	[1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, <i>LAPACK User's Guide</i> (http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition, SIAM, Philadelphia, 1999.		

condeig

Purpose	Condition number with respect to eigenvalues
Syntax	c = condeig(A) [V, D, s] = condeig(A)
Description	<pre>c = condei g(A) returns a vector of condition numbers for the eigenvalues of A. These condition numbers are the reciprocals of the cosines of the angles between the left and right eigenvectors. [V, D, s] = condei g(A) is equivalent to [V, D] = eig(A); s = condei g(A); Large condition numbers imply that A is near a matrix with multiple eigenvalues.</pre>
See Also	bal ance, cond, ei g

condest

Purpose	1-norm condition number estimate	
Syntax	c = condest(A) [c, v] = condest(A)	
Description	$c\ =\ condest(A)\ computes\ a\ lower\ bound\ C\ for\ the\ 1-norm\ condition\ number\ of\ a\ square\ matrix\ A.$	
	c = condest(A, t) changes t, a positive integer parameter equal to the number of columns in an underlying iteration matrix. Increasing the number of columns usually gives a better condition estimate but increases the cost. The default is $t = 2$, which almost always gives an estimate correct to within a factor 2.	
	[c, v] = condest(A) also computes a vector v which is an approximate null vector if c is large. v satisfies norm(A*v, 1) = norm(A, 1) *norm(v, 1) /c.	
	Note condest invokes rand. If repeatable results are required then invoke rand('state',j), for some j, before calling this function.	
	This function is particularly useful for sparse matrices. condest uses block 1-norm power method of Higham and Tisseur [1].	
See Also	cond, norm, normest	
Reference	[1] Higham, N. J. and F. Tisseur, "A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra," <i>SIAM Journal</i> <i>Matrix Anal. Appl.</i> , Vol. 21, No. 4, 2000, pp.1185-1201.	

coneplot

Purpose	Plot velocity vectors as cones in a 3-D vector field
Syntax	<pre>conepl ot (X, Y, Z, U, V, W, Cx, Cy, Cz) conepl ot (U, V, W, Cx, Cy, Cz) conepl ot (, s) conepl ot (, col or) conepl ot (, 'qui ver') conepl ot (, 'method') conepl ot (X, Y, Z, U, V, W, 'noi nt erp') h = conepl ot ()</pre>
Description	conepl ot (X, Y, Z, U, V, W, Cx, Cy, Cz) plots velocity vectors as cones pointing in the direction of the velocity vector and having a length proportional to the magnitude of the velocity vector.
	• X, Y, Z define the coordinates for the vector field.
	 U, V, W define the vector field. These arrays must be the same size, monotonic, and 3-D plaid (such as the data produced by meshgrid).
	• Cx, Cy, Cz define the location of the cones in vector field. The section Starting Points for Stream Plots in Visualization Techniques provides more information on defining starting points.
	conepl ot (U, V, W, Cx, Cy, Cz) (omitting the X, Y, and Z arguments) assumes $[X, Y, Z] = meshgrid(1: n, 1: m, 1: p)$ where $[m, n, p] = size(U)$.
	conepl ot (\ldots, s) MATLAB automatically scales the cones to fit the graph and then stretches them by the scale factor s. If you do not specify a value for s, MATLAB uses a value of 1. Use $s = 0$ to plot the cones without automatic scaling.
	conepl ot $(\ldots, \text{col or})$ interpolates the array col or onto the vector field and then colors the cones according to the interpolated values. The size of the col or array must be the same size as the U, V, W arrays. This option works only with cones (i.e., not with the quiver option).
	$conepl$ ot $(\ldots,$ ' $quiver'$) draws arrows instead of cones (see $quiver3$ for an illustration of a quiver plot).

	conepl ot $(\ldots, 'method')$ specifies the interpolation method to use. <i>method</i> can be: l i near, cubi c, nearest. l i near is the default (see i nterp3 for a discussion of these interpolation methods)
	conepl ot (X, Y, Z, U, V, W, ' noi nt erp') does not interpolate the positions of the cones into the volume. The cones are drawn at positions defined by X, Y, Z and are oriented according to U, V, W. Arrays X, Y, Z, U, V, W must all be the same size.
	$h = {\rm conepl}{\rm ot}(\dots)$ returns the handle to the patch object used to draw the cones. You can use the set command to change the properties of the cones.
Remarks	conepl ot automatically scales the cones to fit the graph, while keeping them in proportion to the respective velocity vectors.
	It is usually best to set the data aspect ratio of the axes before calling <code>conepl ot</code> . You can set the ratio using the daspect command,
	daspect([1, 1, 1])
Examples	This example plots the velocity vector cones for vector volume data representing the motion of air through a rectangular region of space. The final graph employs a number of enhancements to visualize the data more effectively. These include:
	• Cone plots indicate the magnitude and direction of the wind velocity.
	• Slice planes placed at the limits of the data range provide a visual context for the cone plots within the volume.
	• Directional lighting provides visual queues as to the orientation of the cones.
	• View adjustments compose the scene to best reveal the information content of the data by selecting the view point, projection type, and magnification.
	1. Load and Inspect Data
	The winds data set contains six 3-D arrays: u, v, and w specify the vector

The winds data set contains six 3-D arrays: u, v, and w specify the vector components at each of the coordinate specified in x, y, and z. The coordinates define a lattice grid structure where the data is sampled within the volume.

It is useful to establish the range of the data to place the slice planes and to specify where you want the cone plots (mi n, max).

```
l oad wind
xmin = min(x(:));
xmax = max(x(:));
ymin = min(y(:));
ymax = max(y(:));
zmin = min(z(:));
```

- 2. Create the Cone Plot
- Decide where in data space you want to plot cones. This example selects the full range of x and y in eight steps and the range 3 to 15 in four steps in z (linspace, meshgrid).
- Use daspect to set the data aspect ratio of the axes before calling conepl ot so MATLAB can determine the proper size of the cones.
- Draw the cones, setting the scale factor to 5 to make the cones larger than the default size.
- Set the coloring of each cone (FaceCol or, EdgeCol or).

```
daspect([2, 2, 1])
xrange = linspace(xmin, xmax, 8);
yrange = linspace(ymin, ymax, 8);
zrange = 3: 4: 15;
[cx cy cz] = meshgrid(xrange, yrange, zrange);
hcones = coneplot(x, y, z, u, v, w, cx, cy, cz, 5);
set(hcones, 'FaceColor', 'red', 'EdgeColor', 'none')
```

- 3. Add the Slice Planes
- Calculate the magnitude of the vector field (which represents wind speed) to generate scalar data for the sl i ce command.
- Create slice planes along the x-axis at xmin and xmax, along the y-axis at ymax, and along the z-axis at zmin.
- Specify interpolated face color so the slice coloring indicates wind speed and do not draw edges (hol d, sl i ce, FaceCol or, EdgeCol or).

```
hold on
wind_speed = sqrt(u.^2 + v.^2 + w.^2);
hsurfaces = slice(x, y, z, wind_speed, [xmin, xmax], ymax, zmin);
set(hsurfaces, 'FaceColor', 'interp', 'EdgeColor', 'none')
hold off
```

4. Define the View

- Use the axis command to set the axis limits equal to the range of the data.
- Orient the vi ew to azimuth = 30 and elevation = 40 (rotate3d is a useful command for selecting the best view).
- Select perspective projection to provide a more realistic looking volume (camproj).
- Zoom in on the scene a little to make the plot as large as possible (camzoom).

```
axis tight; view(30, 40); axis off
camproj perspective; camzoom(1.5)
```

5. Add Lighting to the Scene

The light source affects both the slice planes (surfaces) and the cone plots (patches). However, you can set the lighting characteristics of each independently.

- Add a light source to the right of the camera and use Phong lighting give the cones and slice planes a smooth, three-dimensional appearance (caml i ght, lighting).
- Increase the value of the Ambi entStrength property for each slice plane to improve the visibility of the dark blue colors. (Note that you can also specify a different col ormap to change to coloring of the slice planes.)

coneplot

• Increase the value of the DiffuseStrength property of the cones to brighten particularly those cones not showing specular reflections.

camlight right; lighting phong
set(hsurfaces, 'AmbientStrength',.6)
set(hcones, 'DiffuseStrength',.8)

- See Also i sosurface, patch, reducevol ume, smooth3, streaml i ne, stream2, stream3, subvol ume
 - [2] "Volume Visualization" for related functions

conj

Purpose	Complex conjugate
Syntax	ZC = conj(Z)
Description	ZC = conj (Z) returns the complex conjugate of the elements of Z.
Algorithm	<pre>If Z is a complex array: conj (Z) = real (Z) - i*imag(Z)</pre>
See Also	i,j,imag,real

continue

Purpose	Pass control to the next iteration of for or while loop
Syntax	continue
Description	cont i nue passes control to the next iteration of the for or while loop in which it appears, skipping any remaining statements in the body of the loop.
	In nested loops, continue passes control to the next iteration of the for or while loop enclosing it.
Examples	The example below shows a continue loop that counts the lines of code in the file, magic. m, skipping all blank lines and comments. A continue statement is used to advance to the next line in magic. m without incrementing the count whenever a blank line or comment line is encountered.
	<pre>fid = fopen('magic.m', 'r'); count = 0; while ~feof(fid) line = fgetl(fid); if isempty(line) strncmp(line, '%', 1) continue end count = count + 1; end disp(sprintf('%d lines', count));</pre>
See Also	for, while, end, break, return

Purpose	Two-dimensional contour plot
Syntax	<pre>contour(Z) contour(Z, n) contour(Z, v) contour(X, Y, Z) contour(X, Y, Z, n) contour(X, Y, Z, v) contour(, LineSpec) [C, h] = contour()</pre>
Description	A contour plot displays isolines of matrix Z. Label the contour lines using cl abel .
	contour (Z) draws a contour plot of matrix Z, where Z is interpreted as heights with respect to the <i>x</i> - <i>y</i> plane. Z must be at least a 2-by-2 matrix. The number of contour levels and the values of the contour levels are chosen automatically based on the minimum and maximum values of Z. The ranges of the <i>x</i> - and <i>y</i> -axis are [1: n] and [1: m], where [m, n] = si $ze(Z)$.
	$\operatorname{contour}(Z, n)$ draws a contour plot of matrix Z with n contour levels.
	$\begin{array}{l} \mbox{contour}(Z,v) \mbox{ draws a contour plot of matrix } Z \mbox{ with contour lines at the data} \\ \mbox{values specified in vector } v. \mbox{ The number of contour levels is equal to } l \mbox{ equal to } l \mbox{ equal } to \ l \mbox{ equal } to \ l \ \mbox{ equal } to \ l \ \mbox{ equal } to \ l \ \mbox{ equal } to \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	contour(X, Y, Z), $contour(X, Y, Z, n)$, and $contour(X, Y, Z, v)$ draw contour plots of Z. X and Y specify the x- and y-axis limits. When X and Y are matrices, they must be the same size as Z, in which case they specify a surface as surf does.
	contour(, Li neSpec) draws the contours using the line type and color specified by Li neSpec. contour ignores marker symbols.
	[C, h] = contour() returns the contour matrix C (see contourc) and a vector of handles to graphics objects. cl abel uses the contour matrix C to create the labels. contour creates patch graphics objects unless you specify Li neSpec, in which case contour creates line graphics objects.

Remarks If you do not specify Li neSpec, col ormap and caxi s control the color.

If X or Y is irregularly spaced, contour calculates contours using a regularly spaced contour grid, then transforms the data to X or Y.

Examples

To view a contour plot of the function

 $Z = X e^{(-X^2 - y^2)}$

over the range $-2 \le x \le 2$, $-2 \le y \le 3$, create matrix Z using the statements

 $\begin{array}{ll} [X, Y] &= meshgrid(-2:.2:2, -2:.2:3); \\ Z &= X. * exp(-X. ^2-Y. ^2); \end{array}$

Then, generate a contour plot of Z.

[C, h] = contour(X, Y, Z); clabel(C, h) colormap cool

View the same function over the same range with 20 evenly spaced contour lines and colored with the default colormap j et.

contour(X, Y, Z, 20)

Use interp2 to create smoother contours. Also set the contour label text BackgroundCol or to a light yellow and the EdgeCol or to light gray.

```
Z = magic(4);
[C, h] = contour(interp2(Z, 4));
h = clabel(C, h);
set(h, 'BackgroundColor', [1 1 .6],...
'Edgecolor', [.7 .7 .7])
```


Purpose	Three-dimensional contour plot
Syntax	<pre>contour3(Z) contour3(Z, n) contour3(Z, v) contour3(X, Y, Z) contour3(X, Y, Z, n) contour3(X, Y, Z, v) contour3(, Li neSpec) [C, h] = contour3()</pre>
Description	 cont our 3 creates a three-dimensional contour plot of a surface defined on a rectangular grid. cont our 3(Z) draws a contour plot of matrix Z in a three-dimensional view. Z is interpreted as heights with respect to the <i>x</i>-<i>y</i> plane. Z must be at least a 2-by-2 matrix. The number of contour levels and the values of contour levels are chosen automatically. The ranges of the <i>x</i>- and <i>y</i>-axis are [1: n] and [1: m], where [m, n] = size(Z). cont our 3(Z, n) draws a contour plot of matrix Z with n contour levels in a three-dimensional view. cont our 3(Z, v) draws a contour plot of matrix Z with contour lines at the values specified in vector v. The number of contour levels is equal to l ength(v). To draw a single contour of level i, use cont our 3(X, Y, Z, v) use X and Y to define the <i>x</i>- and <i>y</i>-axis limits. If X is a matrix, X(1, :) defines the <i>x</i>-axis. If Y is a matrix, Y(:, 1) defines the <i>y</i>-axis. When X and Y are matrices, they must be the same size as Z, in which case they specify a surface as surf does. cont our 3(, Li neSpec) draws the contours using the line type and color specified by Li neSpec.
	[C, h] = contour3() returns the contour matrix C as described in the function contourc and a column vector containing handles to graphics objects. contour3 creates patch graphics objects unless you specify Li neSpec, in which case contour3 creates line graphics objects.

Remarks	If you do not specify Li neSpec, col ormap and caxis control the color.
	If X or Y is irregularly spaced, contour3 calculates contours using a regularly spaced contour grid, then transforms the data to X or Y.
Examples	Plot the three-dimensional contour of a function and superimpose a surface plot to enhance visualization of the function.
	<pre>[X,Y] = meshgrid([-2:.25:2]); Z = X. *exp(-X. ^2-Y. ^2); contour3(X, Y, Z, 30) surface(X, Y, Z, 'EdgeColor', [.8.8.8], 'FaceColor', 'none') grid off view(-15, 25) colormap cool</pre>

Purpose	Low-level contour plot computation
Syntax	C = contourc(Z) C = contourc(Z, n) C = contourc(Z, v) C = contourc(x, y, Z) C = contourc(x, y, Z, n) C = contourc(x, y, Z, v)
Description	contourc calculates the contour matrix C used by contour, contour3, and contourf. The values in Z determine the heights of the contour lines with respect to a plane. The contour calculations use a regularly spaced grid determined by the dimensions of Z.
	C = contourc(Z) computes the contour matrix from data in matrix Z, where Z must be at least a 2-by-2 matrix. The contours are isolines in the units of Z. The number of contour lines and the corresponding values of the contour lines are chosen automatically.
	C = contourc(Z, n) computes contours of matrix Z with n contour levels.
	$C = contourc(Z, v)$ computes contours of matrix Z with contour lines at the values specified in vector v. The length of v determines the number of contour levels. To compute a single contour of level i, use $contourc(Z, [i \ i])$.
	C = contourc(x, y, Z), C = contourc(x, y, Z, n), and C = contourc(x, y, Z, v) compute contours of Z using vectors x and y to determine the x- and y-axis limits. x and y must be monotonically increasing.
Remarks	C is a two-row matrix specifying all the contour lines. Each contour line defined in matrix C begins with a column that contains the value of the contour (specified by v and used by cl abel), and the number of (x, y) vertices in the contour line. The remaining columns contain the data for the (x, y) pairs.
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
	Specifying irregularly spaced x and y vectors is not the same as contouring irregularly spaced data. If x or y is irregularly spaced, $contourc$ calculates

	contours using a regularly spaced contour grid, then transforms the data to ${\bf x}$ or ${\bf y}.$
See Also	cl abel , contour, contour3, contourf
	"Contour Plots" for related functions
	The Contouring Algorithm for more information

Purpose	Filled two-dimensional contour plot
Syntax	<pre>contourf(Z) contourf(Z, n) contourf(Z, v) contourf(X, Y, Z) contourf(X, Y, Z, n) contourf(X, Y, Z, v) [C, h, CF] = contourf()</pre>
Description	A filled contour plot displays isolines calculated from matrix Z and fills the areas between the isolines using constant colors. The color of the filled areas depends on the current figure's colormap.
	contourf(Z) draws a contour plot of matrix Z, where Z is interpreted as heights with respect to a plane. Z must be at least a 2-by-2 matrix. The number of contour lines and the values of the contour lines are chosen automatically.
	$\operatorname{contourf}(Z, n)$ draws a contour plot of matrix Z with n contour levels.
	${\rm contourf}(Z,v)$ draws a contour plot of matrix Z with contour levels at the values specified in vector $v.$
	contourf(X, Y, Z), $contourf(X, Y, Z, n)$, and $contourf(X, Y, Z, v)$ produce contour plots of Z using X and Y to determine the <i>x</i> - and <i>y</i> -axis limits. When X and Y are matrices, they must be the same size as Z, in which case they specify a surface as surf does.
	[C, h, CF] = contourf() returns the contour matrix C as calculated by the function contourc and used by cl abel, a vector of handles h to patch graphics objects, and a contour matrix CF for the filled areas.
Remarks	If X or Y is irregularly spaced, contourf calculates contours using a regularly spaced contour grid, then transforms the data to X or Y.
Examples	Create a filled contour plot of the peaks function. [C, h] = contourf(peaks(20), 10);

colormap autumn

See Also clabel, contour, contour3, contourc, quiver "Contour Plots" for related functions

Purpose	Draw contours in volume slice planes
Syntax	<pre>contourslice(X, Y, Z, V, Sx, Sy, Sz) contourslice(X, Y, Z, V, Xi, Yi, Zi) contourslice(V, Sx, Sy, Sz), contourslice(V, Xi, Yi, Zi) contourslice(, n) contourslice(, cvals) contourslice(, [cv cv]) contourslice(, 'method') h = contourslice()</pre>
Description	contoursl i ce(X, Y, Z, V, Sx, Sy, Sz) draws contours in the x-, y-, and z-axis aligned planes at the points in the vectors Sx, Sy, Sz. The arrays X, Y, and Z define the coordinates for the volume V and must be monotonic and 3-D plaid (such as the data produced by meshgrid) The color at each contour is determined by the volume V, which must be an m-by-n-by-p volume array. contoursl i ce(X, Y, Z, V, Xi, Yi, Zi) draws contours through the volume V
	along the surface defined by the arrays Xi , Yi , Zi .
	contourslice(V, Sx, Sy, Sz) and contourslice(V, Xi, Yi, Zi) (omitting the X, Y, and Z arguments) assumes $[X, Y, Z] = meshgrid(1: n, 1: m, 1: p)$ where $[m, n, p] = size(v)$.
	contoursl i $ce(\ldots, n)$ draws n contour lines per plane, overriding the automatic value.
	contours lice(, cval s) draws length(cval) contour lines per plane at the values specified in vector cval s.
	$contourslice(\ldots,[cvcv])$ computes a single contour per plane at the level $cv.$
	contourslice(, 'method') specifies the interpolation method to use. method can be: linear, cubic, nearest. nearest is the default except when the contours are being drawn along the surface defined by Xi, Yi, Zi, in which case linear is the default (see interp3 for a discussion of these interpolation methods).
	$h = {\rm contoursl}ice(\dots)$ returns a vector of handles to patch objects that are used to implement the contour lines.

Examples

This example uses the flow data set to illustrate the use of contoured slice planes (type doc flow for more information on this data set). Notice that this example:

- Specifies a vector of l ength = 9 for Sx, an empty vector for the Sy, and a scalar value (0) for Sz. This creates nine contour plots along the x direction in the y-z plane, and one in the x-y plane at z = 0.
- Uses 1 inspace to define a ten-element linearly spaced vector of values from -8 to 2 that specifies the number of contour lines to draw at each interval.
- Defines the view and projection type (camva, camproj, campos)
- Sets figure (gcf) and axes (gca) characteristics.

See Also i sosurface, smooth3, subvol ume, reducevol ume "Volume Visualization" for related functions

contrast

Purpose	Grayscale colormap for contrast enhancement			
Syntax	<pre>cmap = contrast(X) cmap = contrast(X, m)</pre>			
Description	The contrast function enhances the contrast of an image. It creates a new gray colormap, cmap, that has an approximately equal intensity distribution. All three elements in each row are identical.			
	cmap = contrast(X) returns a gray colormap that is the same length as the current colormap.			
	<pre>cmap = contrast(X, m) returns an m-by-3 gray colormap.</pre>			
Examples	<pre>Add contrast to the clown image defined by X. load clown; cmap = contrast(X); image(X); colormap(cmap);</pre>			
See Also	brighten, colormap, i mage			
	"Colormaps" for related functions			

Purpose	Convolution and polynomial multiplication
---------	---

Syntax w = conv(u, v)

Description w = conv(u, v) convolves vectors u and v. Algebraically, convolution is the same operation as multiplying the polynomials whose coefficients are the elements of u and v.

Definition Let m = length(u) and n = length(v). Then w is the vector of length m+n-1 whose kth element is

$$W(k) = \sum_{j} u(j) v(k+1-j)$$

The sum is over all the values of j which lead to legal subscripts for u(j) and v(k+1-j), specifically j = max(1, k+1-n): min(k, m). When m = n, this gives

w(1) = u(1) *v(1) w(2) = u(1) *v(2) +u(2) *v(1) w(3) = u(1) *v(3) +u(2) *v(2) +u(3) *v(1)... w(n) = u(1) *v(n) +u(2) *v(n-1) + ... +u(n) *v(1)... w(2*n-1) = u(n) *v(n)

Algorithm The convolution theorem says, roughly, that convolving two sequences is the same as multiplying their Fourier transforms. In order to make this precise, it is necessary to pad the two vectors with zeros and ignore roundoff error. Thus, if

```
X = fft([x \ zeros(1, length(y) - 1)])
```

and

 $Y = fft([y \ zeros(1, length(x) - 1)])$

then conv(x, y) = ifft(X. *Y)

See Also conv2, convn, deconv, filter

 $\operatorname{convmt} x$ and xcorr in the Signal Processing Toolbox

conv2

Purpose	Two-dimensional convolution				
Syntax	C = conv2(A, B) C = conv2(hcol, hrow, A) C = conv2(, 'shape')				
Description	C = conv2(A, B) computes the two-dimensional convolution of matrices A and B. If one of these matrices describes a two-dimensional finite impulse response (FIR) filter, the other matrix is filtered in two dimensions.				
	The size of C in each dimension is equal to the sum of the corresponding dimensions of the input matrices, minus one. That is, if the size of A is [ma, na] and the size of B is [mb, nb], then the size of C is [ma+mb-1, na+nb-1].				
	C = conv2(hcol, hrow, A) convolves A first with the vector hcol along the rows and then with the vector hrow along the columns. If hcol is a column vector and hrow is a row vector, this case is the same as $C = conv2(hcol*hrow, A)$.				
	C = conv2(, 'shape') returns a subsection of the two-dimensional convolution, as specified by the shape parameter:				
	ful l Returns the full two-dimensional convolution (default).				
	same Returns the central part of the convolution of the same size as A.				
	<pre>valid Returns only those parts of the convolution that are computed without the zero-padded edges. Using this option, C has size [ma-mb+1, na-nb+1] when all(size(A) >= size(B)). Otherwise conv2 returns [].</pre>				
Algorithm	conv2 uses a straightforward formal implementation of the two-dimensional convolution equation in spatial form. If a and b are functions of two discrete variables, n_1 and n_2 , then the formula for the two-dimensional convolution of a and b is				
	$c(n_1, n_2) = \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = -\infty}^{\infty} a(k_1, k_2) \ b(n_1 - k_1, n_2 - k_2)$				

In practice however, conv2 computes the convolution for finite intervals.

Note that matrix indices in MATLAB always start at 1 rather than 0. Therefore, matrix elements A(1, 1), B(1, 1), and C(1, 1) correspond to mathematical quantities a(0,0), b(0,0), and c(0,0).

Examples Example 1. For the 'same' case, conv2 returns the central part of the convolution. If there are an odd number of rows or columns, the "center" leaves one more at the beginning than the end.

This example first computes the convolution of A using the default ('full') shape, then computes the convolution using the 'same' shape. Note that the array returned using 'same' corresponds to the underlined elements of the array returned using the default shape.

A = rand(3);B = rand(4); C = conv2(A, B)% C is 6-by-6 C = 0. 1838 0. 2374 0. 9727 1. 2644 0. 7890 0. 3750 0.6929 1.2019 1.5499 2. 1733 1. 3325 0.3096 0. 5627 1. 5150 2. 3576 3. 1553 2. 5373 1. 0602 0.9986 2.3811 3.4302 <u>3. 5128</u> <u>2. 4489</u> 0.8462 0.3089 1.1419 1.8229 2.1561 1.6364 0.6841 0. 3287 0. 9347 1. 6464 1. 7928 1. 2422 0. 5423 Cs = conv2(A, B, 'same')% Cs is the same size as A: 3-by-3 Cs =2.3576 3.1553 2.5373 3. 4302 3. 5128 2. 4489 1.8229 2.1561 1.6364

Example 2. In image processing, the Sobel edge finding operation is a two-dimensional convolution of an input array with the special matrix

 $s = [1 \ 2 \ 1; \ 0 \ 0 \ 0; \ -1 \ -2 \ -1];$

These commands extract the horizontal edges from a raised pedestal.

A = zeros(10); A(3:7,3:7) = ones(5); H = conv2(A,s); mesh(H)

Transposing the filter s extracts the vertical edges of A.

V = conv2(A, s');
figure, mesh(V)

This figure combines both horizontal and vertical edges.

figure
mesh(sqrt(H.^2 + V.^2))

See Also conv, convn, filter2 xcorr2 in the Signal Processing Toolbox

convhull

Purpose	Convex hull				
Syntax	K = convhull(x, y) [K, a] = convhull(x, y)				
Description	$K \ = \ convhul \ l \ (x, \ y) \ returns indices into the x and y vectors of the points on the convex hull.$				
	$[K, a] = \operatorname{convhul} l(x, y)$ also returns the area of the convex hull.				
Visualization	Use plot to plot the output of convhull.				
Examples	<pre>xx = -1:.05:1; yy = abs(sqrt(xx)); [x, y] = pol2cart(xx, yy); k = convhull(x, y); plot(x(k), y(k), 'r-', x, y, 'b+')</pre>				
	0.8- 0.6-				
	0.4				
	$\begin{array}{c} 0.2 \\ 0 \\ \end{array} \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ \end{array} \\ + \\ +$				

Algorithmconvhull is based on Qhull [2]. It uses the Qhull joggle option ('QJ'). For
information about qhull, see http://www.geom.umn.edu/software/qhull/.
For copyright information, see
http://www.geom.umn.edu/software/download/COPYING.html.

0.3

0.4

0.5

0.6

0.7

-0.2 -0.4 -0.6 -0.8

-1<u>-</u>0

0.1

0.2

See Also	convhul l n, del aunay, pl ot, pol yarea, voronoi	
----------	---	--

Reference[1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar
ber/ and in PostScript format at
ftp://geom.umn.edu/pub/software/qhull-96.ps.[2] National Science and Technology Research Center for Computation and

[2] National Science and Technology Research Center for Computation and Visualization of Geometric Structures (The Geometry Center), University of Minnesota. 1993.

convhulln

Purpose	n-D convex hull			
Syntax	$K = \operatorname{convhulln}(X)$ [K, v] = convhulln(X)			
Description	K = convhul l n(X) returns the indices K of the points in X that comprise the facets of the convex hull of X. X is an m-by-n array representing m points in n-D space. If the convex hull has p facets then K is p-by-n.			
	$[K, v] = \operatorname{convhulln}(X)$ also returns the volume v of the convex hull.			
Visualization	Plotting the output of convhul l n depends on the value of n:			
	• For $n = 2$, use plot as you would for convhul 1.			
	• For n = 3, you can use tri surf to plot the output. The calling sequence is			
	K = convhulln(X);			
	trisurf(K, (X(:, 1), X(:, 2), X(:, 3))			
	For more control over the color of the facets, use patch to plot the output. For an example, see "Tessellation and Interpolation of Scattered Data in Higher Dimensions" in the MATLAB documentation.			
	• You cannot plot convhul $l n$ output for $n > 3$.			
Algorithm	convhulln is based on Qhull [2]. It uses the Qhull joggle option ('QJ'). For information about qhull, see http://www.geom.umn.edu/software/qhull/. For copyright information, see http://www.geom.umn.edu/software/download/COPYING.html.			
See Also	convhull, del aunayn, dsearchn, tsearchn, voronoin			
JCC AISO	convilui i , dei aunayn, dsear chin, csear chin, voi onor n			
Reference	[1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for Convex Hulls," <i>ACM Transactions on Mathematical Software</i> , Vol. 22, No. 4, Dec. 1996, p. 469-483. Available in HTML format at http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar ber/ and in PostScript format at ftp://geom.umn.edu/pub/software/qhull-96.ps.			

[2] National Science and Technology Research Center for Computation and Visualization of Geometric Structures (The Geometry Center), University of Minnesota. 1993.

convn

Purpose	N-dimensional convolution			
Syntax	C = convn(A, B) C = convn(A, B, 'shape')			
Description	C = $convn(A, B)$ computes the N-dimensional convolution of the arrays A and B. The size of the result is $si ze(A) + si ze(B) - 1$.			
	C = convn(A, B, ' shape') returns a subsection of the N-dimensional convolution, as specified by the shape parameter:			
	'full' Returns the full N-dimensional convolution (default).			
	'same'	Returns the central part of the result that is the same size as A.		
	' val i d'	Returns only those parts of the convolution that can be computed without assuming that the array A is zero-padded. The size of the result is max(si ze(A) - si ze(B) + 1, 0)		

See Also conv, conv2

Purpose	Copy file or directory
Graphical Interface	As an alternative to the <code>copyfile</code> function, use the Current Directory browser. Select the files and then select copy and paste commands from the Edit menu.
Syntax	<pre>copyfile('source', 'destination') copyfile('source', 'destination', 'f') [status, message, messageid] = copyfile('source', 'destination', 'f')</pre>
Description	copyfile('source', 'destination') copies the file or directory, source (and all its contents) to the file or directory, destination, where source and destination are the absolute or relative pathnames for the directory or file. If source is a directory, destination cannot be a file. If source is a directory, copyfile copies the contents of source, not the directory itself. To rename a file or directory when copying it, make destination a different name than source. If destination already exists, copyfile replaces it without warning. Use the wildcard * at the end of source to copy all matching files. Note that the read-only and archive attributes of source are not preserved in destination. $copyfile('source', 'destination', 'f')$ copies source to destination, regardless of the read-only attribute of destination.
	[status, message, messageid] = copyfile('source', 'destination', 'f') copies source to destination, returning the status, a message, and the MATLAB error message ID (see error and lasterr). Here, status is 1 for success and is 0 for no error. Only one output argument is required and the f input argument is optional.
Examples	Copy File in Current Directory, Assigning a New Name to It To make a copy of a file myfun. m in the current directory, assigning it the name myfun2. m, type copyfile('myfun. m', 'myfun2. m') Copy File to Another Directory To copy myfun. m to the directory d: /work/myfiles, keeping the same filename, type copyfile('myfun. m', 'd: /work/myfiles')

Copy All Matching Files by Using a Wildcard

To copy all files in the directory myfiles whose names begin with my to the directory newprojects, where newprojects is at the same level as the current directory, type

```
copyfile('myfiles/my*','../newprojects')
```

Copy Directory and Return Status

In this example, all files and subdirectories in the current directory's myfiles directory are copied to the directory d: /work/myfiles. Note that before running the copyfile function, d: /work does not contain the directory myfiles. It is created because myfiles is appended to destination in the copyfile function:

The message returned indicates that copyfile was successful.

Copy File to Read-Only Directory

Copy myfile. m from the current directory to d: /work/restricted, where restricted is a read-only directory:

copyfile('myfile.m','d:/work/restricted','f')

After the copy, myfile. m exists in d: /work/restricted.

See Also delete, dir, fileattrib, filebrowser, mkdir, movefile, rmdir

Purpose	Copy graphics objects and their descendants
---------	---

Syntax new_handl e = copyobj (h, p)

Description copyobj creates copies of graphics objects. The copies are identical to the original objects except the copies have different values for their Parent property and a new handle. The new parent must be appropriate for the copied object (e.g., you can copy a line object only to another axes object).

new_handl e = copyobj (h, p) copies one or more graphics objects identified by h and returns the handle of the new object or a vector of handles to new objects. The new graphics objects are children of the graphics objects specified by p.

Remarksh and p can be scalars or vectors. When both are vectors, they must be the same
length and the output argument, new_handl e, is a vector of the same length.
In this case, new_handl e(i) is a copy of h(i) with its Parent property set to
p(i).

When h is a scalar and p is a vector, h is copied once to each of the parents in p. Each new_handl e(i) is a copy of h with its Parent property set to p(i), and length(new_handl e) equals l ength(p).

When h is a vector and p is a scalar, each new_handl e(i) is a copy of h(i) with its Parent property set to p. The length of new_handl e equals length(h).

Graphics objects are arranged as a hierarchy. Here, each graphics object is shown connected below its appropriate parent object.

Examples	Copy a surface to a new axes within a different figure.			
	<pre>h = surf(peaks); colormap hot figure % Create a new figure axes % Create an axes object in the figure new_handle = copyobj(h, gca); colormap hot view(3) grid on</pre>			
	Note that while the surface is copied, the colormap (figure property), view, and grid (axes properties) are not copies.			
See Also	findobj, gcf, gca, gco, get, set			
	Parent property for all graphics objects			
	"Finding and Identifying Graphics Objects" for related functions			

corrcoef

Purpose	Correlation coefficients			
Syntax	<pre>R = corrcoef(X) R = corrcoef(x, y) [R, P]=corrcoef() [R, P, RLO, RUP]=corrcoef() []=corrcoef(, 'param1', val 1, 'param2', val 2,)</pre>			
Description	R = corrcoef(X) returns a matrix R of correlation coefficients calculated from an input matrix X whose rows are observations and whose columns are variables. The matrix $R = corrcoef(X)$ is related to the covariance matrix $C = cov(X)$ by			
	$R(i, j) = \frac{C(i, j)}{\sqrt{C(i, i)C(j, j)}}$			
	corrcoef(X) is the zeroth lag of the covariance function, that is, the zeroth lag of $xcov(x, 'coeff')$ packed into a square array.			
	$R = corrcoef(x, y)$ where x and y are column vectors is the same as $corrcoef([x \ y])$.			
	[R, P] = corrcoef() also returns P, a matrix of p-values for testing the hypothesis of no correlation. Each p-value is the probability of getting a correlation as large as the observed value by random chance, when the true correlation is zero. If $P(i, j)$ is small, say less than 0.05, then the correlation $R(i, j)$ is significant.			
	[R, P, RLO, RUP] = $corrcoef()$ also returns matrices RLO and RUP, of the same size as R, containing lower and upper bounds for a 95% confidence interval for each coefficient.			
	[]=corrcoef(, 'param1', val 1, 'param2', val 2,) specifies additional parameters and their values. Valid parameters are the following.			

	' al pha'	A number between 0 and 1 to specify a confidence level of 100*(1 - al pha)%. Default is 0.05 for 95% confidence intervals.				
	'rows'	Either 'all' (default) to use all rows, 'complete' to use rows with no NaN values, or 'pairwise' to compute $R(i,j)$ using rows with no NaN values in either column i or j.				
	The p-value is computed by transforming the correlation to create a t statistic having n-2 degrees of freedom, where n is the number of rows of X. The confidence bounds are based on an asymptotic normal distribution of 0. $5*log((1+R)/(1-R))$, with an approximate variance equal to $1/(n-3)$. These bounds are accurate for large samples when X has a multivariate normal distribution. The ' pai rwi se' option can produce an R matrix that is not positive definite.					
Examples	Generate random data having correlation between column 4 and the other columns.					
	w nond	n(20, 4)	% Uncorrela	tod data		
	x = rand			e correl ati on.		
	<pre>[r,p] = corrcoef(x) % Compute sample correlation and p-values. [i,j] = find(p<0.05); % Find significant correlations. [i,j] % Display their (row, col) indices.</pre>					
	[i,j]		[%] Display t	nerr (row, cor) rhurces.		
	r =					
	1 –	00 - 0. 3566	0. 1929	0. 3457		
	- 0. 35		- 0. 1429	0. 4461		
	0.19		1. 0000	0. 5183		
	0.34		0. 5183	1. 0000		
	0.01	0. 1101	0.0100	1.0000		
	p =					
	г 1.00	00 0. 0531	0. 3072	0. 0613		
	0.05		0. 4511	0. 0135		
	0. 30		1.0000	0. 0033		
	0.06	0. 0135	0.0033	1. 0000		
	ans -					
	ans = 4	2				
	4	23				
	2	4				
	~	T				

3 4

See Also cov, mean, std

xcorr, xcov in the Signal Processing Toolbox

COS

Purpose	Cosine
Syntax	$Y = \cos(X)$
Description	The cos function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.
	Y = $cos(X)$ returns the circular cosine for each element of X.
Examples	Graph the cosine function over the domain $-\pi \le x \le \pi$.
	x = -pi: 0.01: pi; plot(x, cos(x)), grid on
	0.8
	0.6
	0.4
	0.2
	0
	-0.2
	-0.4
	-0.6
	-0.8
	-1 -3 -2 -1 0 1 2 3 4

The expression $\cos{(\rm pi~/2)}$ is not exactly zero but a value the size of the floating-point accuracy, eps, because pi is only a floating-point approximation to the exact value of π .

Definition

The cosine can be defined as

$$\cos(x + iy) = \cos(x)\cosh(y) - i\sin(x)\sinh(y)$$
$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$

Algorithm cos uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http://www.netlib.org.

See Also acos, acosh, cosh

cosh

Purpose	Hyperbolic cosine
Syntax	$Y = \cosh(X)$
Description	The cosh function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.
	$Y = \cosh(X)$ returns the hyperbolic cosine for each element of X.
Examples	Graph the hyperbolic cosine function over the domain $-5 \le x \le 5$. x = -5: 0.01: 5; plot(x, cosh(x)), grid on
	80

Definition

The hyperbolic cosine can be defined as

$$\cosh(z) = \frac{e^{z} + e^{-z}}{2}$$

Algorithm cosh uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http://www.netlib.org.

See Also acos, acosh, cos

Purpose	Cotangent
Syntax	$Y = \cot(X)$
Description	The cot function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.
	$Y = \cot(X)$ returns the cotangent for each element of X.
Examples	Graph the cotangent the domains $-\pi < x < 0$ and $0 < x < \pi$. x1 = -pi+0.01: 0.01: -0.01; x2 = 0.01: 0.01: pi -0.01; pl ot (x1, cot (x1), x2, cot (x2)), grid on
	$ \begin{array}{c} 100\\ 80\\ 60\\ 40\\ 20\\ -20\\ -20\\ -40\\ -20\\ -40\\ -60\\ -60\\ -80\\ -100\\ -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ -2 \\ -1 \\ 0 \\ -2 \\ -2 \\ -1 \\ 0 \\ -2 \\ -2 \\ -1 \\ 0 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$
Definition	The cotangent can be defined as $ \cot(z) = \frac{1}{\tan(z)} $

Algorithm cot uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http://www.netlib.org.

See Also acot, acoth, coth

coth

Purpose	Hyperbolic cotangent
Syntax	$Y = \operatorname{coth}(X)$
Description	The coth function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.
	$Y = \operatorname{coth}(X)$ returns the hyperbolic cotangent for each element of X.
Examples	Graph the hyperbolic cotangent over the domains $-\pi < x < 0$ and $0 < x < \pi$.
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
	150
	100
	50
	0
	-50
	$-100 \begin{bmatrix} -100 \\ -4 \end{bmatrix} = -3 = -2 = -1 = 0 = 1 = 2 = 3 = 4$
Definition	The hyperbolic cotangent can be defined as
	$ coth(z) = \frac{1}{tanh(z)} $
Algorithm	coth uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http: //www. netlib.org.

See Also acot, acoth, cot

COV

Purpose	Covariance matrix
Syntax	C = cov(X) C = cov(x, y)
Description	C = cov(x) where x is a vector returns the variance of the vector elements. For matrices where each row is an observation and each column a variable, $cov(x)$ is the covariance matrix. di $ag(cov(x))$ is a vector of variances for each column, and $sqrt(di ag(cov(x)))$ is a vector of standard deviations. C = cov(x, y), where x and y are column vectors of equal length, is equivalent
	to cov([x y]).
Remarks	cov removes the mean from each column before calculating the result.
	The <i>covariance</i> function is defined as
	$\operatorname{cov}(x_1, x_2) = E[(x_1 - \mu_1)(x_2 - \mu_2)]$
	where <i>E</i> is the mathematical expectation and $\mu_i = Ex_i$.
Examples	Consider A = $\begin{bmatrix} -1 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}$. To obtain a vector of variances for each column of A:
	v = diag(cov(A))'
	v = 10.3333 2.3333 1.0000
	Compare vector v with covariance matrix C:
	C = 10.3333 - 4.1667 3.0000 - 4.1667 2.3333 - 1.5000 3.0000 - 1.5000 1.0000
	The diagonal elements $C(i, i)$ represent the variances for the columns of A. The off-diagonal elements $C(i, j)$ represent the covariances of columns i and j .
See Also	corrcoef, mean, std
	xcorr, xcov in the Signal Processing Toolbox

Purpose	Sort complex numbers into complex conjugate pairs
Syntax	<pre>B = cpl xpair(A) B = cpl xpair(A, tol) B = cpl xpair(A, [], dim) B = cpl xpair(A, tol, dim)</pre>
Description	B = cpl xpair(A) sorts the elements along different dimensions of a complex array, grouping together complex conjugate pairs.
	The conjugate pairs are ordered by increasing real part. Within a pair, the element with negative imaginary part comes first. The purely real values are returned following all the complex pairs. The complex conjugate pairs are forced to be exact complex conjugates. A default tolerance of 100^{*} eps relative to $abs(A(i))$ determines which numbers are real and which elements are paired complex conjugates.
	If A is a vector, cpl xpai $r(A)$ returns A with complex conjugate pairs grouped together.
	If A is a matrix, cpl xpai r(A) returns A with its columns sorted and complex conjugates paired.
	If A is a multidimensional array, $cpl xpair(A)$ treats the values along the first non-singleton dimension as vectors, returning an array of sorted elements.
	B = cpl xpair(A, tol) overrides the default tolerance.
	B = cpl xpair(A, [], dim) sorts A along the dimension specified by scalar dim.
	B = cpl xpair(A, tol, dim) sorts A along the specified dimension and overrides the default tolerance.
Diagnostics	If there are an odd number of complex numbers, or if the complex numbers cannot be grouped into complex conjugate pairs within the tolerance, cpl xpair generates the error message Complex numbers can't be paired.

cputime

Purpose	Elapsed CPU time
Syntax	cputime
Description	cput i me returns the total CPU time (in seconds) used by MATLAB from the time it was started. This number can overflow the internal representation and wrap around.
Examples	<pre>The following code returns the CPU time used to run surf(peaks(40)). t = cputime; surf(peaks(40)); e = cputime-t e =</pre>
See Also	clock, etime, tic, toc

Purpose	Vector cross product
Syntax	C = cross(A, B) C = cross(A, B, dim)
Description	C = cross(A, B) returns the cross product of the vectors A and B. That is, $C = A \times B$. A and B must be 3-element vectors. If A and B are multidimensional arrays, cross returns the cross product of A and B along the first dimension of length 3.
	C = cross(A, B, dim) where A and B are multidimensional arrays, returns the cross product of A and B in dimension dim. A and B must have the same size, and both size(A, dim) and size(B, dim) must be 3.
Remarks	To perform a dot (scalar) product of two vectors of the same size, use $c = dot(a, b)$.
Examples	The cross and dot products of two vectors are calculated as shown: a = [1 2 3]; b = [4 5 6]; c = cross(a, b) c = -3 6 -3 d = dot(a, b) d = 32
See Also	dot

Purpose	Cosecant
Syntax	$Y = \csc(x)$
Description	The \csc function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.
	Y = $\csc(x)$ returns the cosecant for each element of x.
Examples	Graph the cosecant over the domains $-\pi < x < 0$ and $0 < x < \pi$. x1 = -pi+0.01:0.01:-0.01; x2 = 0.01:0.01:pi-0.01; plot(x1, csc(x1), x2, csc(x2)), grid on
	150
	100
	50
	0
	-50
	-100
	-150 -3 -2 -1 0 1 2 3 4
Definition	The cosecant can be defined as

$$\csc(z) = \frac{1}{\sin(z)}$$

Algorithm csc uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http://www.netlib.org.

See Also acsc, acsch, csch

csch

Purpose	Hyperbolic cosecant
Syntax	$Y = \operatorname{csch}(x)$
Description	The csch function operates element-wise on arrays. The function's domains and ranges include complex values. All angles are in radians.
	Y = $\operatorname{csch}(x)$ returns the hyperbolic cosecant for each element of x.
Examples	Graph the hyperbolic cosecant over the domains $-\pi < x < 0$ and $0 < x < \pi$.
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
	80
	60
	40
	20
	0
	-20
	-40
	-60
	-80
	-100 -4 -3 -2 -1 0 1 2 3 4
	-4 -3 -2 -1 0 1 2 3 4
Definition	The hyperbolic cosecant can be defined as
	$\operatorname{csch}(z) = \frac{1}{\sinh(z)}$
Algorithm	csch uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc

Algorithm csch uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see http://www.netlib.org. See Also acsc, acsch, csc

csvread

Purpose	Read a comma-separated value file
Syntax	<pre>M = csvread('filename') M = csvread('filename', row, col) M = csvread('filename', row, col, range)</pre>
Description	M = csvread('filename') reads a comma-separated value formatted file, filename. The result is returned in M. The file can only contain numeric values.
	M = csvread('filename', row, col) reads data from the comma-separated value formatted file starting at the specified row and column. The row and column arguments are zero-based, so that row=0 and col=0 specifies the first value in the file.
	M = csvread('filename', row, col, range) reads only the range specified. Specify the range using the notation, [R1 C1 R2 C2] where (R1,C1) is the upper-left corner of the data to be read and (R2,C2) is the lower-right corner. The range can also be specified using spreadsheet notation as in range = 'A1B7'.
Remarks	csvread fills empty delimited fields with zero. Data files having lines that end with a nonspace delimiter, such as a semicolon, produce a result that has an additional last column of zeros.
Examples	Given the file, $csvlist$. dat that contains the comma-separated values
	02, 04, 06, 08, 10, 12
	03, 06, 09, 12, 15, 18
	05, 10, 15, 20, 25, 30 07, 14, 21, 28, 35, 42
	11, 22, 33, 44, 55, 66
	To read the entire file, use
	csvread('csvlist.dat')
	ans =
	2 4 6 8 10 12
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

5	10	15	20	25	30
7	14	21	28	35	42
11	22	33	44	55	66

To read the matrix starting with zero-based row 2, column 0 and assign it to the variable, ${\tt m},$

m = csvr	ead(' c	svl i st	. dat' ,	2, 0)	
m =					
5	10	15	20	25	30
7	14	21	28	35	42
11	22	33	44	55	66
			U		ed (2,0) and (3,3) and assign it to m, [2, 0, 3, 3])
m =					
5	10	15	20		
7	14	21	28		

See Also csvwrite, dl mread, textread, wk1read, file formats, importdata, uiimport

csvwrite

Purpose	Write a comma-separated value file
Syntax	csvwrite('filename',M) csvwrite('filename',M,row,col)
Description	csvwrite('filename',M) writes matrix Mintofilename as comma-separated values.
	csvwrite('filename', M, row, col) writes matrix M into filename starting at the specified row and column offset. The row and column arguments are zero-based, so that row=0 and C=0 specifies the first value in the file.
Examples	The following example creates a comma-separated value file from the matrix, m.
	m = [3 6 9 12 15; 5 10 15 20 25; 7 14 21 28 35; 11 22 33 44 55];
	csvwrite('csvlist.dat',m) type csvlist.dat
	3, 6, 9, 12, 15 5, 10, 15, 20, 25 7, 14, 21, 28, 35 11, 22, 33, 44, 55
	The next example writes the matrix to the file, starting at a column offset of 2.
	csvwrite('csvlist.dat',m,0,2) type csvlist.dat
	, , 3, 6, 9, 12, 15 , , 5, 10, 15, 20, 25 , , 7, 14, 21, 28, 35 , , 11, 22, 33, 44, 55
See Also	csvread, dl mwrite, textread, wk1write, file formats, importdata, uiimport

cumprod

Purpose	Cumulative product
Syntax	B = cumprod(A) B = cumprod(A, dim)
Description	B = cumprod(A) returns the cumulative product along different dimensions of an array.
	If A is a vector, cumprod(A) returns a vector containing the cumulative product of the elements of A.
	If A is a matrix, cumprod(A) returns a matrix the same size as A containing the cumulative products for each column of A.
	If A is a multidimensional array, cumprod(A) works on the first nonsingleton dimension.
	B = cumprod(A, dim) returns the cumulative product of the elements along the dimension of A specified by scalar dim. For example, cumprod(A, 1) increments the first (row) index, thus working along the rows of A.
Examples	cumprod(1:5)ans =1 2 6 24 120A = [1 2 3; 4 5 6];cumprod(A)ans =1 2 34 10 18cumprod(A, 2)ans =1 2 64 20 120
See Also	cumsum, prod, sum

cumsum

Purpose	Cumulative sum
Syntax	B = cumsum(A) B = cumsum(A, dim)
Description	B = cumsum(A) returns the cumulative sum along different dimensions of an array.
	If A is a vector, cumsum(A) returns a vector containing the cumulative sum of the elements of A.
	If A is a matrix, cumsum(A) returns a matrix the same size as A containing the cumulative sums for each column of A.
	If A is a multidimensional array, cumsum(A) works on the first nonsingleton dimension.
	B = cumsum(A, dim) returns the cumulative sum of the elements along the dimension of A specified by scalar dim. For example, $cumsum(A, 1)$ works across the first dimension (the rows).
Examples	cumsum(1:5) ans = [1 3 6 10 15]
	$A = [1 \ 2 \ 3; \ 4 \ 5 \ 6];$
	cumsum(A)
	ans =
	1 2 3
	5 7 9
	cumsum(A, 2)
	ans =
	1 3 6
	4 9 15
See Also	cumprod, prod, sum

Purpose	Cumulative trapezoidal numerical integration
Syntax	Z = cumtrapz(Y) Z = cumtrapz(X, Y) Z = cumtrapz(dim)
Description	Z = cumtrapz(Y) computes an approximation of the cumulative integral of Y via the trapezoidal method with unit spacing. To compute the integral with other than unit spacing, multiply Z by the spacing increment.
	For vectors, $cumtrapz(Y)$ is a vector containing the cumulative integral of Y.
	For matrices, $cumtrapz(Y)$ is a matrix the same size as Y with the cumulative integral over each column.
	For multidimensional arrays, $\operatorname{cumtrapz}(Y)$ works across the first nonsingleton dimension.
	Z = cumtrapz(X, Y) computes the cumulative integral of Y with respect to X using trapezoidal integration. X and Y must be vectors of the same length, or X must be a column vector and Y an array whose first nonsingleton dimension is $l ength(X)$. cumtrapz operates across this dimension.
	If X is a column vector and Y an array whose first nonsingleton dimension is $l \operatorname{ength}(X)$, $\operatorname{cumtrapz}(X, Y)$ operates across this dimension.
	Z = cumtrapz(X, Y, dim) or $cumtrapz(Y, DIM)$ integrates across the dimension of Y specified by scalar dim. The length of X must be the same as $size(Y, dim)$.
Example	$Y = [0 \ 1 \ 2; \ 3 \ 4 \ 5];$
	cumt rapz(Y, 1) ans = 0 0 0 1.5000 2.5000 3.5000 cumt rapz(Y, 2) ans =
	0 0. 5000 2. 0000 0 3. 5000 8. 0000

cumtrapz

See Also cumsum, trapz

Purpose	Computes the curl and angular velocity of a vector field
Syntax	<pre>[curl x, curl y, curl z, cav] = curl (X, Y, Z, U, V, W) [curl x, curl y, curl z, cav] = curl (U, V, W) [curl z, cav] = curl (X, Y, U, V) [curl z, cav] = curl (U, V) [curl x, curl y, curl z] = curl (), [curl x, curl y] = curl () cav = curl ()</pre>
Description	$[\operatorname{curl} x, \operatorname{curl} y, \operatorname{curl} z, \operatorname{cav}] = \operatorname{curl} (X, Y, Z, U, V, W)$ computes the curl and angular velocity perpendicular to the flow (in radians per time unit) of a 3-D vector field U, V, W. The arrays X, Y, Z define the coordinates for U, V, W and must be monotonic and 3-D plaid (as if produced by meshgrid).
	[curl x, curl y, curl z, cav] = curl (U, V, W) assumes X, Y, and Z are determined by the expression:
	[X Y Z] = meshgrid(1:n, 1:m, 1:p)
	where $[m, n, p] = si ze(U)$.
	$[\operatorname{curl} z, \operatorname{cav}] = \operatorname{curl}(X, Y, U, V)$ computes the curl z-component and the angular velocity perpendicular to z (in radians per time unit) of a 2-D vector field U, V. The arrays X, Y define the coordinates for U, V and must be monotonic and 2-D plaid (as if produced by meshgrid).
	$[\operatorname{curl} z, \operatorname{cav}] = \operatorname{curl} (U, V)$ assumes X and Y are determined by the expression:
	[X Y] = meshgrid(1: n, 1: m)
	where $[m, n] = si ze(U)$.
	$[\operatorname{curl} x, \operatorname{curl} y, \operatorname{curl} z] = \operatorname{curl} (\ldots), \operatorname{curl} x, \operatorname{curl} y] = \operatorname{curl} (\ldots)$ returns only the curl.
	cav = curl() returns only the curl angular velocity.
Examples	This example uses colored slice planes to display the curl angular velocity at specified locations in the vector field.

```
l oad wind
cav = curl (x, y, z, u, v, w);
slice(x, y, z, cav, [90 134], [59], [0]);
shading interp
daspect([1 1 1]); axis tight
colormap hot(16)
camlight
```


This example views the curl angular velocity in one plane of the volume and plots the velocity vectors (qui ver) in the same plane.

load wind k = 4; x = x(:,:,k); y = y(:,:,k); u = u(:,:,k); v = v(:,:,k); cav = curl(x, y, u, v); pcol or(x, y, cav); shading interp hold on; quiver(x, y, u, v, 'y') hold off colormap copper

customverctrl

Purpose	Allow custom source control system
Syntax	customverctrl(filename, arguments)
Description	This function is supplied for customers who want to integrate a version control system that is not supported with MATLAB. This function must conform to the structure of one of the supported version control systems, for example RCS. See the files clearcase. m, pvcs. m, rcs. m, and sourcesafe. m in \$matl abroot\tool box\matl ab\verctrl as examples.
See Also	checkin, checkout, cmopts, undocheckout

cylinder

Purpose	Generate cylinder
Syntax	<pre>[X, Y, Z] = cylinder [X, Y, Z] = cylinder(r) [X, Y, Z] = cylinder(r, n) cylinder()</pre>
Description	cyl i nder generates <i>x</i> , <i>y</i> , and <i>z</i> coordinates of a unit cylinder. You can draw the cylindrical object using surf or mesh, or draw it immediately by not providing output arguments.
	[X, Y, Z] = cyl i nder returns the x, y, and z coordinates of a cylinder with a radius equal to 1. The cylinder has 20 equally spaced points around its circumference.
	[X, Y, Z] = cyl i nder(r) returns the <i>x</i> , <i>y</i> , and <i>z</i> coordinates of a cylinder using r to define a profile curve. cyl i nder treats each element in r as a radius at equally spaced heights along the unit height of the cylinder. The cylinder has 20 equally spaced points around its circumference.
	[X, Y, Z] = cylinder(r, n) returns the x, y, and z coordinates of a cylinder based on the profile curve defined by vector r. The cylinder has n equally spaced points around its circumference.
	$\operatorname{cyl}\operatorname{i}\operatorname{nder}(\ldots)$, with no output arguments, plots the cylinder using surf .
Remarks	cyl i nder treats its first argument as a profile curve. The resulting surface graphics object is generated by rotating the curve about the <i>x</i> -axis, and then aligning it with the <i>z</i> -axis.
Examples	Create a cylinder with randomly colored faces. cylinder axis square h = findobj('Type', 'surface');

set(h, 'CData', rand(size(get(h, 'CData'))))

Generate a cylinder defined by the profile function $2+\sin(t)$.

t = 0: pi /10: 2*pi;
[X, Y, Z] = cylinder(2+cos(t));
surf(X, Y, Z)
axis square

daspect

Purpose	Set or query the axes data aspect ratio
Syntax	<pre>daspect daspect([aspect_ratio]) daspect('mode') daspect('auto') daspect('manual') daspect(axes_handle,)</pre>
Description	The data aspect ratio determines the relative scaling of the data units along the x -, y -, and z -axes. daspect with no arguments returns the data aspect ratio of the current axes.
	daspect([aspect_ratio]) sets the data aspect ratio in the current axes to the specified value. Specify the aspect ratio as three relative values representing the ratio of the <i>x</i> -, <i>y</i> -, and <i>z</i> -axis scaling (e.g., $[1 \ 1 \ 3]$ means one unit in <i>x</i> is equal in length to one unit in <i>y</i> and three unit in <i>z</i>).
	$daspect(\mbox{'mode'})\ returns the current value of the data aspect ratio mode, which can be either auto (the default) or manual . See Remarks.$
	daspect('auto') sets the data aspect ratio mode to auto.
	daspect('manual') sets the data aspect ratio mode to manual.
	daspect (axes_handl e, \ldots) performs the set or query on the axes identified by the first argument, axes_handl e. When you do not specify an axes handle, daspect operates on the current axes.
Remarks	daspect sets or queries values of the axes object <code>DataAspectRati</code> o and <code>DataAspectRati</code> oMode properties.
	When the data aspect ratio mode is auto, MATLAB adjusts the data aspect ratio so that each axis spans the space available in the figure window. If you are displaying a representation of a real-life object, you should set the data aspect ratio to $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ to produce the correct proportions.
	Setting a value for data aspect ratio or setting the data aspect ratio mode to manual disables the MATLAB stretch-to-fill feature (stretching of the axes to

fit the window). This means setting the data aspect ratio to a value, including its current value,

daspect(daspect)

can cause a change in the way the graphs look. See the Remarks section of the axes description for more information.

Examples The following surface plot of the function $z = xe^{(-x^2 - y^2)}$ is useful to illustrate the data aspect ratio. First plot the function over the range $-2 \le x \le 2, -2 \le y \le 2$,

[x, y] = meshgrid([-2:.2:2]); z = x. *exp(-x.^2 - y.^2); surf(x, y, z)

Querying the data aspect ratio shows how MATLAB has drawn the surface.

daspect ans = 4 4 1

Setting the data aspect ratio to [1 1 1] produces a surface plot with equal scaling along each axis.

daspect([1 1 1])

See Alsoaxi s, pbaspect, xl i m, yl i m, zl i mThe axes properties DataAspectRati o, Pl otBoxAspectRati o, XLi m, YLi m, ZLi m"Setting the Aspect Ratio and Axis Limits" for related functionsAxes Aspect Ratio for more information.

Purpose	Current date string
Syntax	str = date
Description	str = date returns a string containing the date in dd-mmm-yyyy format.
See Also	clock, datenum, now

datenum

Purpose	Serial date number
Syntax	<pre>N = datenum(DT) N = datenum(DT, P) N = datenum(Y, M, D) N = datenum(Y, M, D, H, MI, S)</pre>
Description	The datenum function converts date strings and date vectors (defined by datevec) into serial date numbers. Date numbers are serial days elapsed from some reference date. By default, the serial day 1 corresponds to 1-Jan-0000. N = datenum(DT) converts the date string or date vector DT into a serial date number. Date strings with two-character years, e.g., 12-j une-12, are assumed to lie within the 100-year period centered about the current year.
	Note If DT is a string, it must be in one of the date formats 0, 1, 2, 6, 13, 14, 15, 16, or 23 as defined by datestr.
	N = datenum(DT, P) uses the specified pivot year as the starting year of the 100-year range in which a two-character year resides. The default pivot year is the current year minus 50 years.
	N = datenum(Y, M, D) returns the serial date number for corresponding elements of the Y, M, and D (year, month, day) arrays. Y, M, and D must be arrays of the same size (or any can be a scalar). Values outside the normal range of each array are automatically "carried" to the next unit.
	N = datenum(Y, M, D, H, MI, S) returns the serial date number for corresponding elements of the Y, M, D, H, MI, and S (year, month, day, hour, minute, and second) array values. Y, M, D, H, MI, and S must be arrays of the same size (or any can be a scalar). Values outside the normal range of each array are automatically carried to the next unit (for example month values greater than 12 are carried to years). Month values less than 1 are set to be 1. All other units can wrap and have valid negative values.

Examples Convert a date string to a serial date number.

```
n = datenum('19-May-2001')
```

```
n =
730990
```

Specifying year, month, and day, convert a date to a serial date number.

```
n = datenum(2001, 12, 19)
```

```
731204
```

n =

Convert a date vector to a serial date number.

```
format bank
n = datenum([2001 5 19 18 0 0])
```

```
n =
730990.75
```

Convert a date string to a serial date number using the default pivot year

```
n = datenum('12-june-12')
n =
```

735032

Convert the same date string to a serial date number using 1900 as the pivot year.

```
n = datenum('12-june-12', 1900)
n =
698507
```

See Also datestr, datevec, now

datestr

Purpose	Date string format
Syntax	<pre>str = datestr(DT, dateform) str = datestr(DT, dateform, P)</pre>
Description	The datestr function converts serial date numbers (defined by datenum) and date vectors (defined by datevec) into date strings.
	<pre>str = datestr(DT, dateform) converts a single date vector, or each element of an array of serial date numbers to a date string. Date strings with two-character years, e.g., 12-j une-12, are assumed to lie within the 100-year period centered about the current year.</pre>
	str = $datestr(DT, dateform, P)$ uses the specified pivot year as the starting year of the 100-year range in which a two-character year resides. The default pivot year is the current year minus 50 years.

The optional argument dateform specifies the date format of the result. dateform can be either a number or a string:

dateform (number)	dateform (string)	Example
0	'dd-mmm-yyyy HH: MM: SS'	01-Mar-2000 15:45:17
1	' dd- mmm- yyyy'	01-Mar-2000
2	' mm/dd/yy'	03/01/00
3	' mmm'	Mar
4	' m'	М
5	' mm'	03
6	'mm/dd'	03/01
7	' dd'	01
8	' ddd'	Wed
9	' d'	W

dateform (number)	dateform (string)	Example
10	' уууу'	2000
11	' yy'	00
12	' mmmyy'	Mar00
13	'HH: MM: SS'	15: 45: 17
14	'HH: MM: SS PM'	3: 45: 17 PM
15	' HH: MM'	15: 45
16	'HH: MM PM'	3:45 PM
17	' QQ- YY'	Q1-01
18	' QQ'	Q1
19	' dd/mm'	01/03
20	' dd/mm/yy'	01/03/00
21	'mmm.dd.yyyy HH:MM:SS'	Mar. 01, 2000 15: 45: 17
22	'mmm. dd. yyyy'	Mar. 01. 2000
23	'mm/dd/yyyy'	03/01/2000
24	' dd/mm/yyyy'	01/03/2000
25	' yy/mm/dd'	00/03/01
26	'yyyy/mm/dd'	2000/03/01
27	' QQ- YYYY'	Q1-2001
28	' mmmyyyy'	Mar2000
29 (ISO 8601)	' yyyy- mm- dd'	2000-03-01
30 (ISO 8601)	'yyyymmddTHHMMSS'	20000301T154517
31	' yyyy-mm-dd HH: MM: SS'	2000-03-01 15:45:17

datestr

NOTE dateform numbers 0, 1, 2, 6, 13, 14, 15, 16, and 23 produce a string suitable for input to datenum or datevec. Other date string formats will not work with these functions.

Time formats like ' h: m: s' , ' h: m: s. s' , ' h: m pm' , ... can also be part of the input array DT. If you do not specify dateform, or if you specify dateform as - 1, the date string format defaults to

- 1 if DT contains date information only, e.g., 01-Mar-1995
- 16 if DT contains time information only e.g., 03:45 PM
- 0 if DT is a date vector, or a string that contains both date and time information e.g., 01-Mar-1995 03:45

See Also date, datetick, datenum, datevec

datetick

Purpose	Label tick lines using dates	
Syntax	datetick(tickaxis) datetick(tickaxis, <i>dateform</i>)	

Description dateti ck(ti ckaxi s) labels the tick lines of an axis using dates, replacing the default numeric labels. ti ckaxi s is the string 'x', 'y', or 'z'. The default is 'x'. dateti ck selects a label format based on the minimum and maximum limits of the specified axis.

dateti ck(ti ckaxi s, *dateform*) formats the labels according to the integer *dateform* (see table). To produce correct results, the data for the specified axis must be serial date numbers (as produced by datenum).

dateform (number)	dateform (string)	Example
0	'dd-mmm-yyyy HH: MM: SS'	01-Mar-2000 15:45:17
1	' dd- mmm- yyyy'	01-Mar-2000
2	'mm/dd/yy'	03/01/00
3	' mmm'	Mar
4	' m'	М
5	' mm'	03
6	'mm∕dd'	03/01
7	' dd'	01
8	' ddd'	Wed
9	' d'	W
10	' уууу'	2000
11	' yy'	00
12	'mmmyy'	Mar00
13	'HH: MM: SS'	15: 45: 17

datetick

	dateform (number)	dateform (string)	Example
	14	'HH: MM: SS PM'	3: 45: 17 PM
	15	' HH: MM'	15: 45
	16	'HH: MM PM'	3:45 PM
	17	' QQ- YY'	Q1-01
	18	' QQ'	Q1
	19	' dd/mm'	01/03
	20	' dd/mm/yy'	01/03/00
	21	' mmm. dd. yyyy HH: MM: SS'	Mar. 01, 2000 15: 45: 17
	22	' mmm. dd. yyyy'	Mar.01.2000
	23	'mm/dd/yyyy'	03/01/2000
	24	' dd/mm/yyyy'	01/03/2000
	25	' yy/mm/dd'	00/03/01
	26	' yyyy/mm/dd'	2000/03/01
	27	' QQ- YYYY'	Q1-2001
	28	' mmmyyyy'	Mar2000
Remarks	To change the tick spa	r to convert date numbers to da cing and locations, set the appr Ti ck) before calling dateti ck.	0
Example	t = (1900: 10: 1990) $p = [75. 995 91. 97)$ $150. 697 179. 32$	ulation data based on the 1990)'; % Time interval 2 105.711 123.203 131.669 3 203.212 226.505 249.633] 1),p) % Convert years to d	 '; % Popul at i on

datetick('x', 11) % Replace x-axis ticks with 2-digit year labels

See Also

The axes properties XTi ck, YTi ck, and ZTi ck. datenum, datestr

"Annotating Plots" for related functions

datevec

Purpose	Date components		
	C = datevec(A) C = datevec(A, P) [Y, M, D, H, MI, S] = datevec(A)		
Description	C = datevec(A) splits its input into an n-by-6 array with each row containing the vector [Y, M, D, H, MI, S]. The first five date vector elements are integers. Input A can either consist of strings of the sort produced by the datestr function, or scalars of the sort produced by the datenum and now functions. Date strings with two-character years, e.g., 12-j une-12, are assumed to lie within the 100-year period centered about the current year.		
	C = datevec(A, P) uses the specified pivot year as the starting year of the 100-year range in which a two-character year resides. The default pivot year is the current year minus 50 years.		
	[Y, M, D, H, M], S] = datevec(A) returns the components of the date vector as individual variables.		
	When creating your own date vector, you need not make the components integers. Any components that lie outside their conventional ranges affect the next higher component (so that, for instance, the anomalous June 31 becomes July 1). A zeroth month, with zero days, is allowed.		
Examples	An example of using a string as input:		
	datevec('12/24/1984')		
	ans = 1984 12 24 0 0 0		
	An example of using a serial date number as input:		
	t = datenum('12/24/1984')		
	t = 725000		
	datevec(t)		

ans =					
1984	12	24	0	0	0

See Also

clock, datenum, datestr, now

dbclear

Purpose	Clear breakpoints
Graphical Interface	As an alternative to the dbcl ear function, there are various ways to clear breakpoints using the Editor/Debugger.
Syntax	dbclear all dbclear all in mfile dbclear in mfile dbclear in mfile at lineno dbclear in mfile at subfun dbclear if error dbclear if warning dbclear if naninf dbclear if infnan
Description	<pre>dbclear all removes all breakpoints in all M-files, as well as pauses set for error, warning, and naninf/infnan using dbstop. dbclear all in mfile removes breakpoints in mfile. dbclear in mfile removes the breakpoint set at the first executable line in mfile. dbclear in mfile at lineno removes the breakpoint set at the line number lineno in mfile. dbclear in mfile at subfun removes the breakpoint set at the subfunction subfun in mfile. dbclear if error removes the pause set using dbstop if error. dbclear if warning removes the pause set using dbstop if naninf. dbclear if infnan removes the pause set using dbstop if naninf.</pre>
Remarks	The at, in, and if keywords, familiar to users of the UNIX debugger dbx, are optional.

See Also dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup, parti al path

dbcont

Purpose	Resume execution
Graphical Interface	As an alternative to the dbcont function, you can select Continue from the Debug menu in the Editor/Debugger.
Syntax	dbcont
Description	dbcont resumes execution of an M-file from a breakpoint. Execution continues until another breakpoint is encountered, an error occurs, or MATLAB returns to the base workspace prompt.
See Also	dbclear, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup

Purpose	Change local workspace context
Graphical Interface	As an alternative to the dbdown function, you can select a different workspace from the Stack field in the Editor/Debugger toolbar.
Syntax	dbdown
Description	dbdown changes the current workspace context to the workspace of the called M-file when a breakpoint is encountered. You must have issued the dbup function at least once before you issue this function. dbdown is the opposite of dbup.
	Multiple dbdown functions change the workspace context to each successively executed M-file on the stack until the current workspace context is the current breakpoint. It is not necessary, however, to move back to the current breakpoint to continue execution or to step to the next line.
See Also	dbcl ear, dbcont, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup

dblquad

Purpose	Numerically evaluate double integral
Syntax	<pre>q = dblquad(fun, xmin, xmax, ymin, ymax) q = dblquad(fun, xmin, xmax, ymin, ymax, tol) q = dblquad(fun, xmin, xmax, ymin, ymax, tol, method) q = dblquad(fun, xmin, xmax, ymin, ymax, tol, method, p1, p2,)</pre>
Description	q = dbl quad(fun, xmin, xmax, ymin, ymax) calls the quad function to evaluate the double integral fun(x, y) over the rectangle xmin <= x <= xmax, ymin <= y <= ymax. fun(x, y) must accept a vector x and a scalar y and return a vector of values of the integrand.
	q = $$ dbl quad(fun, xmi n, xmax, ymi n, ymax, tol) uses a tolerance tol instead of the default, which is 1. 0e- 6.
	q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method) uses the quadrature function specified as method, instead of the default quad. Valid values for method are @quadl or the function handle of a user-defined quadrature method that has the same calling sequence as quad and quadl .
	dbl quad(fun, xmi n, xmax, ymi n, ymax, tol, method, p1, p2,) passes the additional parameters p1, p2, to fun(x, y, p1, p2,). Use [] as a placeholder if you do not specify tol or method. dbl quad(fun, xmi n, xmax, ymi n, ymax, [], [], p1, p2,) is the same as dbl quad(fun, xmi n, xmax, ymi n, ymax, 1. e-6, @quad, p1, p2,)
Example	fun can be an inline object
	Q = dbl quad(i nl i ne('y*sin(x)+x*cos(y)'), pi, 2*pi, 0, pi)
	or a function handle
	Q = dbl quad(@integrnd, pi, 2*pi, 0, pi)
	where i ntegrnd. m is an M-file.
	function $z = integrnd(x, y)$ z = y*sin(x)+x*cos(y);

```
The integrand function integrates y*sin(x) +x*cos(y) over the square
pi <= x <= 2*pi, 0 <= y <= pi. Note that the integrand can be evaluated
with a vector x and a scalar y.
Nonsquare regions can be handled by setting the integrand to zero outside of
the region. For example, the volume of a hemisphere is
dbl quad(inline('sqrt(max(1-(x. ^2+y. ^2), 0))'), -1, 1, -1, 1)
or
dbl quad(inline('sqrt(1-(x. ^2+y. ^2)). *(x. ^2+y. ^2<=1)'), -1, 1, -1, 1)
)
See Also inline, quad, quadl, tripl equad, @ (function handle)
```

dbmex

Purpose	Enable MEX-file debugging
Syntax	dbmex on dbmex off dbmex stop dbmex print
Description	dbmex on enables MEX-file debugging for UNIX platforms. It is not supported on the Sun Solaris platform. To use this option, first start MATLAB from within a debugger by typing: matl ab -Ddebugger, where debugger is the name of the debugger.
	dbmex off disables MEX-file debugging.
	dbmex stop returns to the debugger prompt.
	dbmex print displays MEX-file debugging information.
Remarks	On Sun Solaris platforms, dbmex is not supported. See the Technical Support solution 23388 at http://www.mathworks.com/support/solutions/data/23388.shtml for an alternative method of debugging.
See Also	dbcl ear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup

Purpose	Quit debug mode
Graphical Interface	As an alternative to the dbqui t function, you can select Exit Debug Mode from the Debug menu in the Editor/Debugger.
Syntax	dbqui t
Description	dbquit immediately terminates the debugger and returns control to the base workspace prompt. The M-file being processed is <i>not</i> completed and no results are returned.
	All breakpoints remain in effect.
See Also	dbcl ear, dbcont, dbdown, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup

dbstack

Purpose	Display function call stack
Graphical Interface	As an alternative to the dbstack function, you can view the Stack field in the Editor/Debugger toolbar.
Syntax	dbstack [ST,I] = dbstack
Description	dbstack displays the line numbers and M-file names of the function calls that led to the current breakpoint, listed in the order in which they were executed. The line number of the most recently executed function call (at which the current breakpoint occurred) is listed first, followed by its calling function, which is followed by its calling function, and so on, until the topmost M-file function is reached.
	[ST,I]~=~dbstack returns the stack trace information in an m-by-1 structure ST with the fields
	name Function name
	line Function line number
	The current workspace index is returned in I.
Examples	dbstack
	In /usr/local/matlab/toolbox/matlab/cond.m at line 13 In test1.m at line 2 In test.m at line 3
See Also	dbcl ear, dbcont, dbdown, dbquit, dbstatus, dbstep, dbstop, dbtype, dbup

Purpose	List all breakpoints		
Graphical Interface	As an alternative to the dbstatus function, you can see breakpoint icons for a file that is open in the Editor/Debugger.		
Syntax	<pre>dbstatus dbstatus function s = dbstatus()</pre>		
Description	dbstatus lists all breakpoints in effect including error, warni ng, and nani nf.		
	dbstatus functi on displays a list of the line numbers for which breakpoints are set in the specified M-file.		
	$s\ =\ dbstatus(\ldots)$ $\ returns$ the breakpoint information in an m-by-1 structure with the fields		
	name Function name		
	line Function line number		
	cond Condition string (error, warni ng, or nani nf)		
	Use dbstatus class/function or dbstatus private/function or dbstatus class/private/function to determine the status for methods, private functions, or private methods (for a class named class). In all these forms you can further qualify the function name with a subfunction name as in dbstatus function/subfunction.		
See Also	dbcl ear, dbcont, dbdown, dbquit, dbstack, dbstep, dbstop, dbtype, dbup		

dbstep

Purpose	Execute one or more lines from current breakpoint		
Graphical Interface	As an alternative to the dbstep function, you can select Step or Step In from the Debug menu in the Editor/Debugger.		
Syntax	dbstep dbstep nlines dbstep in		
Description	This function allows you to debug an M-file by following its execution from the current breakpoint. At a breakpoint, the dbstep function steps through execution of the current M-file one line at a time or at the rate specified by $nl i nes$.		
	$dbstep,\ by$ itself, executes the next executable line of the current M-file. $dbstep$ steps over the current line, skipping any breakpoints set in functions called by that line.		
	${\rm dbstep}\ \ {\rm nl}\ {\rm i}\ {\rm nes}\ {\rm executes}\ {\rm the}\ {\rm specified}\ {\rm number}\ {\rm of}\ {\rm executable}\ {\rm lines}.$		
	dbstep in steps to the next executable line. If that line contains a call to another M-file, execution resumes with the first executable line of the called file. If there is no call to an M-file on that line, dbstep in is the same as dbstep.		
See Also	dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstop, dbtype, dbup		

Purpose	Set breakpoints in M-file function
Graphical Interface	As an alternative to the dbstop function, you can use the Breakpoints menu or the breakpoint alley in the Editor/Debugger.
Syntax	dbstop in mfile dbstop in mfile at lineno dbstop in mfile at subfun dbstop if error dbstop if all error dbstop if warning dbstop if naninf dbstop if infnan
Description	dbstop in mfile temporarily stops execution of mfile when you run it, at the first executable line, putting MATLAB in debug mode. mfile must be in a directory that is on the search path or in the current directory. If you have graphical debugging enabled, the MATLAB Debugger opens with a breakpoint at the first executable line of mfile. You can then use the debugging utilities, review the workspace, or issue any valid MATLAB function. Use dbcont or dbstep to resume execution of mfile. Use dbquit to exit from the Debugger.
	dbstop in mfile at lineno temporarily stops execution of mfile when you run it, just prior to execution of the line whose number is lineno, putting MATLAB in debug mode. mfile must be in a directory that is on the search path or in the current directory. If you have graphical debugging enabled, the MATLAB Debugger opens mfile with a breakpoint at line lineno. If that line is not executable, execution stops and the breakpoint is set at the next executable line following lineno. When execution stops, you can use the debugging utilities, review the workspace, or issue any valid MATLAB function. Use dbcont or dbstep to resume execution of mfile. Use dbquit to exit from the Debugger.
	dbstop in mfile at subfun temporarily stops execution of mfile when you run it, just prior to execution of the subfunction subfun, putting MATLAB in debug mode. mfile must be in a directory that is on the search path or in the current directory. If you have graphical debugging enabled, the MATLAB Debugger opens mfile with a breakpoint at the subfunction specified by

subfun. You can then use the debugging utilities, review the workspace, or
issue any valid MATLAB function. Use dbcont or dbstep to resume execution
of mfile. Use dbquit to exit from the Debugger.

dbstop if error stops execution when any M-file you subsequently run produces a run-time error, putting MATLAB in debug mode, paused at the line that generated the error. The M-file must be in a directory that is on the search path or in the current directory. The errors that stop execution do not include run-time errors that are detected within a try... catch block. You cannot resume execution after an error. Use dbquit to exit from the Debugger.

dbstop if all error is the same as dbstop if error, except that it stops execution on any type of run-time error, including errors that are detected within a try... catch block.

dbstop if warning stops execution when any M-file you subsequently run produces a run-time warning, putting MATLAB in debug mode, paused at the line that generated the warning. The M-file must be in a directory that is on the search path or in the current directory. Use dbcont or dbstep to resume execution.

dbstop if naninf or dbstop if infnan stops execution when any M-file you subsequently run encounters an infinite value (Inf) or a value that is not a number (NaN), putting MATLAB in debug mode, paused at the line where Inf or NaN was encountered. For convenience, you can use either naninf or infnan—they perform in exactly the same manner. The M-file must be in a directory that is on the search path or in the current directory. Use dbcont or dbstep to resume execution. Use dbquit to exit from the Debugger.

Remarks The at, in, and if keywords, familiar to users of the UNIX debugger dbx, are optional.

Examples The file buggy, used in these examples, consists of three lines.

```
function z = buggy(x)

n = l ength(x);

z = (1:n)./x;
```

Stop at First Executable Line

The statements

dbstop in buggy
buggy(2:5)

stop execution at the first executable line in buggy

```
n = length(x);
```

The function

dbstep

advances to the next line, at which point you can examine the value of n.

Stop if Error

Because buggy only works on vectors, it produces an error if the input x is a full matrix. The statements

dbstop if error buggy(magic(3))

produce

```
??? Error using ==> ./
Matrix dimensions must agree.
Error in ==> c: \buggy.m
On line 3 ==> z = (1:n)./x;
K»
```

and put MATLAB in debug mode.

dbstop

Stop if InfNaN

In buggy, if any of the elements of the input ${\bf x}$ is zero, a division by zero occurs. The statements

dbstop if naninf
buggy(0:2)

produce

Warning: Divide by zero. > In c: \buggy.m at line 3 K»

and put MATLAB in debug mode.

See Also break, dbcl ear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbtype, dbup, keyboard, partial path, return

Purpose	List M-file with line numbers		
Graphical Interface	As an alternative to the dbtype function, you can see an M-file with line numbers by opening it in the Editor/Debugger.		
Syntax	dbtype function dbtype function start:end		
Description	dbtype functi on displays the contents of the specified M-file function with line numbers preceding each line. functi on must be the name of an M-file function or a MATLABPATH relative partial pathname.		
	dbtype function start: end displays the portion of the file specified by a range of line numbers.		
	You cannot use dbtype for built-in functions.		
Examples	To see only the input and output arguments for a function, that is, the first line of the M-file, type		
	dtype function 1		
	For example,		
	dbtype fileparts 1		
	returns		
	1 function [path, fname, extension, version] = fileparts(name)		
See Also	dbcl ear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbup, parti al path		

dbup

Purpose	Change local workspace context		
Graphical Interface	As an alternative to the dbup function, you can select a different workspace from the Stack field in the toolbar of the Editor/Debugger.		
Syntax	dbup		
Description	This function allows you to examine the calling M-file by using any other MATLAB function. In this way, you determine what led to the arguments' being passed to the called function.		
	dbup changes the current workspace context (at a breakpoint) to the workspace of the calling M-file.		
	Multiple dbup functions change the workspace context to each previous calling M-file on the stack until the base workspace context is reached. (It is not necessary, however, to move back to the current breakpoint to continue execution or to step to the next line.)		
See Also	dbcl ear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype		

Purpose	Solve delay differential equations (DDEs) with constant delays	
Syntax	<pre>sol = dde23(ddefun, lags, history, tspan) sol = dde23(ddefun, lags, history, tspan, options) sol = dde23(ddefun, lags, history, tspan, options, p1, p2,)</pre>	
Arguments	ddefun	Function that evaluates the right side of the differential equations $y'(t) = f(t, y(t), y(t-\tau_1),, y(t-\tau_k))$. The function must have the form
		dydt = ddefun(t, y, Z)
		where t corresponds to the current <i>t</i> , <i>y</i> is a column vector that approximates $y(t)$, and $Z(:, j)$ approximates $y(t-\tau_j)$ for delay $\tau_j = l \operatorname{ags}(j)$. The output is a column vector corresponding to $f(t, y(t), y(t-\tau_1),, y(t-\tau_k))$.
	lags	Vector of constant, positive delays $\tau_1,, \tau_k$.
	hi story	Specify hi story in one of three ways:
		• A function of <i>t</i> such that $y = hi \operatorname{story}(t)$ returns the solution $y(t)$ for $t \le t0$ as a column vector
		• A constant column vector, if $y(t)$ is constant
		• The solution sol from a previous integration, if this call continues that integration
	tspan	Interval of integration as a vector $[t0, tf]$ with $t0 < tf$.
	options	Optional integration argument. A structure you create using the ddeset function. See ddeset for details.
	p1, p2,	Optional parameters that dde23 passes to ddefun, hi story if it is a function, and any functions you specify in $options$.
Description	sol = dde23(ddefun, l ags, hi story, t span) integrates the system of DDEs	
	$y'(t) = f(t, y(t), y(t-\tau_1),, y(t-\tau_k))$	
	on the intervation $t_0 < t_f$.	l [t_0, t_f], where $ au_1,, au_k$ are constant, positive delays and

dde23 returns the solution as a structure sol. Use the auxiliary function deval and the output sol to evaluate the solution at specific points tint in the interval tspan = [t0, tf].

yint = deval(sol,tint)

The structure sol returned by dde23 has the following fields.

sol.x	Mesh selected by dde23		
sol . y	Approximation to $y(x)$ at the mesh points in sol.x.		
sol.yp	Approximation to $y'(x)$ at the mesh points in sol. x		
sol.solver	Solver name, ' dde23'		

sol = dde23(ddefun, lags, hi story, tspan, options) solves as above with default integration properties replaced by values in options, an argument created with ddeset. See ddeset and "Initial Value Problems for DDEs" in the MATLAB documentation for details.

Commonly used options are scalar relative error tolerance 'RelTol' (1e-3 by default) and vector of absolute error tolerances 'AbsTol' (all components are 1e-6 by default).

Use the 'Jumps' option to solve problems with discontinuities in the history or solution. Set this option to a vector that contains the locations of discontinuities in the solution prior to t0 (the history) or in coefficients of the equations at known values of t after t0.

Use the 'Events' option to specify a function that dde23 calls to find where functions $g(t, y(t), y(t-\tau_1), ..., y(t-\tau_k))$ vanish. This function must be of the form

[value, isterminal, direction] = events(t, y, Z)

and contain an event function for each event to be tested. For the kth event function in events:

- val ue(k) is the value of the kth event function.
- i stermi nal (k) = 1 if you want the integration to terminate at a zero of this event function and 0 otherwise.

 direction(k) = 0 if you want dde23 to compute all zeros of this event function, +1 if only zeros where the event function increases, and -1 if only zeros where the event function decreases.

If you specify the 'Events' option and events are detected, the output structure sol also includes fields:

- sol . xe Row vector of locations of all events, i.e., times when an event function vanished
- sol . ye Matrix whose columns are the solution values corresponding to times in sol . xe
- sol.ie Vector containing indices that specify which event occurred at the corresponding time in sol.xe

sol = dde23(ddefun, l ags, hi story, tspan, options, p1, p2, ...) passes the parameters p1, p2, ... to the DDE function as ddefun(t, y, z, p1, p2, ...), to the hi story function, if there is one, as hi story (t, p1, p2, ...), and similarly to all functions specified in options. Use options = [] as a place holder if no options are set.

Examples This example solves a DDE on the interval [0, 5] with lags 1 and 0.2. The function ddex1de computes the delay differential equations, and ddex1hi st computes the history for t <= 0.

Note The demo ddex1 contains the complete code for this example. To see the code in an editor, click the example name, or type edit ddex1 at the command line. To run the example type ddex1 at the command line.

sol = dde23(@ddex1de, [1, 0.2], @ddex1hist, [0, 5]);

This code evaluates the solution at 100 equally spaced points in the interval [0, 5], then plots the result.

```
tint = linspace(0, 5);
yint = deval(sol,tint);
plot(tint,yint);
```

dde23

	ddex1 shows how you can code this problem using subfunctions. For more examples see ddex2.	
Algorithm	dde23 tracks discontinuities and integrates with the explicit Runge-Kutta (2,3) pair and interpolant of ode23. It uses iteration to take steps longer than the lags.	
See Also	ddeget, ddeset, deval, @ (function_handle)	
References	L.F. Shampine and S. Thompson, "Solving DDEs in MATLAB," <i>Applied Numerical Mathematics</i> , Vol. 37, 2001, pp. 441-458.	

Purpose	Set up advisory link		
Syntax	<pre>rc = ddeadv(channel, 'item', 'callback') rc = ddeadv(channel, 'item', 'callback', 'upmtx') rc = ddeadv(channel, 'item', 'callback', 'upmtx', format) rc = ddeadv(channel, 'item', 'callback', 'upmtx', format, timeout)</pre>		
Description	ddeadv sets up an advisory link between MATLAB and a server application. When the data identified by the item argument changes, the string specified by the callback argument is passed to the eval function and evaluated. If the advisory link is a hot link, DDE modifies upmtx, the update matrix, to reflect the data in item.		
		ptional arguments that are not at the end of the argument list, you ute the empty matrix for the missing argument(s).	
	If successful,	ddeadv returns 1 in variable, rc. Otherwise it returns 0.	
Arguments	channel	Conversation channel from ddei ni t.	
	item	String specifying the DDE item name for the advisory link. Changing the data identified by i tem at the server triggers the advisory link.	
	cal l back	String specifying the callback that is evaluated on update notification. Changing the data identified by i tem at the server causes callback to get passed to the eval function to be evaluated.	
	upmtx (optional)	String specifying the name of a matrix that holds data sent with an update notification. If upmtx is included, changing i tem at the server causes upmtx to be updated with the revised data. Specifying upmtx creates a hot link. Omitting upmtx or specifying it as an empty string creates a warm link. If upmtx exists in the workspace, its contents are overwritten. If upmtx does not exist, it is created.	

ddeadv

	format (<i>optional</i>)	Two-element array specifying the format of the data to be sent on update. The first element specifies the Windows clipboard format to use for the data. The only currently supported format is cf_text, which corresponds to a value of 1. The second element specifies the type of the resultant matrix. Valid types are numeric (the default, which corresponds to a value of 0) and string (which corresponds to a value of 1). The default format array is $[1 \ 0]$.	
	timeout (<i>optional</i>)	Scalar specifying the time-out limit for this operation. timeout is specified in milliseconds. (1000 milliseconds = 1 second). If advisory link is not established within timeout milliseconds, the function fails. The default value of timeout is three seconds.	
Examples	Set up a hot link between a range of cells in Excel (Row 1, Column 1 thro Row 5, Column 5) and the matrix x. If successful, display the matrix:		
	rc = ddeadv(channel, 'r1c1:r5c5', 'disp(x)', 'x');		
	Communicati ddei ni t comr	ion with Excel must have been established previously with a mand.	
See Also	ddeexec, ddei nit, ddepoke, ddereq, ddeterm, ddeunadv		

Purpose	Send string for execution		
Syntax	<pre>rc = ddeexec(channel, 'command') rc = ddeexec(channel, 'command', 'item') rc = ddeexec(channel, 'command', 'item', timeout)</pre>		
Description	ddeexec sends a string for execution to another application via an established DDE conversation. Specify the string as the command argument.		
	If you omit optional arguments that are not at the end of the argument list, you must substitute the empty matrix for the missing argument(s).		
	If successful, ddeexec returns 1 in variable, rc. Otherwise it returns 0.		
Arguments	channel	Conversation channel from ddei ni t.	
	command	String specifying the command to be executed.	
	item (optional)	String specifying the DDE item name for execution. This argument is not used for many applications. If your application requires this argument, it provides additional information for command. Consult your server documentation for more information.	
	timeout (<i>optional</i>)	Scalar specifying the time-out limit for this operation. timeout is specified in milliseconds. (1000 milliseconds = 1 second). The default value of timeout is three seconds.	
Examples	Given the channel assigned to a conversation, send a command to Excel:		
	rc = dde	exec(channel,'[formula.goto("r1c1")]')	
	Communication with Excel must have been established previously with a ddei ni t command.		
See Also	ddeadv, ddei nit, ddepoke, ddereq, ddeterm, ddeunadv		

ddeget

Purpose	Extract properties from options structure created with ddeset
Syntax	<pre>val = ddeget(options, 'name') val = ddeget(options, 'name', default)</pre>
Description	val = ddeget(options, 'name') extracts the value of the named property from the structure options, returning an empty matrix if the property value is not specified in options. It is sufficient to type only the leading characters that uniquely identify the property. Case is ignored for property names. [] is a valid options argument.
	<pre>val = ddeget(options, 'name', default) extracts the named property as above, but returns val = default if the named property is not specified in options. For example,</pre>
	<pre>val = ddeget(opts, 'RelTol', 1e-4);</pre>
	returns val = 1e-4 if the Rel Tol is not specified in opts.
See Also	dde23, ddeset

Purpose	Initiate DDE conversation
Syntax	<pre>channel = ddeinit('service', 'topic')</pre>
Description	channel = ddei ni t (' <i>servi ce</i> ', ' <i>topi c</i> ') returns a channel handle assigned to the conversation, which is used with other MATLAB DDE functions. ' <i>servi ce</i> ' is a string specifying the service or application name for the conversation. ' <i>topi c</i> ' is a string specifying the topic for the conversation.
Examples	To initiate a conversation with Excel for the spreadsheet 'stocks. xls': channel = ddeinit('excel', 'stocks. xls') channel = 0.00
See Also	ddeadv, ddeexec, ddepoke, ddereq, ddeterm, ddeunadv

ddepoke

Purpose	Send data to	application
Syntax	rc = ddepok	e(channel,' <i>item</i> ', data) e(channel,' <i>item</i> ', data, format) e(channel,' <i>item</i> ', data, format, timeout)
Description		ds data to an application via an established DDE conversation. nats the data matrix as follows before sending it to the server
		trices are converted, element by element, to characters and the haracter buffer is sent.
		natrices are sent as tab-delimited columns and carriage-return, elimited rows of numbers. Only the real part of nonsparse re sent.
	• •	ptional arguments that are not at the end of the argument list, you ute the empty matrix for the missing argument(s).
	If successful,	ddepoke returns 1 in variable, rc. Otherwise it returns 0.
Arguments	channel	Conversation channel from ddei ni t.
	item	String specifying the DDE item for the data sent. Item is the server data entity that is to contain the data sent in the data argument.
	data	Matrix containing the data to send.
	format (<i>optional</i>)	Scalar specifying the format of the data requested. The value indicates the Windows clipboard format to use for the data transfer. The only format currently supported is cf_text , which corresponds to a value of 1.
	timeout (<i>optional</i>)	Scalar specifying the time-out limit for this operation. timeout is specified in milliseconds. (1000 milliseconds = 1 second). The default value of timeout is three seconds.

ExamplesAssume that a conversation channel with Excel has previously been
established with ddei ni t. To send a 5-by-5 identity matrix to Excel, placing the
data in Row 1, Column 1 through Row 5, Column 5:
rc = ddepoke(channel, 'r1c1:r5c5', eye(5));

See Also ddeadv, ddeexec, ddei nit, ddereq, ddeterm, ddeunadv

ddereq

Purpose	Request data	a from application
Syntax	data = dder	<pre>req(channel, 'item') req(channel, 'item', format) req(channel, 'item', format, timeout)</pre>
Description	conversation	ests data from a server application via an established DDE . ddereq returns a matrix containing the requested data or an x if the function is unsuccessful.
		ptional arguments that are not at the end of the argument list, you ute the empty matrix for the missing argument(s).
		ddereq returns a matrix containing the requested data in a. Otherwise, it returns an empty matrix.
Arguments	channel	Conversation channel from ddei ni t.
	item	String specifying the server application's DDE item name for the data requested.
	format (<i>optional</i>)	Two-element array specifying the format of the data requested. The first element specifies the Windows clipboard format to use. The only currently supported format is cf_text , which corresponds to a value of 1. The second element specifies the type of the resultant matrix. Valid types are numeric (the default, which corresponds to 0) and string (which corresponds to a value of 1). The default format array is [1 0].
	timeout (<i>optional</i>)	Scalar specifying the time-out limit for this operation. timeout is specified in milliseconds. (1000 milliseconds = 1 second). The default value of timeout is three seconds.
Examples	contains the number of sh conversation	we have an Excel spreadsheet stocks. xl s. This spreadsheet prices of three stocks in row 3 (columns 1 through 3) and the nares of these stocks in rows 6 through 8 (column 2). Initiate with Excel with the command: = ddei nit('excel', 'stocks. xl s')

DDE functions require the r*x*c*y* reference style for Excel worksheets. In Excel terminology the prices are in r3c1: r3c3 and the shares in r6c2: r8c2.

To request the prices from Excel:

See Also ddeadv, ddeexec, ddeinit, ddepoke, ddeterm, ddeunadv

ddeset

Purpose	Create/alter delay differential equations (DDE) options structure
Syntax	<pre>options = ddeset('name1', value1, 'name2', value2,) options = ddeset(oldopts, 'name1', value1,) options = ddeset(oldopts, newopts) ddeset</pre>
Description	options = ddeset('name1', value1, 'name2', value2,) creates an integrator options structure options in which the named properties have the specified values. Any unspecified properties have default values. It is sufficient to type only the leading characters that uniquely identify the property. Case is ignored for property names.
	options = ddeset(oldopts, 'name1', value1,) alters an existing options structure oldopts.
	options = ddeset(oldopts, newopts) combines an existing options structure oldopts with a new options structure newopts. Any new properties overwrite corresponding old properties.
	ddeset with no input arguments displays all property names and their possible values.

DDE Properties These properties are available:

Property	Value	Description
Rel Tol	Positive scalar {1e-3}	Relative error tolerance that applies to all componentsof the solution vector. The estimated error in eachintegration step satisfies $ e(i) <= max(Rel Tol *abs(y(i)), AbsTol(i)).$
AbsTol	Positive scalar or vector {1e-6}	Absolute error tolerance that applies to all components of the solution vector. Elements of a vector of tolerances apply to corresponding components of the solution vector.

Property	Value	Description
NormControl	on {off}	Control error relative to norm of solution. Set this property on to request that dde23 control the error in each integration step with norm(e) <= max(Rel Tol *norm(y), AbsTol). By default dde23 uses a more stringent component-wise error control.
Stats	on {off}	Display computational cost statistics.
Events	Function	The solver uses the specified function to locate where functions of t, y, Z vanish. See dde23 for details.
MaxStep	Positive scalar {0. 1*tspan}	Upper bound on the magnitude of the step size. The default is one-tenth of the tspan interval.
I ni ti al Step	Positive scalar	Suggested initial step size. The solver tries this first. By default the solver determines an initial step size automatically.
OutputFcn	Function	Installable output function. This output function is called by the solver after each time step. When a solver is called with no output arguments, OutputFcn defaults to the function odepl ot. Otherwise, OutputFcn defaults to [].
		To create or modify an output function, see ODE Solver Output Properties in the "Differential Equations" section of the MATLAB documentation.
0utputSel	Vector of integers	Output selection indices. Specifies the components of the solution vector that dde23 passes to the OutputFcn. The default is all components.

ddeset

Property	Value	Description
Jumps	Vector	Location of discontinuities in solution. Points t where the history or solution may have a jump discontinuity in a low-order derivative. See dde23 for details.
Initial Y	Vector	Initial value of solution. By default the initial value of the solution is the value returned by history at the initial point. A different initial value can be supplied as the value of the Initial Y property.

See Also dde23, ddeget, @ (function_handle)

ddeterm

Purpose	Terminate DDE conversation
Syntax	<pre>rc = ddeterm(channel)</pre>
Description	rc = ddeterm(channel) accepts a channel handle returned by a previous call to ddei nit t that established the DDE conversation. ddeterm terminates this conversation. rc is a return code where 0 indicates failure and 1 indicates success.
Examples	To close a conversation channel previously opened with ddei nit: rc = ddeterm(channel) rc =
	1.00
See Also	ddeadv, ddeexec, ddei ni t, ddepoke, ddereq, ddeunadv

ddeunadv

Purpose	Release advi	isory link
Syntax	rc = ddeuna	adv(channel,' <i>item</i> ') adv(channel,' <i>item</i> ',format) adv(channel,' <i>item</i> ',format,timeout)
Description	ddeunadv releases the advisory link between MATLAB and the server application established by an earlier ddeadv call. The channel, <i>i tem</i> , and format must be the same as those specified in the call to ddeadv that initiated the link. If you include the timeout argument but accept the default format, you must specify format as an empty matrix.	
	If successful	, ddeunadv returns 1 in variable, rc. Otherwise it returns 0.
Arguments	channel	Conversation channel from ddei ni t.
	item	String specifying the DDE item name for the advisory link. Changing the data identified by item at the server triggers the advisory link.
	format (<i>optional</i>)	Two-element array. This must be the same as the format argument for the corresponding ddeadv call.
	timeout (<i>optional</i>)	Scalar specifying the time-out limit for this operation. timeout is specified in milliseconds. (1000 milliseconds = 1 second). The default value of timeout is three seconds.
Example	To release a	n advisory link established previously with ddeadv:
	rc = dde rc =	unadv(channel, 'r1c1:r5c5')
	1.00	
See Also	ddeadv, ddee	exec, ddei ni t, ddepoke, ddereq, ddeterm

Purpose	Deal inputs to outputs
Syntax	[Y1, Y2, Y3,] = deal(X) [Y1, Y2, Y3,] = deal(X1, X2, X3,)
Description	[Y1, Y2, Y3,] = deal(X) copies the single input to all the requested outputs. It is the same as $Y1 = X$, $Y2 = X$, $Y3 = X$,
	[Y1, Y2, Y3,] = deal (X1, X2, X3,) is the same as $Y1 = X1$; $Y2 = X2$; $Y3 = X3$;
Remarks	deal is most useful when used with cell arrays and structures via comma separated list expansion. Here are some useful constructions:
	[S. field] = deal(X) sets all the fields with the name field in the structure array S to the value X. If S doesn't exist, use $[S(1:m). field] = deal(X)$.
	$[X{:}] = deal (A. field)$ copies the values of the field with name field to the cell array X. If X doesn't exist, use $[X{1:m}] = deal (A. field)$.
	$[Y1, Y2, Y3,] = deal(X{:})$ copies the contents of the cell array X to the separate variables Y1, Y2, Y3,
	[Y1, Y2, Y3,] = deal (S. fi el d) copies the contents of the fields with the name fi el d to separate variables Y1, Y2, Y3,
Examples	Use deal to copy the contents of a 4-element cell array into four separate output variables.
	C = {rand(3) ones(3, 1) eye(3) zeros(3, 1)}; [a, b, c, d] = deal(C{:})
	a =
	0. 9501 0. 4860 0. 4565
	0. 2311 0. 8913 0. 0185 0. 6068 0. 7621 0. 8214
	b =

```
1
       1
       1
  c =
       1
           0
               0
       0
           1
               0
       0
           0
               1
  d =
       0
       0
       0
Use deal to obtain the contents of all the name fields in a structure array:
  A. name = 'Pat'; A. number = 176554;
  A(2).name = 'Tony'; A(2).number = 901325;
  [name1, name2] = deal(A(:). name)
  name1 =
  Pat
  name2 =
```

Tony

deblank

Purpose	Strip trailing blanks from the end of a string
Syntax	<pre>str = deblank(str) c = deblank(c)</pre>
Description	str = debl ank(str) removes the trailing blanks from the end of a character string str .
	$c\ =\ deblank(c),\ when c$ is a cell array of strings, applies $deblank$ to each element of $c.$
	The debl ank function is useful for cleaning up the rows of a character array.
Examples	A{1, 1} = 'MATLAB '; A{1, 2} = 'SIMULINK '; A{2, 1} = 'Tool boxes '; A{2, 2} = 'The MathWorks '; A = 'MATLAB ' 'SIMULINK ' 'Tool boxes ' 'The MathWorks '
	debl ank(A)
	ans =
	'MATLAB' 'SIMULINK' 'Toolboxes' 'The MathWorks'

dec2base

Purpose	Decimal number to base conversion
Syntax	<pre>str = dec2base(d, base) str = dec2base(d, base, n)</pre>
Description	<pre>str = dec2base(d, base) converts the nonnegative integer d to the specified base.d must be a nonnegative integer smaller than 2^52, and base must be an integer between 2 and 36. The returned argument str is a string. str = dec2base(d, base, n) produces a representation with at least n digits.</pre>
Examples	The expression dec2base(23, 2) converts 23_{10} to base 2, returning the string ' 10111'.
See Also	base2dec

Purpose	Decimal to binary number conversion
Syntax	str = dec2bin(d) str = dec2bin(d, n)
Description	str $= dec2bin(d)$ returns the binary representation of d as a string. d must be a nonnegative integer smaller than 2^52.
	str = $dec2bin(d, n)$ produces a binary representation with at least n bits.
Examples	ans = 10111
See Also	bi n2dec, dec2hex

dec2hex

Purpose	Decimal to hexadecimal number conversion				
Syntax	str = dec2hex(d) str = dec2hex(d, n)				
Description	$str = dec2hex(d)$ converts the decimal integer d to its hexadecimal representation stored in a MATLAB string. d must be a nonnegative integer smaller than 2^52.				
	str = $dec2hex(d, n)$ produces a hexadecimal representation with at least n digits.				
Examples	To convert decimal 1023 to hexadecimal, dec2hex(1023)				
	ans = 3FF				
See Also	dec2bin, format, hex2dec, hex2num				

Purpose	Deconvolution and polynomial division						
Syntax	[q, r] = deconv(v, u)						
Description	[q, r] = deconv(v, u) deconvolves vector u out of vector v, using long division. The quotient is returned in vector q and the remainder in vector r such that v = conv(u, q)+r.						
	If u and v are vectors of polynomial coefficients, convolving them is equivalent to multiplying the two polynomials, and deconvolution is polynomial division. The result of dividing v by u is quotient q and remainder r.						
Examples	If $u = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$ $v = \begin{bmatrix} 10 & 20 & 30 \end{bmatrix}$						
	the convolution is c = conv(u, v) c = 10 40 100 160 170 120						
	Use deconvolution to recover u:						
	[q, r] = deconv(c, u) $q =$ $10 20 30$ $r =$ $0 0 0 0 0 0$						
	This gives a quotient equal to $\mathbf v$ and a zero remainder.						
Algorithm	deconv uses the filter primitive.						
o ••							

See Also conv, resi due

PurposeDiscrete LaplacianSyntaxL = del 2(U)L = del 2(U, h)L = del 2(U, hx, hy)L = del 2(U, hx, hy, hz, ...)

Definition If the matrix U is regarded as a function u(x, y) evaluated at the point on a square grid, then 4*del 2(U) is a finite difference approximation of Laplace's differential operator applied to u, that is:

$$I = \frac{\nabla^2 u}{4} = \frac{1}{4} \left(\frac{d^2 u}{dx^2} + \frac{d^2 u}{dy^2} \right)$$

where:

$$I_{ij} = \frac{1}{4}(u_{i+1, j} + u_{i-1, j} + u_{i, j+1} + u_{i, j-1}) - u_{i, j}$$

in the interior. On the edges, the same formula is applied to a cubic extrapolation.

For functions of more variables u(x, y, z, ...), del 2(U) is an approximation,

$$I = \frac{\nabla^2 u}{2N} = \frac{1}{2N} \left(\frac{d^2 u}{dx^2} + \frac{d^2 u}{dy^2} + \frac{d^2 u}{dz^2} + \dots \right)$$

where N is the number of variables in u.

Description L = del 2(U) where U is a rectangular array is a discrete approximation of

$$I = \frac{\nabla^2 u}{4} = \frac{1}{4} \left(\frac{d^2 u}{dx^2} + \frac{d^2 u}{dy^2} \right)$$

The matrix L is the same size as U with each element equal to the difference between an element of U and the average of its four neighbors.

		-L = del 2(U) when U is an multidimensional array, returns an approximation of								
	$\frac{\nabla^2 u}{2N}$									
	where N is ndims(u).									
	L = del 2(U, h) where H is a scalar uses H as the spacing between points in each direction (h=1 by default).									
	L = del 2(U, hx, hy) when U is a rectangular array, uses the spacing specific by hx and hy. If hx is a scalar, it gives the spacing between points in the x-direction. If hx is a vector, it must be of length si $ze(u, 2)$ and specifies th x-coordinates of the points. Similarly, if hy is a scalar, it gives the spacing between points in the y-direction. If hy is a vector, it must be of length si $ze(u, 1)$ and specifies the y-coordinates of the points. L = del 2(U, hx, hy, hz,) where U is multidimensional uses the spacing given by hx, hy, hz,								e es the cing	
									cing	
Examples	The function									
	$u(x, y) = x^2 + y^2$									
	has									
	$\nabla^2 u = 4$									
	For this func	tion, 4*d	lel 2(U)	is also 4.						
	[x, y] = meshgrid(-4:4, -3:3); U = x.*x+y.*y U =									
	25	18	13	10	9	10	13	18	25	
	20	13	8	5	4	5	8	13	20	
	17	10	5	2	1	2	5	10	17	
	16	9	4	1	0	1	4	9	16	
	17	10	5	2	1	2	5	10	17	
	20	13	8	5	4	5	8	13	20	
	25	18	13	10	9	10	13	18	25	

V = V =	4*del	2(U)							
	4	4	4	4	4	4	4	4	4
	4	4	4	4	4	4	4	4	4
	4	4	4	4	4	4	4	4	4
	4	4	4	4	4	4	4	4	4
	4	4	4	4	4	4	4	4	4
	4	4	4	4	4	4	4	4	4
	4	4	4	4	4	4	4	4	4

diff, gradi ent

Purpose	Delaunay triangulation
1 41 0000	Delaunay changulation

Syntax TRI = del aunay(x, y)

Definition Given a set of data points, the *Delaunay triangulation* is a set of lines connecting each point to its natural neighbors. The Delaunay triangulation is related to the Voronoi diagram— the circle circumscribed about a Delaunay triangle has its center at the vertex of a Voronoi polygon.

- **Description** TRI = del aunay(x, y) for the data points defined by vectors x and y, returns a set of triangles such that no data points are contained in any triangle's circumscribed circle. Each row of the m-by-3 matrix TRI defines one such triangle and contains indices into x and y. If the original data points are collinear or x is empty, the triangles cannot be computed and del aunay returns an empty matrix.
- **Remarks**The Delaunay triangulation is used by: gri ddata (to interpolate scattered
data), voronoi (to compute the voronoi diagram), and is useful by itself to
create a triangular grid for scattered data points.

The functions dsearch and tsearch search the triangulation to find nearest neighbor points or enclosing triangles, respectively.

Visualization Use one of these functions to plot the output of del aunay:

delaunay

	tri pl ot	Displays the triangles defined in the m-by-3 matrix TRI . See Example 1.
	tri surf	Displays each triangle defined in the m-by-3 matrix TRI as a surface in 3-D space. To see a 2-D surface, you can supply a vector of some constant value for the third dimension. For example trisurf(TRI, x, y, zeros(size(x)))
		See Example 2.
	tri mesh	Displays each triangle defined in the m-by-3 matrix TRI as a mesh in 3-D space. To see a 2-D surface, you can supply a vector of some constant value for the third dimension. For example, trimesh(TRI, x, y, zeros(size(x)))
		produces almost the same result as triplot, except in 3-D space. See Example 2.
Examples	Example 1.	Plot the Delaunay triangulation for 10 randomly generated points.
	subplot(triplot(axis([0 hold on; plot(x, y hold off Compare the [vx, vy] subplot(<pre>(1, 10); (1, 10); l aunay(x, y); 1, 2, 1), TRI, x, y) 1 0 1]); , ' or'); e Voronoi diagram of the same points: = voronoi (x, y, TRI); 1, 2, 2), , ' r+', vx, vy, ' b-'),</pre>

Example 2. Create a 2-D grid then use tri surf to plot its Delaunay triangulation in 3-D space by using 0s for the third dimension.

[x, y] = meshgrid(1:15, 1:15); tri = delaunay(x, y); trisurf(tri, x, y, zeros(size(x)))

delaunay

Next, generate peaks data as a 15-by-15 matrix, and use that data with the Delaunay triangulation to produce a surface in 3-D space.

```
z = peaks(15);
trisurf(tri, x, y, z)
```


You can use the same data with trimesh to produce a mesh in 3-D space.

trimesh(tri, x, y, z)

Algorithm	del aunay is based on Qhull . It uses the Qhull joggle option ('QJ'). For information about qhull, see http://www.geom.umn.edu/software/qhull/. For copyright information, see http://www.geom.umn.edu/software/download/COPYING.html.
See Also	del aunay3, del aunayn, dsearch, gri ddata, pl ot, tri pl ot, tri mesh, tri surf, tsearch, voronoi
References	[1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for Convex Hulls," <i>ACM Transactions on Mathematical Software</i> , Vol. 22, No. 4, Dec. 1996, p. 469-483. Available in HTML format at http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar ber/ and in PostScript format at ftp://geom.umn.edu/pub/software/qhull-96.ps.
	[2] National Science and Technology Research Center for Computation and Visualization of Geometric Structures (The Geometry Center), University of Minnesota. 1993.

delaunay3

Purpose	3-D Delaunay tessellation	
Syntax	TES = del aunay3(x, y, z)	
Description	TES = del aunay3(x, y, z) returns an array TES, each row of which contains the indices of the points in (x, y, z) that make up a tetrahedron in the tessellation of (x, y, z) . TES is a numt es-by-4 array where numt es is the number of facets in the tessellation. x, y, and z are vectors of equal length. If the original data points are collinear or x, y, and z define an insufficient number of points, the triangles cannot be computed and del aunay3 returns an empty matrix.	
Visualization	Use tetramesh to plot del aunay3 output. tetramesh displays the tetrahedrons defined in TES as mesh. tetramesh uses the default tranparency parameter value 'FaceAl pha' = 0.9.	
Example	<pre>value ' FaceAl pha' = 0.9. This example generates a 3-D Delaunay tessellation, then uses tetramesh to plot the tetrahedrons that form the corresponding simplex. camorbit rotates the camera position to provide a meaningful view of the figure. d = [-1 1]; [x, y, z] = meshgrid(d, d, d); % A cube x = [x(:);0]; y = [y(:);0]; z = [z(:);0]; % [x, y, z] are corners of a cube pl us the center. Tes = del aunay3(x, y, z) Tes = 9 1 5 6 3 9 1 5 2 9 1 6 2 3 9 4 2 3 9 1 7 9 5 6 7 3 9 5 8 7 9 6 8 2 9 4</pre>	

8 3 9 4 8 7 3 9

X = [x(:) y(:) z(:)];tetramesh(Tes, X); camorbit(20, 0)

Algorithmdel aunay3 is based on Qhull [2]. It uses the Qhull joggle option ('QJ'). For
information about qhull, see http://www.geom.umn.edu/software/qhull/.
For copyright information, see
http://www.geom.umn.edu/software/download/COPYING.html.See Alsodel aunay, del aunaynReference[1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar
ber/ and in PostScript format at
ftp://geom.umn.edu/pub/software/qhull-96.ps.

[2] National Science and Technology Research Center for Computation and Visualization of Geometric Structures (The Geometry Center), University of Minnesota. 1993.

Purpose	n-D Delaunay tessellation
Syntax	T = del aunayn(X)
Description	T = del aunayn(X) computes a set of simplices such that no data points of X are contained in any circumspheres of the simplices. The set of simplices forms the Delaunay tessellation. X is an m-by-n array representing m points in n-D space. T is a numt-by-(n+1) array where each row contains the indices into X of the vertices of the corresponding simplex.
Visualization	Plotting the output of del aunayn depends of the value of n:
	• For $n = 2$, use triplot, trisurf, or trimesh as you would for delaunay.
	 For n = 3, use tetramesh as you would for del aunay3.
	For more control over the color of the facets, use patch to plot the output. For an example, see "Tessellation and Interpolation of Scattered Data in Higher Dimensions" in the MATLAB documentation.
	• You cannot plot del aunayn output for $n > 3$.
Example	This example generates an n-D Delaunay tessellation, where $n = 3$.
	$d = [-1 \ 1];$
	<pre>[x, y, z] = meshgrid(d, d, d); % A cube x = [x(:);0]; y = [y(:);0]; z = [z(:);0]; % [x, y, z] are corners of a cube plus the center. X = [x(:) y(:) z(:)]; Tes = delaunayn(X)</pre>

delaunayn

8	2	9	6
8	2	9	4
8	3	9	4
8	7	3	9

You can use tetramesh to visualize the tetrahedrons that form the corresponding simplex. camorbit rotates the camera position to provide a meaningful view of the figure.

tetramesh(Tes, X); camorbit(20, 0)

Algorithm	del aunayn is based on Qhull [2],. It uses the Qhull joggle option ('QJ'). For information about qhull, see http://www.geom.umn.edu/software/qhull/.
	For copyright information, see
	http://www.geom.umn.edu/software/download/COPYING.html.
See Also	convhulln, del aunayn, del aunay3, tetramesh, voronoin
Reference	[1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for Convex Hulls," <i>ACM Transactions on Mathematical Software</i> , Vol. 22, No. 4, Dec. 1996, p. 469-483. Available in HTML format at

http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/ and in PostScript format at ftp://geom.umn.edu/pub/software/qhull-96.ps.

[2] National Science and Technology Research Center for Computation and Visualization of Geometric Structures (The Geometry Center), University of Minnesota. 1993.

delete

Purpose	Delete files or graphics objects
Graphical Interface	As an alternative to the ${\rm delete}$ function, you can delete files using the Current Directory browser.
Syntax	<pre>delete filename delete(h) delete('filename')</pre>
Description	del ete filename deletes the named file from the disk. The filename may include an absolute pathname or a pathname relative to the current directory. The filename may also include wildcards, (*).
	del $ete(h)$ deletes the graphics object with handle h. The function deletes the object without requesting verification even if the object is a window.
	del ete('filename') is the function form of del ete. Use this form when the filename is stored in a string.
	Note MATLAB does not ask for confirmation when you enter the delete command. To avoid accidentally losing files or graphics objects that you need, make sure that you have accurately specified the items you want deleted.
Examples	To delete all files with a . mat extension in the /mytests/ directory, type del ete(' /mytests/*. mat') To delete a directory, use rmdi r rather than del ete:
	rmdir mydirectory
See Also	dir, edit, mkdir, rmdir, type

Purpose	Delete a COM control or server
Syntax	del ete(h)
Arguments	h Handle for a COM object previously returned from <code>actxcontrol</code> , <code>actxserver</code> , get, or i nvoke.
Description	Release all interfaces derived from the specified COM server or control, and then delete the server or control itself. This is different from releasing an interface, which releases and invalidates only that interface.
Examples	<pre>Create a Microsoft Calender application. Then create a TitleFont interface and use it to change the appearance of the font of the calendar's title: f = figure('pos', [300 300 500 500]); cal = actxcontrol('mscal.calendar', [0 0 500 500], f); TFont = get(cal, 'TitleFont') TFont =</pre>
	Interface. mscal. cal endar. TitleFont set(TFont, 'Name', 'Viva BoldExtraExtended'); set(TFont, 'Bold', 0); When you're finished working with the title font, release the TitleFont interface: rel ease(TFont); Now create a GridFont interface and use it to modify the size of the calendar's date numerals:

```
GFont = get(cal, 'GridFont')
GFont =
Interface.mscal.calendar.GridFont
set(GFont, 'Size', 16);
```

When you're done, delete the cal object and the figure window. Deleting the cal object also releases all interfaces to the object (e.g., GFont):

delete(cal); delete(f); clear f;

Note that, although the object and interfaces themselves have been destroyed, the variables assigned to them still reside in the MATLAB workspace until you remove them with cl ear.

whos Name	Si ze	Bytes	Cl ass
GFont	1x1	0	handl e
TFone	1x1	0	handl e
cal	1x1	0	handl e

Grand total is 3 elements using 0 bytes

See Also rel ease, save, load, actxcontrol, actxserver

Purpose	Remove a serial port object from memory	
Syntax	del ete(obj)	
Arguments	obj A serial port object or an array of serial port objects.	
Description	del ete(obj) removes obj from memory.	
Remarks	When you delete obj, it becomes an <i>invalid</i> object. Because you cannot connect an invalid serial port object to the device, you should remove it from the workspace with the cl ear command. If multiple references to obj exist in the workspace, then deleting one reference invalidates the remaining references.	
	If obj is connected to the device, it has a Status property value of open. If you issue delete while obj is connected, then the connection is automatically broken. You can also disconnect obj from the device with the fclose function.	
	If you use the $\operatorname{hel} p$ command to display help for $\operatorname{del} \operatorname{ete}$, then you need to supply the pathname shown below.	
	help serial/delete	
Example	This example creates the serial port object s , connects s to the device, writes and reads text data, disconnects s from the device, removes s from memory using del ete, and then removes s from the workspace using cl ear.	
	<pre>s = serial('COM1'); fopen(s) fprintf(s, '*IDN?') idn = fscanf(s); fclose(s) delete(s) clear s</pre>	
See Also	Functions clear, fclose, i sval i d	
	Properties Status	

delete (timer)

Purpose	Remove a timer object from memory
Syntax	del ete(obj)
Description	del ete(obj) removes timer object, obj, from memory. If obj is an array of timer objects, del ete removes all the objects from memory.
	When you delete a timer object, it becomes invalid and cannot be reused. Use the clear command to remove invalid timer objects from the workspace.
	If multiple references to a timer object exist in the workspace, deleting the timer object invalidates the remaining references. Use the cl ear command to remove the remaining references to the object from the workspace.
See Also	clear, i svalid, timer

Purpose	Remove custom property from COM object
Syntax	<pre>del eteproperty(h, 'propertyname')</pre>
Arguments	h Handle for a COM object previously returned from actxcontrol, actxserver, get, or i nvoke. propertyname
	A string specifying the name of the custom property to delete.
Description	Delete a property, propertyname, from the custom properties belonging to object or interface, h. You can only delete properties that have been created with addproperty.
Examples	Create an mwsamp control and add a new property named Position to it. Assign an array value to the property:
	<pre>f = figure('pos', [100 200 200 200]); h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f); get(h) Label: 'Label' Radius: 20</pre>
	addproperty(h, 'Position'); set(h, 'Position', [200 120]); get(h) Label: 'Label' Radius: 20 Position: [200 120]
	Delete the custom Posi ti on property:
	del eteproperty(h, 'Position'); get(h) Label: 'Label' Radius: 20
See Also	addproperty, get, set, inspect

demo

Purpose	Access product demos via Help browser
Syntax	demo demo <i>subtopic</i> demo <i>subtopic category</i>
Description	demo opens the Demos panel in the Help browser. In the left pane, expand the listing for a product area (for example, MATLAB). Within that product area, expand the listing for a product or product category (for example, MATLAB Graphics). Select a specific demo from the list (for example, Visualizing Sound). In the right pane, view instructions for using the demo. For more information, see Running Demonstrations. For platforms that do not support Java GUIs, the demos are presented in a non-Java interface. To run a demo from the command line, type the demo name. For playshow demos, that is those demos in which the H1 line begins with two comment symbols (%%), type pl ayshow followed by the demo name.
	subtopic expanded. Subtopics are matl ab, tool box, si mul i nk, and bl ockset.
	demo <i>subtopi c product</i> opens the Demos panel in the Help browser to the specified product or category within the subtopic.

Type demo to access the **Demos** panel in the Help browser.

To run an M-file demo, click this link.

When you click this link, the M-file source code

View the demos for products installed on your system. When you choose a demo, information about it appears in the display pane.

Examples

Accessing Toolbox Demos

To find the demos relating to the Communications Toolbox, type

demo toolbox communication

The Help browser opens to the **Demos** panel with the Toolbox subtopic expanded and with the Communications product highlighted and expanded to show the available demos.

Accessing the Simulink Automotive Demos To accesses the automotive demos within Simulink, type

demo simulink automotive

The **Demos** panel opens with the Simulink subtopic and Automotive category expanded.

Running a Demo from the Command Line

Type

vi bes

to run a visualization demonstration showing an animated L-shaped membrane.

Running a Playshow Demo from the Command Line

Type

quake

to run an earthquake data demo. Not much appears to happen. This is because quake is a playshow demo. Verify this by viewing the M-file, quake. m, for example, by typing

edit quake

The first line, that is, the H1 line for quake is

%% Loma Prieta Earthquake

The %% indicates that quake is a playshow demo. So to run it, type

playshow quake

and the earthquake demo runs.

See Also hel p, hel pbrowser, hel pwin, lookfor

Purpose	List the dependent directories of an M-file or P-file
Syntax	<pre>list = depdir('file_name'); [list, prob_files, prob_sym, prob_strings] = depdir('file_name'); [] = depdir('file_name1', 'file_name2',);</pre>
Description	The depdi r function lists the directories of all of the functions that a specified M-file or P-file needs to operate. This function is useful for finding all of the directories that need to be included with a runtime application and for determining the runtime path.
	$list = depdir('file_name')$ creates a cell array of strings containing the directories of all the M-files and P-files that file_name. m or file_name. p uses. This includes the second-level files that are called directly by file_name, as well as the third-level files that are called by the second-level files, and so on.
	<pre>[list, prob_files, prob_sym, prob_strings] = depdir('file_name') creates three additional cell arrays containing information about any problems with the depdir search. prob_files contains filenames that depdir was unable to parse. prob_sym contains symbols that depdir was unable to find. prob_strings contains callback strings that depdir was unable to parse.</pre>
	$[\dots] = depdir('file_name1', 'file_name2', \dots)$ performs the same operation for multiple files. The dependent directories of all files are listed together in the output cell arrays.
Example	list = depdir('mesh')
See Also	depfun

depfun

Purpose	List the dependent functions of an M-file or P-file
Syntax	<pre>list = depfun('file_name'); [list, builtins, classes] = depfun('file_name'); [list, builtins, classes, prob_files, prob_sym, eval_strings, called_from, java_classes] = depfun('file_name'); [] = depfun('file_name1', 'file_name2',); [] = depfun('fig_file_name'); [] = depfun(,'-toponly');</pre>
Description	The depfun function lists all of the functions and scripts, as well as built-in functions, that a specified M-file needs to operate. This is useful for finding all of the M-files that you need to compile for a MATLAB runtime application. list = depfun('file_name') creates a cell array of strings containing the paths of all the files that file_name. m uses. This includes the second-level files that are called directly by file_name. m, as well as the third-level files that are called by the second-level files, and so on. Note If depfun reports that "These files could not be parsed: " or if the prob_files output below is nonempty, then the rest of the output of depfun might be incomplete. You should correct the problematic files and invoke depfun again. [list, builtins, classes] = depfun('file_name') creates three cell arrays containing information about dependent functions. list contains the paths of all the files that file_name and its subordinates use. classes contains the built-in functions that file_name and its subordinates use. [list, builtins, classes, prob_files, prob_sym, eval_strings, called_from, java_classes] = depfun('file_name') creates additional cell arrays or structure arrays containing information about where the functions in list are invoked. The additional outputs are:

- prob_files, which indicates which files depfun was unable to parse, find, or access. Parsing problems can arise from MATLAB syntax errors. prob_files is a structure array whose fields are:
 - name, which gives the names of the files
 - listindex, which tells where the files appeared in list
 - errmsg, which describes the problems
- prob_sym, which indicates which symbols depfun was unable to resolve as functions or variables. It is a structure array whose fields are:
 - fcn_id, which tells where the files appeared in list
 - name, which gives the names of the problematic symbols
- eval _stri ngs, which indicates usage of these evaluation functions: eval, eval c, eval i n, feval. When preparing a runtime application, you should examine this output to determine whether an evaluation function invokes a function that does not appear in list. The output eval_stri ngs is a structure array whose fields are:
 - fcn_name, which give the names of the files that use evaluation functions
 - l i neno, which gives the line numbers in the files where the evaluation functions appear
- called_from, a cell array of the same length as list. This cell array is arranged so that

```
list(called_from{i})
```

returns all functions in file_name that invoke the function $list{i}$.

- $j \mbox{ ava_cl}\xspace$ asses, a cell array of Java class names that file_name and its subordinates use

 $[\dots] = depfun('file_name1', 'file_name2', \dots)$ performs the same operation for multiple files. The dependent functions of all files are listed together in the output arrays.

 $[\dots] = depfun('fig_file_name')$ looks for dependent functions among the callback strings of the GUI elements that are defined in the . fig or . mat file named fig_file_name.

 $[\dots] = depfun(\dots, '-toponly')$ differs from the other syntaxes of depfun in that it examines *only* the files listed explicitly as input arguments. It does not examine the files on which they depend. In this syntax, the flag ' - t oponl y' must be the last input argument.

Notes

- 1 If depf un does not find a file called hgi nfo. mat on the path, then it creates one. This file contains information about Handle Graphics callbacks.
- **2** If your application uses toolbar items from the MATLAB default figure window, then you must include ' Fi gureTool Bar. fi g' in your input to depfun.
- **3** If your application uses menu items from the MATLAB default figure window, then you must include 'FigureMenuBar. fig' in your input to depfun.
- 4 Because many built-in Handle Graphics functions invoke newplot, the list produced by depfun always includes the functions on which newplot is dependent:
 - ' matlabroot\tool box\matlab\graphics\newplot.m'
 - 'matlabroot\toolbox\matlab\graphics\closereq.m'
 - 'matlabroot\toolbox\matlab\graphics\gcf.m'
 - 'matlabroot\toolbox\matlab\graphics\gca.m'
 - 'matlabroot\toolbox\matlab\graphics\private\clo.m'
 - 'matlabroot\toolbox\matlab\general\@char\delete.m'
 - ' matlabroot\tool box\matlab\lang\nargchk.m'
 - 'matlabroot\toolbox\matlab\uitools\allchild.m'
 - 'matlabroot\toolbox\matlab\ops\setdiff.m'
 - 'matlabroot\toolbox\matlab\ops\@cell\setdiff.m'
 - 'matlabroot\toolbox\matlab\iofun\filesep.m'
 - ' matlabroot\toolbox\matlab\ops\unique.m'
 - 'matlabroot\toolbox\matlab\elmat\repmat.m'
 - ' matlabroot\tool box\matlab\datafun\sortrows. m'
 - 'matlabroot\toolbox\matlab\strfun\deblank.m'
 - 'matlabroot\toolbox\matlab\ops\@cell\unique.m'
 - 'matlabroot\toolbox\matlab\strfun\@cell\deblank.m'
 - 'matlabroot\toolbox\matlab\datafun\@cell\sort.m'
 - 'matlabroot\toolbox\matlab\strfun\cellstr.m'
 - 'matlabroot\toolbox\matlab\datatypes\iscell.m'
 - 'matlabroot\toolbox\matlab\strfun\iscellstr.m'

	<pre>- 'matlabroot\toolbox\matlab\datatypes\cellfun.dll'</pre>
Examples	<pre>list = depfun('mesh'); % Files mesh.m depends on list = depfun('mesh','-toponly') % Files mesh.m depends on directly [list, builtins, classes] = depfun('gca');</pre>
See Also	depdir, profile

det

Purpose	Matrix determinant
Syntax	d = det(X)
Description	$d = \det(X)$ returns the determinant of the square matrix X. If X contains only integer entries, the result d is also an integer.
Remarks	Using det(X) == 0 as a test for matrix singularity is appropriate only for matrices of modest order with small integer entries. Testing singularity using $abs(det(X)) \ll tol erance$ is not recommended as it is difficult to choose the correct tolerance. The function $cond(X)$ can check for singular and nearly singular matrices.
Algorithm	The determinant is computed from the triangular factors obtained by Gaussian elimination $\begin{bmatrix} L, U \end{bmatrix} = l u(A)$ $s = det(L) \qquad \% \text{ This is al ways +1 or -1}$ $det(A) = s*prod(diag(U))$
Examples	The statement A = $\begin{bmatrix} 1 & 2 & 3; & 4 & 5 & 6; & 7 & 8 & 9 \end{bmatrix}$ produces A = 1 2 3 4 5 6 7 8 9 This happens to be a singular matrix, so d = det (A) produces d = 0. Changing A(3, 3) with A(3, 3) = 0 turns A into a nonsingular matrix. Now d = det (A) produces d = 27.
See Also	cond, condest, i nv, l u, rref The arithmetic operators /

detrend

Purpose	Remove linear trends.
Syntax	<pre>y = detrend(x) y = detrend(x, 'constant') y = detrend(x, 'linear', bp)</pre>
Description	det rend removes the mean value or linear trend from a vector or matrix, usually for FFT processing.

y = detrend(x) removes the best straight-line fit from vector x and returns it in y. If x is a matrix, detrend removes the trend from each column.

y = detrend(x, 'constant') removes the mean value from vector x or, if x is a matrix, from each column of the matrix.

y = detrend(x, 'linear', bp) removes a continuous, piecewise linear trend from vector x or, if x is a matrix, from each column of the matrix. Vector bp contains the indices of the breakpoints between adjacent linear segments. The breakpoint between two segments is defined as the data point that the two segments share.

 ${\tt detrend}(x,\,{}^\prime\,l\,i\,near^\prime\,)$, with no breakpoint vector specified, is the same as ${\tt detrend}(x)$.

 Example
 sig = [0 1 - 2 1 0 1 - 2 1 0]; trend = [0 1 2 3 4 3 2 1 0]; % signal with no linear trend

 x = sig+trend; y = detrend(x, 'linear', 5)
 % signal with added trend

y = - 0. 0000 1. 0000 - 2. 0000 1. 0000 0. 0000 1. 0000 - 2. 0000 1. 0000 - 0. 0000 Note that the b point shared by

Note that the breakpoint is specified to be the fifth element, which is the data point shared by the two segments.

Algorithmdetrend computes the least-squares fit of a straight line (or composite line for
piecewise linear trends) to the data and subtracts the resulting function from
the data. To obtain the equation of the straight-line fit, use polyfit.

See Also polyfit

Purpose	Evaluate the solution of a differential equation problem
Syntax	<pre>sxi nt = deval (sol, xi nt) sxi nt = deval (xi nt, sol) sxi nt = deval (sol, xi nt, i dx) sxi nt = deval (xi nt, sol, i dx)</pre>
Description	sxint = deval(sol, xint) and $sxint = deval(xint, sol)$ evaluate the solution of a differential equation problem. sol is a structure returned by one of these solvers:
	• An initial value problem solver (ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb),
	 The delay differential equations solver (dde23),
	• The boundary value problem solver (bvp4c).
	xint is a point or a vector of points at which you want the solution. The elements of xint must be in the interval [sol.x(1), sol.x(end)]. For each i, sxint(:,i) is the solution at xint(i).
	sxint = deval(sol, xint, i dx) and $sxint = deval(xint, sol, i dx)$ evaluate as above but return only the solution components with indices listed in i dx.
Example	This example solves the system $y' = vdp1(t, y)$ using ode45, and evaluates and plots the first component of the solution at 100 points in the interval $[0, 20]$.
	<pre>sol = ode45(@vdp1, [0 20], [2 0]); x = linspace(0, 20, 100); y = deval(sol, x, 1); plot(x, y);</pre>

See AlsoODE solvers: ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tbDDE solver: dde23BVP solver: bvp4c

Purpose	Diagonal matrices and diagonals of a matrix
Syntax	X = di ag(v, k) X = di ag(v) v = di ag(X, k) v = di ag(X)
Description	X = di ag(v, k) when v is a vector of n components, returns a square material of order n+abs(k), with the elements of v on the kth diagonal. $k = 0$ represented the main diagonal, $k > 0$ above the main diagonal, and $k < 0$ below the

atrix X resents e main B ıgı L, diagonal.

X = di ag(v) puts v on the main diagonal, same as above with k = 0.

v = di ag(X, k) for matrix X, returns a column vector v formed from the elements of the kth diagonal of X.

v = di ag(X) returns the main diagonal of X, same as above with k = 0.

Examples di ag(di ag(X)) is a diagonal matrix.

sum(diag(X)) is the trace of X.

The statement

di ag(-m:m) +di ag(ones(2*m, 1), 1) +di ag(ones(2*m, 1), -1)

produces a tridiagonal matrix of order 2*m+1.

See Also spdiags, tril, triu

Purpose	Create and display dialog box
Syntax	<pre>h = di al og(' PropertyName', PropertyVal ue,)</pre>
Description	h = di al og('PropertyName', PropertyVal ue,) returns a handle to a dialog box. This function creates a figure graphics object and sets the figure properties recommended for dialog boxes. You can specify any valid figure property value.
See Also	errordl g, figure, hel pdl g, i nputdl g, pagedl g, printdl g, questdl g, ui wait, ui resume, warndl g "Predefined Dialog Boxes" for related functions

diary

Purpose	Save session to a file
Syntax	diary diary('filename') diary off diary on diary filename
Description	The di ary function creates a log of keyboard input and the resulting output (except it does not include graphics). The output of di ary is an ASCII file, suitable for printing or for inclusion in reports and other documents. If you do not specify filename, MATLAB creates a file named di ary in the current directory.
	di ary toggles di ary mode on and off. To see the status of di ary, type get (0 , ' Di ary '). MATLAB returns either on or off indicating the di ary status.
	di ary('filename') writes a copy of all subsequent keyboard input and the resulting output (except it does not include graphics) to the named file, where filename is the full pathname or filename is in the current MATLAB directory. If the file already exists, output is appended to the end of the file. You cannot use a filename called off or on. To see the name of the di ary file, use $get(0, 'DiaryFile')$.
	di ary off suspends the diary .
	di ary on resumes diary mode using the current filename, or the default filename di ary if none has yet been specified.
	diary filename is the unquoted form of the syntax.
See Also	Command History window in MATLAB Development Environment documentation

Purpose	Differences and approximate derivatives
Syntax	Y = di ff(X) Y = di ff(X, n) Y = di ff(X, n, di m)
Description	Y = diff(X) calculates differences between adjacent elements of X.
	If X is a vector, then diff(X) returns a vector, one element shorter than X, of differences between adjacent elements:
	$[X(2) - X(1) X(3) - X(2) \dots X(n) - X(n-1)]$
	If X is a matrix, then diff(X) returns a matrix of row differences:
	[X(2: m, :) - X(1: m-1, :)]
	In general, diff(X) returns the differences calculated along the first non-singleton (si $ze(X, dim) > 1$) dimension of X.
	Y = diff(X, n) applies diff recursively n times, resulting in the nth difference. Thus, diff(X, 2) is the same as diff(diff(X)).
	Y = diff(X, n, dim) is the nth difference function calculated along the dimension specified by scalar dim. If order n equals or exceeds the length of dimension dim, diff returns an empty array.
Remarks	Since each iteration of diff reduces the length of X along dimension dim, it is possible to specify an order n sufficiently high to reduce dim to a singleton $(si ze(X, dim) = 1)$ dimension. When this happens, diff continues calculating along the next nonsingleton dimension.
Examples	The quantity $diff(y)$. /diff(x) is an approximate derivative.

0 0 0 Given, A = rand(1, 3, 2, 4); diff(A) is the first-order difference along dimension 2. diff(A, 3, 4) is the third-order difference along dimension 4. See Also gradi ent, prod, sum

Purpose	Display directory	listing
Graphical Interface	As an alternative	e to the dir function, use the Current Directory browser.
Syntax	dir dir name files = dir('na	ame')
Description	di r lists the files	in the current working directory.
		e specified files. The name argument can be a pathname, include both. You can use absolute and relative pathnames
		rectory') returns the list of files in the specified directory rectory, if dirname is not specified) to an m-by-1 structure with
	name	Filename
	date	Modification date
	bytes	Number of bytes allocated to the file
	i sdi r	1 if name is a directory; 0 if not
Examples	dir Smatlabr Using Wildcard	ontents ents of the matlab/audio directory, type oot/toolbox/matlab/audio and File Extension files in your current working directory that include the term
	j ava, type	ines in your current working uncetory that include the term
	dir *java*.m	at
	MATLAB returns	S
	java_array.m	at javafrmobj.mat testjava.mat

Using Relative Pathname

To view the M-files in the MATLAB audi o directory, type

dir(fullfile(matlabroot, 'toolbox/matlab/audio/*.m'))

MATLAB returns

Contents.m	auread.m	soundsc. m
audi odevi nfo. m	auwrite.m	wavpl ay. m
audi opl ayer. m	l i n2mu. m	wavread.m
audi opl ayerreg. m	mu2lin.m	wavrecord.m
audi orecorder. m	prefspanel.m	wavwrite.m
audi ouni quename. m	sound. m	

Returning File List to Structure

To return the list of files to the variable audi o_files, type

```
audio_files=dir(fullfile(matlabroot, 'toolbox/matlab/audio/*.m'))
```

MATLAB returns the information in a structure array.

```
audio_files =
19x1 struct array with fields:
    name
    date
    bytes
    isdir
```

Index into the structure to access a particular item. For example,

audi o_files(3).name
ans =
audi oplayer.m

See Also cd, copyfile, delete, fileattrib, filebrowser, ls, mkdir, movefile, rmdir, type, what

Purpose	Display text or array		
Syntax	di sp(X)		
Description	di sp(X) displays an array text string, the string is di	-	ng the array name. If X contains a
	Another way to display an prints a leading "X =, " w	•	reen is to type its name, but this ys desirable.
	Note that di sp does not di	splay empty arr	ays.
Examples	One use of di sp in an M-fi	le is to display a	a matrix with column labels:
	disp('Corn disp(rand(5,3))	0ats	Hay')
	which results in		
	Corn	0ats	Нау
	0. 2113	0.8474	0. 2749
	0. 0820	0. 4524	0. 8807
	0. 7599	0.8075	0. 6538
	0. 0087	0. 4832	0. 4899
	0. 8096	0. 6135	0. 7741
See Also	format,int2str,num2str	, rats, sprintf	

disp (serial)

Purpose	Display serial port object summary information
Syntax	obj di sp(obj)
Arguments	obj A serial port object or an array of serial port objects.
Description	obj or di sp(obj) displays summary information for obj.
Remarks	In addition to the syntax shown above, you can display summary information for obj by excluding the semicolon when:
	Creating a serial port objectConfiguring property values using the dot notation
	Use the display summary to quickly view the communication settings, communication state information, and information associated with read and write operations.
Example	The following commands display summary information for the serial port object s.
	s = serial('COM1') s.BaudRate = 300 s

Purpose	Display information about timer object
Syntax	obj di sp(obj)
Description	obj or di $sp(obj)$ displays summary information for timer object, obj.
	If obj is an array of timer objects, di sp outputs a table of summary information about the timer objects in the array.
	In addition to the syntax shown above, you can display summary information for obj by excluding the semicolon when:
	Creating a timer object, using the timer functionConfiguring property values using the dot notation
Example	The following commands display summary information for the timer object t.
	t = timer
	Timer Object: timer-1
	Timer Settings ExecutionMode: singleShot Period: 1 BusyMode: drop Running: off
	Callbacks TimerFcn: []
	ErrorFcn: []
	StartFcn: []
	StopFcn: []
	This example shows the summary information displayed for an array of timer objects, $t_arr.$
	dian(t ann)

disp(t_arr)

Timer Object Array

Index:	Executi onMode:	Peri od:	TimerFcn:	Name:
1	si ngl eShot	1	[]	timer-1
2	si ngl eShot	1	[]	timer-2

See Also

timer, get

Purpose	Overloaded method to display an object
Syntax	di spl ay(X)
Description	di spl ay(X) prints the value of a variable or expression, X. MATLAB calls di spl ay(X) when it interprets a variable or expression, X, that is not terminated by a semicolon. For example, $\sin(A)$ calls di spl ay, while $\sin(A)$; does not.
	If X is an instance of a MATLAB class, then MATLAB calls the di spl ay method of that class, if such a method exists. If the class has no di spl ay method or if X is not an instance of a MATLAB class, then the MATLAB builtin di spl ay function is called.
Examples	A typical implementation of di spl ay calls di sp to do most of the work and looks like this.
	<pre>function display(X) if isequal(get(0, 'FormatSpacing'), 'compact') disp([inputname(1) ' =']); disp(X) else disp(' ') disp([inputname(1) ' =']); disp([inputname(1) ' =']); disp(X) end</pre>
	The expression magi $c(3)$, with no terminating semicolon, calls this function as di spl ay(magi $c(3)$).
	magic(3)
	ans =
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

As an example of a class di spl ay method, the function below implements the di spl ay method for objects of the MATLAB class, pol ynom.

```
function display(p)
% POLYNOM/DISPLAY Command window display of a polynom
disp(' ');
disp([inputname(1), ' = '])
disp(' ');
disp([' ' char(p)])
disp(' ');
```

The statement

 $p = polynom([1 \ 0 \ -2 \ -5])$

creates a pol ynom object. Since the statement is not terminated with a semicolon, the MATLAB interpreter calls di spl ay(p), resulting in the output

p =

 $x^3 - 2^*x - 5$

See Also disp, ans, sprintf, special characters

Purpose	Computes the divergence of a vector field
Syntax	<pre>di v = di vergence(X, Y, Z, U, V, W) di v = di vergence(U, V, W) di v = di vergence(X, Y, U, V) di v = di vergence(U, V)</pre>
Description	di $v = di vergence(X, Y, Z, U, V, W)$ computes the divergence of a 3-D vector field U, V, W. The arrays X, Y, Z define the coordinates for U, V, W and must be monotonic and 3-D plaid (as if produced by meshgrid).
	di $v = di vergence(U, V, W)$ assumes X, Y, and Z are determined by the expression:
	[X Y Z] = meshgrid(1:n, 1:m, 1:p)
	where $[m, n, p] = si ze(U)$.
	di $v = di vergence(X, Y, U, V)$ computes the divergence of a 2-D vector field U, V. The arrays X, Y define the coordinates for U, V and must be monotonic and 2-D plaid (as if produced by meshgri d).
	di $v = di vergence(U, V)$ assumes X and Y are determined by the expression:
	[X Y] = meshgrid(1:n, 1:m)
	where $[m, n] = si ze(U)$.
Examples	This example displays the divergence of vector volume data as slice planes using color to indicate divergence.
	<pre>load wind div = divergence(x, y, z, u, v, w); slice(x, y, z, div, [90 134], [59], [0]); shading interp daspect([1 1 1]) camlight</pre>

divergence

Purpose	Read an ASCII delimited file into a matrix
Graphical Interface	As an alternative to dl mread, use the Import Wizard. To activate the Import Wizard, select Import data from the File menu.
Syntax	<pre>M = dlmread(filename, delimiter) M = dlmread(filename, delimiter, R, C) M = dlmread(filename, delimiter, range)</pre>
Description	$M = dl mread(filename, delimiter)$ reads numeric data from the ASCII delimited file filename, using the specified delimiter. A comma (,) is the default delimiter. Use '\t' to specify a tab delimiter.
	M = dl mread(filename, delimiter, R, C) reads numeric data from the ASCII delimited file filename, using the specified delimiter. The values R and C specify the row and column where the upper-left corner of the data lies in the file. R and C are zero based so that R=0, C=0 specifies the first value in the file, which is the upper left corner.
	M = dl mread(filename, delimiter, range) reads the range specified by range = [R1 C1 R2 C2] where (R1, C1) is the upper-left corner of the data to be read and (R2, C2) is the lower-right corner. range can also be specified using spreadsheet notation as in range = 'A1B7'.
Remarks	dl mread fills empty delimited fields with zero. Data files having lines that end with a non-space delimiter, such as a semi-colon, produce a result that has an additional last column of zeros.
See Also	dlmwrite, textread, csvread, csvwrite, wk1read, wk1write

dlmwrite

Purpose	Write a matrix to an ASCII delimited file
Syntax	dl mwrite(filename, M, delimiter) dl mwrite(filename, M, delimiter, R, C)
Description	<pre>dl mwrite(filename, M, delimiter) writes matrix Minto an ASCII-format file, using delimiter to separate matrix elements. The data is written to the upper left-most cell of the spreadsheet filename. A comma (,) is the default delimiter. Use '\t' to produce tab-delimited files. dl mwrite(filename, M, delimiter, R, C) writes matrix A into an ASCII-format file, using delimiter to separate matrix elements. The data is written to the spreadsheet filename, starting at spreadsheet cell R and C, where R is the row offset and C is the column offset. R and C are zero based so that R=0, C=0 specifies the first value in the file, which is the upper left corner.</pre>
Remarks	The resulting file is readable by spreadsheet programs.
See Also	dlmread, csvwrite, csvread, wk1write, wk1read

Purpose	Dulmage-Mendelsohn decomposition
Syntax	<pre>p = dmperm(A) [p, q, r, s] = dmperm(A)</pre>
Description	p = dmperm(A) if A is square and has full rank, returns a row permutation p so that $A(p, :)$ has nonzero diagonal elements. This permutation is also called a <i>perfect matching</i> . If A is not square or not full rank, p is a vector that identifies a matching of maximum size: for each column j of A, either $p(j)=0$ or $A(p(j), j)$ is nonzero.
	[p, q, r, s] = dmperm(A), where A need not be square or full rank, finds permutations p and q and index vectors r and s so that $A(p, q)$ is block upper triangular. The kth block has indices $(r(k):r(k+1)-1, s(k):s(k+1)-1)$. When A is square and has full rank, $r = s$.
	If A is not square or not full rank, the first block may have more columns and the last block may have more rows. All other blocks are square and irreducible. dmperm permutes nonzeros to the diagonals of square blocks, but does not do this for non-square blocks.
Remarks	If A is a reducible matrix, the linear system $Ax = b$ can be solved by permuting A to a block upper triangular form, with irreducible diagonal blocks, and then performing block backsubstitution. Only the diagonal blocks of the permuted matrix need to be factored, saving fill and arithmetic in the blocks above the diagonal.
	In graph theoretic terms, dmperm finds a maximum-size matching in the bipartite graph of A, and the diagonal blocks of $A(p, q)$ correspond to the strong Hall components of that graph. The output of dmperm can also be used to find the connected or strongly connected components of an undirected or directed graph. For more information see Pothen and Fan [].
See Also	sprank
References	Pothen, Alex and Chin-Ju Fan, "Computing the Block Triangular Form of a Sparse Matrix," <i>ACM Transactions on Mathematical Software</i> , Vol. 16, No. 4, Dec. 1990, pp. 303-324.

doc

Purpose	Display online documentation in MATLAB Help browser
Graphical Interface	As an alternative to the doc function, use the Help browser Search tab. Set the Search type to Function Name , type the function name, and click Go .
Syntax	<pre>doc doc function doc toolbox/ doc toolbox/function</pre>
Description	doc opens the Help browser, if it is not already running. doc functi on displays the reference page for the MATLAB function functi on in the Help browser. If functi on is overloaded, doc displays the reference page for the first functi on on the search path and lists the overloaded functions in the MATLAB Command Window. If a reference page for the function does not exist, doc displays M-file help in the Help browser. doc tool box/ displays the Roadmap page, a summary of the most pertinent documentation for tool box, in the Help browser. doc tool box/functi on displays the reference page for functi on that belongs to the specified tool box, in the Help browser.
See Also	help, helpbrowser, lookfor, type, web

Purpose	Display loc	cation of help file directory for UNIX platforms
Syntax	docopt [doccmd, o	ptions, docpath] = docopt
Description	docopt displays the location of the online help files directory (online documentation location) for UNIX platforms if the web function is used with the - browser option. It is also used for UNIX platforms that do not support Java GUIs—see the "Release 13 Release Notes" for more information about these platforms. You specify where the online help directory will be located when you install MATLAB. It can be on a disk or CD-ROM drive in your local system. If you relocate your online help file directory, edit the docopt. m file, changing the location in it. (For Windows and the UNIX platforms that support Java GUIs, select File -> Preferences -> Help to view or change the documentation location.)	
		ptions, docpath] = docopt displays three strings: doccmd, nd docpath.
	doccmd	The function that doc uses to display MATLAB documentation. The default is netscape.
	opti ons	Additional configuration options for use with doccmd.
	docpath	The path to the MATLAB online help files. If docpath is empty, the doc function assumes the help files are in the default location.
Remarks		/ replace the online help file directory location, update ot/tool box/l ocal /docopt.m.
	\$HOME/mat	e the global setting, copy Smatl abroot/tool box/local/docopt.m to lab/docopt.m and make changes there. For the changes to take e current MATLAB session, SHOME/matl ab must be on your path.
See Also	doc, hel p,	helpbrowser, helpdesk, lookfor, type

docroot

Purpose	Get or set root directory for MATLAB help files
Graphical Interface	As an alternative to the docroot function, select File -> Preferences -> Help and set the Documentation location .
Syntax	<pre>docroot docroot('newdocroot') docroot(newdocroot, 'cdrom')</pre>
Description	docroot displays the current value for docroot, the root directory for MATLAB help files. This is the directory where the MATLAB Help browser looks for the online documentation to display.
	docroot('newdocroot') sets the root directory for MATLAB help files to newdocroot, where newdocroot is the full pathname to the help directory. For example, type docroot('d:/matlabr13/help'). One useful application is setting docroot in your startup. m file.
	docroot('newdocroot', 'cdrom') sets the root directory for MATLAB help files on the MATLAB documentation CD to newdocroot, where newdocroot is the full pathname to the help directory on your MATLAB documentation CD. For example, type docroot('z:/help', 'cdrom').
Examples	You can include a docroot statement in your startup. m file.
See Also	doc, hel pbrowser

Purpose	Execute a DOS command and return result
Syntax	<pre>dos command status = dos('command') [status, result] = dos('command') [status, result] = dos('command', '-echo')</pre>
Description	dos command calls upon the shell to execute the given command for Windows systems.
	status = $dos('command')$ returns completion status to the status variable.
	[status, result] = dos('command') in addition to completion status, returns the result of the command to the result variable.
	[status, result] = dos('command', '- echo ') forces the output to the Command Window, even though it is also being assigned into a variable.
	Both console (DOS) programs and Windows programs may be executed, but the syntax causes different results based on the type of programs. Console programs have st dout and their output is returned to the result variable. They are always run in an iconified DOS or Command Prompt Window except as noted below. Console programs never execute in the background. Also, MATLAB will always wait for the st dout pipe to close before continuing execution. Windows programs may be executed in the background as they have no stdout.
	The ampersand, &, character has special meaning. For console programs this causes the console to open. Omitting this character will cause console programs to run iconically. For Windows programs, appending this character will cause the application to run in the background. MATLAB will continue processing.
Examples	The following example performs a directory listing, returning a zero (success) in s and the string containing the listing in w.
	[s, w] = dos('dir');
	To open the DOS 5.0 editor in a DOS window
	<pre>dos('edit &')</pre>

To open the notepad editor and return control immediately to MATLAB

```
dos('notepad file.m &')
```

The next example returns a one in ${\bf s}$ and an error message in ${\bf w}$ because ${\bf f}$ oo is not a valid shell command.

[s, w] = dos('foo')

This example echoes the results of the dir command to the Command Window as it executes as well as assigning the results to w.

[s, w] = dos('dir', '-echo');

See Also ! (exclamation point), perl, system, unix

Purpose	Vector dot product
Syntax	C = dot(A, B) C = dot(A, B, dim)
Description	C = dot(A, B) returns the scalar product of the vectors A and B. A and B must be vectors of the same length. When A and B are both column vectors, $dot(A, B)$ is the same as A' *B.
	For multidimensional arrays A and B, dot returns the scalar product along the first non-singleton dimension of A and B. A and B must have the same size.
	C = dot(A, B, dim) returns the scalar product of A and B in the dimension dim.
Examples	The dot product of two vectors is calculated as shown: a = [1 2 3]; b = [4 5 6]; c = dot (a, b) c = 32
See Also	cross

double

Purpose	Convert to double-precision
Syntax	doubl e(X)
Description	doubl $e(x)$ returns the double-precision value for X. If X is already a double-precision array, doubl e has no effect.
Remarks	double is called for the expressions in for, if, and while loops if the expression isn't already double-precision. double should be overloaded for any object when it makes sense to convert it to a double-precision value.

Purpose	Drag rectangles with mouse
Syntax	<pre>[finalrect] = dragrect(initialrect) [finalrect] = dragrect(initialrect, stepsize)</pre>
Description	[finalrect] = dragrect(initialrect) tracks one or more rectangles anywhere on the screen. The n-by-4 matrix, initialrect, defines the rectangles. Each row of initialrect must contain the initial rectangle position as [left bottom width height] values. dragrect returns the final position of the rectangles in finalrect.
	[finalrect] = dragrect(initialrect, stepsize) moves the rectangles in increments of stepsize. The lower-left corner of the first rectangle is constrained to a grid of size equal to stepsize starting at the lower-left corner of the figure, and all other rectangles maintain their original offset from the first rectangle.
	[final rect] = dragrect() returns the final positions of the rectangles when the mouse button is released. The default stepsize is 1.
Remarks	dragrect returns immediately if a mouse button is not currently pressed. Use dragrect in a ButtonDownFcn, or from the command line in conjunction with waitforbuttonpress to ensure that the mouse button is down when dragrect is called. dragrect returns when you release the mouse button.
	If the drag ends over a figure window, the positions of the rectangles are returned in that figure's coordinate system. If the drag ends over a part of the screen not contained within a figure window, the rectangles are returned in the coordinate system of the figure over which the drag began
Example	Drag a rectangle that is 50 pixels wide and 100 pixels in height.
	<pre>waitforbuttonpress point1 = get(gcf, 'CurrentPoint') % button down detected rect = [point1(1, 1) point1(1, 2) 50 100] [r2] = dragrect(rect)</pre>
See Also	rbbox, waitforbuttonpress
	"Selecting Region of Interest" for related functions

drawnow

Purpose	Complete pending drawing events
Syntax	drawnow
Description	drawnow flushes the event queue and updates the figure window.
Remarks	Other events that cause MATLAB to flush the event queue and draw the figure windows include:
	Returning to the MATLAB prompt
	A pause statement
	• A waitforbuttonpress statement
	A waitfor statement
	• A getframe statement
	• A figure statement
Examples	Executing the statements,
	x = -pi : pi /20: pi ;
	plot(x, cos(x))
	drawnow title('A Short Title')
	grid on
	as an M-file updates the current figure after executing the drawnow function and after executing the final statement.
See Also	waitfor, pause, waitforbuttonpress
	"Figure Windows" for related functions

Purpose	Search for nearest point
Syntax	<pre>K = dsearch(x, y, TRI, xi, yi) K = dsearch(x, y, TRI, xi, yi, S)</pre>
Description	<pre>K = dsearch(x, y, TRI, xi, yi) returns the index into x and y of the nearest point to the point (xi,yi). dsearch requires a triangulation TRI of the points x,y obtained using del aunay. If xi and yi are vectors, K is a vector of the same size.</pre> K = dsearch(x, y, TRI, xi, yi, S) uses the sparse matrix S instead of computing it each time: S = sparse(TRI(:, [1 1 2 2 3 3]), TRI(:, [2 3 1 3 1 2]), 1, nxy, nxy) where nxy = prod(size(x)).
See Also	del aunay, tsearch, voronoi

dsearchn

Purpose	n-D nearest point search
Syntax	<pre>k = dsearchn(X, T, XI) k = dsearchn(X, T, XI, outval) k = dsearchn(X, XI) [k, d] = dsearchn(X,)</pre>
Description	k = dsearchn(X, T, XI) returns the indices k of the closest points in X for each point in XI. X is an m-by-n matrix representing m points in n-D space. XI is a p-by-n matrix, representing p points in n-D space. T is a numt-by-n+1 matrix, a tessellation of the data X generated by del aunayn. The output k is a column vector of length p.
	k = dsearchn(X, T, XI, outval) returns the indices k of the closest points in X for each point in XI, unless a point is outside the convex hull. If XI (J, :) is outside the convex hull, then K(J) is assigned outval, a scalar double. Inf is often used for outval. If outval is [], then k is the same as in the case $k = dsearchn(X, T, XI)$.
	k = dsearchn(X, XI) performs the search without using a tessellation. With large X and small XI, this approach is faster and uses much less memory.
	[k, d] = dsearchn(X,) also returns the distances d to the closest points. d is a column vector of length p.
See Also	tsearch, dsearch, tsearchn, griddatan, del aunayn

Purpose	Echo M-files during	execution
Syntax	echo on echo off echo echo <i>f cnnam</i> e on echo <i>f cnnam</i> e off echo <i>f cnnam</i> e echo on all echo off all	
Description	the commands in M-	ontrols the echoing of M-files during execution. Normally, files do not display on the screen during execution. useful for debugging or for demonstrations, allowing the yed as they execute.
	function files. For sci	behaves in a slightly different manner for script files and ript files, the use of echo is simple; echoing can be either ase any script used is affected.
	echo on Turn	s on the echoing of commands in all script files.
	echo off Turn	s off the echoing of commands in all script files.
	echo Toggi	es the echo state.
	With function files, the use of echo is more complicated. If echo is e function file, the file is interpreted, rather than compiled. Each in then displayed as it is executed. Since this results in inefficient exe echo only for debugging.	
	echo <i>fcnname</i> on	Turns on echoing of the named function file.
	echo <i>fcnnam</i> e off	Turns off echoing of the named function file.
	echo fcnname	Toggles the echo state of the named function file.
	echo on all	Set echoing on for all function files.
	echo off all	Set echoing off for all function files.
See Also	function	

edit

Purpose	Edit or create M-file
Graphical Interface	As an alternative to the edit function, select New or Open from the File menu in the MATLAB desktop or any desktop tool.
Syntax	edit edit fun.m edit file.ext edit fun1 fun2 fun3 edit class/fun edit private/fun edit class/private/fun
Description	edit opens a new editor window. edit fun. m opens the M-file fun. m in the default editor. Note that fun. m can
	be a MATLAB parti al path or a complete path. If fun. m does not exist, a prompt appears asking if you want to create a new file titled fun. m. After you click Yes , the Editor/Debugger creates a blank file titled fun. m. If you do not want the prompt to appear in this situation, select that check box in the prompt. Then when you type edit fun. m, where fun. m did not previously exist, a new file called fun. m is automatically opened in the Editor. To make the prompt appear, specify it in preferences for "Prompt" on page 7-38.
	edit file. ext opens the specified file.
	edit fun1 fun2 fun3 opens fun1. m, fun2. m, fun3. m, and so on, in the default editor.
	edit class/fun, edit private/fun, or edit class/private/fun can be used to edit a method, private function, or private method (for the class named class).
Remarks	To specify the default editor for MATLAB, select Preferences from the File menu. On the Editor/Debugger panel, select the MATLAB Editor/Debugger or specify another.

UNIX Users

If you run MATLAB with the -nodi spl ay startup option, or run without the DI SPLAY environment variable set, edit uses the External Editor command. It does not use the MATLAB Editor/Debugger, but instead uses the default editor defined for your system in Smatl abroot/X11/app-defaults/Matlab.

You can specify the editor that the edit function uses or specify editor options by adding the following line to your own . Xdefaults file, located in \sim home

```
matlab*externalEditorCommand: $EDITOR - option $FILE
```

where

- SEDI TOR is the name of your default editor, for example, emacs; leaving it as SEDI TOR means your default system editor will be used.
- - opt i on is a valid option flag you can include for the specified editor.
- **\$FILE** means the filename you type with the edit command will open in the specified editor.

For example,

emacs \$FILE

means that when you type edit foo, the file foo will open in the emacs editor.

After adding the line to your . Xdef aults file, you must run the following before starting MATLAB:

xrdb -merge ~home/.Xdefaults

For the HP 700 platform, the default editor is instead defined in matlabroot/toolbox/matlab/general/edit.m. To change it, open the file edit.m and edit the line

```
eval( ['!$EDITOR "' file '" &']);
```

See Also open, type

Purpose	Find eigenvalues and eigenvectors
Syntax	d = eig(A) $d = eig(A, B)$ $[V, D] = eig(A)$ $[V, D] = eig(A, 'nobal ance')$ $[V, D] = eig(A, B)$ $[V, D] = eig(A, B, flag)$
Description	d = eig(A) returns a vector of the eigenvalues of matrix A.
	$d \ = \ ei \ g(A, B) \ returns a vector containing the generalized eigenvalues, if A and B are square matrices.$
	Note If S is sparse and symmetric, you can use $d = eig(S)$ to returns the eigenvalues of S. To request eigenvectors, and in all other cases, use eigs to find the eigenvalues or eigenvectors of sparse matrices.
	[V, D] = eig(A) produces matrices of eigenvalues (D) and eigenvectors (V) of matrix A, so that $A*V = V*D$. Matrix D is the <i>canonical form</i> of A—a diagonal matrix with A's eigenvalues on the main diagonal. Matrix V is the <i>modal matrix</i> —its columns are the eigenvectors of A.
	If W is a matrix such that $W * A = D*W$, the columns of W are the <i>left eigenvectors</i> of A. Use $[W, D] = eig(A, '); W = conj(W)$ to compute the left eigenvectors.
	[V, D] = eig(A, 'nobal ance') finds eigenvalues and eigenvectors without a preliminary balancing step. Ordinarily, balancing improves the conditioning of the input matrix, enabling more accurate computation of the eigenvectors and eigenvalues. However, if a matrix contains small elements that are really due to roundoff error, balancing may scale them up to make them as significant as the other elements of the original matrix, leading to incorrect eigenvectors. Use the nobal ance option in this event. See the bal ance function for more details.
	[V, D] = eig(A, B) produces a diagonal matrix D of generalized eigenvalues and a full matrix V whose columns are the corresponding eigenvectors so that A*V = B*V*D.

	[V, D] = eig(A, B, flag) specifies the algorithm used to compute eigenvalues and eigenvectors. $flag$ can be:		
	' chol '	Computes the generalized eigenvalues of A and B using the Cholesky factorization of B. This is the default for symmetric (Hermitian) A and symmetric (Hermitian) positive definite B.	
	' qz'	Ignores the symmetry, if any, and uses the QZ algorithm as it would for nonsymmetric (non-Hermitian) A and B.	
	Note For $eig(A)$, the eigenvectors are scaled so that the norm of each is 1.0. For $eig(A, B)$, $eig(A, 'nobal ance')$, and $eig(A, B, flag)$, the eigenvectors are not normalized.		
Remarks	The eigen	value problem is to determine the nontrivial solutions of the equation	
	$Ax = \lambda x$		
	where A is an n-by-n matrix, x is a length n column vector, and λ is a scalar. The n values of λ that satisfy the equation are the <i>eigenvalues</i> , and the corresponding values of x are the <i>right eigenvectors</i> . In MATLAB, the function eig solves for the eigenvalues λ , and optionally the eigenvectors x.		
	The <i>gener</i> the equati	<i>alized</i> eigenvalue problem is to determine the nontrivial solutions of	
	Ax = 2	$\wedge Bx$	
	where both A and B are n-by-n matrices and λ is a scalar. The values of λ that satisfy the equation are the <i>generalized eigenvalues</i> and the corresponding values of x are the <i>generalized right eigenvectors</i> .		
	If B is nonsingular, the problem could be solved by reducing it to a standard eigenvalue problem		
	$B^{-1}Ax$	$=\lambda x$	
	Because <i>I</i> necessary	3 can be singular, an alternative algorithm, called the QZ method, is	

When a matrix has no repeated eigenvalues, the eigenvectors are always independent and the eigenvector matrix V *diagonalizes* the original matrix A if applied as a similarity transformation. However, if a matrix has repeated eigenvalues, it is not similar to a diagonal matrix unless it has a full (independent) set of eigenvectors. If the eigenvectors are not independent then the original matrix is said to be *defective*. Even if a matrix is defective, the solution from eig satisfies A*X = X*D.

Examples

The matrix

B =	[3	- 2	9	$2^{*} eps$
	- 2	4	1	-eps
	- eps/4	eps/2	- 1	0
	5	5	. 1	1];

has elements on the order of roundoff error. It is an example for which the nobal ance option is necessary to compute the eigenvectors correctly. Try the statements

```
[VB, DB] = eig(B)
B*VB - VB*DB
[VN, DN] = eig(B, 'nobal ance')
B*VN - VN*DN
```

Algorithm

MATLAB uses LAPACK routines to compute eigenvalues and eigenvectors:

Case	Routine
Real symmetric A	DSYEV
Real nonsymmetric A:	
With preliminary balance step	DGEEV (with SCLFAC = 2 instead of 8 in DGEBAL)
• d = eig(A, 'nobal ance')	DGEHRD, DHSEQR
• $[V, D] = eig(A, 'nobal ance')$	DGEHRD, DORGHR, DHSEQR, DTREVC
Hermitian A	ZHEEV

Case	Routine	
Non-Hermitian A:		
With preliminary balance step	ZGEEV (with SCLFAC = 2 instead of 8 in ZGEBAL)	
• $d = eig(A, 'nobal ance')$	ZGEHRD, ZHSEQR	
• [V, D] = eig(A, 'nobal ance')	ZGEHRD, ZUNGHR, ZHSEQR, ZTREVC	
Real symmetric A, symmetric positive definite B.	DSYGV	
Special case: ei g(A, B, ' qz') for real A, B (same as real nonsymmetric A, real general B)	DGGEV	
Real nonsymmetric A, real general B	DGGEV	
Complex Hermitian A, Hermitian positive definite B.	ZHEGV	
Special case: eig(A, B, 'qz') for complex A or B (same as complex non-Hermitian A, complex B)	ZGGEV	
Complex non-Hermitian A, complex B	ZGGEV	

See Also bal ance, condei g, ei gs, hess, qz, schur

References[1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User's Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

Purpose	Find a few eigenvalues and eigenvectors of a square large sparse matrix
Syntax	d = eigs(A) $d = eigs(A, B)$ $d = eigs(A, B)$ $d = eigs(A, k)$ $d = eigs(A, B, k)$ $d = eigs(A, k, sigma)$ $d = eigs(A, k, sigma)$ $d = eigs(A, k, sigma, options)$ $d = eigs(A, k, sigma, options)$ $d = eigs(Afun, n)$ $d = eigs(Afun, n, B)$ $d = eigs(Afun, n, k, k)$ $d = eigs(Afun, n, k, k)$ $d = eigs(Afun, n, k, k, sigma)$ $d = eigs(Afun, n, k, k, sigma)$ $d = eigs(Afun, n, k, sigma)$ $d = eigs(Afun, n, k, sigma, options)$ $d = eigs(Afun, n, k, sigma, options, p1, p2)$ $[V, D] = eigs(Afun, n,)$ $[V, D, flag] = eigs(Afun, n,)$
Description	 d = eigs(A) returns a vector of A's six largest magnitude eigenvalues. [V, D] = eigs(A) returns a diagonal matrix D of A's six largest magnitude
	eigenvalues and a matrix V whose columns are the corresponding eigenvectors.
	[V, D, flag] = eigs(A) also returns a convergence flag. If flag is 0 then all the eigenvalues converged; otherwise not all converged.
	ei gs(A, B) solves the generalized eigenvalue problem $A*V == B*V*D$. B must be symmetric (or Hermitian) positive definite and the same size as A. ei gs(A, [],) indicates the standard eigenvalue problem $A*V == V*D$.
	${\rm ei}{\rm gs}(A,k)$ and ${\rm ei}{\rm gs}(A,B,k)$ return the k largest magnitude eigenvalues.

ei gs(A, k, *si gma*) and ei gs(A, B, k, *si gma*) return k eigenvalues based on *si gma*, which can take any of the following values:

scalar (real or complex, including 0)	The eigenvalues closest to $si gma$. If A is a function, Afun must return Y = (A- $si gma^*B$) \x (i.e., Y = A\x when si gma = 0). Note, B need only be symmetric (Hermitian) positive semi-definite.
' 1 m'	Largest magnitude (default).
'sm'	Smallest magnitude. Same as $sigma = 0$. If A is a function, Afun must return Y = A\x. Note, B need only be symmetric (Hermitian) positive semi-definite.

For real symmetric problems, the following are also options:

'la'	Largest algebraic ('1r' in MATLAB 5)
' sa'	Smallest algebraic (' sr' in MATLAB 5)
' be'	Both ends (one more from high end if k is odd)

For nonsymmetric and complex problems, the following are also options:

'lr'	Largest real part
'sr'	Smallest real part
'li'	Largest imaginary part
' si '	Smallest imaginary part

Note The MATLAB 5 value *si gma* = 'be' is obsolete for nonsymmetric and complex problems.

Parameter	Description	Values
options.issym	1 if A or A- <i>si gma</i> *B represented by Afun is symmetric, 0 otherwise.	[{0} 1]
options. i sreal	1 if A or A- <i>si gma</i> *B represented by Afun is real, 0 otherwise.	[0 {1}]
options.tol	Convergence: Ritz estimate residual <= tol *norm(A).	[scalar {eps}]
options. maxit	Maximum number of iterations.	[integer {300}]
options.p	Number of basis vectors. p >= 2k (p >= 2k+1 real nonsymmetric) advised. Note: p must satisfy k k+1 < p <= n otherwise.	[integer 2*k]
options.v0	Starting vector.	Randomly generated by ARPACK
opti ons. di sp	Diagnostic information display level.	[0 {1} 2]
options. chol B	1 if B is really its Cholesky factor chol (B), 0 otherwise.	[{0} 1]
options.permB	Permutation vector permB if sparse B is really chol (B(permB, permB)).	[permB {1:n}]

eigs(A, K, sigma, opts) and eigs(A, B, k, sigma, opts) specify an options structure. Default values are shown in brackets ({}).

Note MATLAB 5 options stagtol and cheb are no longer allowed.

	ei gs(Afun, n,) accepts the function Afun instead of the matrix A. y = Afun(x) should return:		
	A*x	if <i>si gma</i> is not specified, or is a string other than ' sm'	
	A∖x	if <i>si gma</i> is 0 or ' sm'	
	(A- <i>sigma</i> *I)∖x	if <i>si gma</i> is a nonzero scalar (standard eigenvalue problem). I is an identity matrix of the same size as A.	
	(A- <i>sigma</i> *B)∖x	if <i>si gma</i> is a nonzero scalar (generalized eigenvalue problem)	
	assumed to be rea	The matrix A, A- $si gma*I$ or A- $si gma*B$ represented by Afun is al and nonsymmetric unless specified otherwise by opts. i ssym. In all the eigs syntaxes, eigs(A,) can be Afun, n,).	
	eigs(Afun, n, B, k	<i>i gma</i> , opts, p1, p2,) and , <i>si gma</i> , opts, p1, p2,) provide for additional arguments to Afun(x, p1, p2,).	
Remarks	d = eigs(A, k) is	not a substitute for	
	<pre>d = eig(full(d = sort(d) d = d(end-k+1)</pre>		
	but is most appropriate for large sparse matrices. If the problem fits into memory, it may be quicker to use $eig(full(A))$.		
Algorithm	ei gs provides the reverse communication required by the Fortran library ARPACK, namely the routines DSAUPD, DSEUPD, DNAUPD, DNEUPD, ZNAUPD, and ZNEUPD.		
Examples	Example 1: This example shows the use of function handles.		
	A = del sq(num) d1 = eigs(A, 5	ngrid('C',15)); 5,'sm');	
	Equivalently, if d	nRk is the following one-line function:	

```
y = (del sq(numgrid(R, k))) \setminus x;
```

then pass dnRk's additional arguments, 'C' and 15, to eigs.

```
n = size(A, 1);
opts.issym = 1;
d2 = eigs(@dnRk, n, 5, 'sm', opts, 'C', 15);
```

Example 2: west0479 is a real 479-by-479 sparse matrix with both real and pairs of complex conjugate eigenvalues. ei g computes all 479 eigenvalues. ei gs easily picks out the largest magnitude eigenvalues.

This plot shows the 8 largest magnitude eigenvalues of west0479 as computed by eig and eigs.

```
load west0479
d = eig(full(west0479))
dlm = eigs(west0479, 8)
[dum, ind] = sort(abs(d));
plot(dlm, 'k+')
hold on
plot(d(ind(end-7: end)), 'ks')
hold off
legend('eigs(west0479, 8)', 'eig(full(west0479))')
```


Example 3: A = del sq(numgrid('C', 30)) is a symmetric positive definite matrix of size 632 with eigenvalues reasonably well-distributed in the interval (0 8), but with 18 eigenvalues repeated at 4. The eig function computes all 632 eigenvalues. It computes and plots the six largest and smallest magnitude eigenvalues of A successfully with:

```
A = del sq(numgrid('C', 30));
d = eig(full(A));
[dum, ind] = sort(abs(d));
dlm = eigs(A);
dsm = eigs(A, 6, 'sm');
subplot(2, 1, 1)
plot(dlm, 'k+')
hold on
plot(d(ind(end: -1: end-5)), 'ks')
hold off
legend('eigs(A)', 'eig(full(A))', 3)
set(gca, 'XLim', [0.5 6.5])
```

subpl ot (2, 1, 2)
pl ot (dsm, 'k+')
hol d on
pl ot (d(ind(1:6)), 'ks')
hol d off
legend('eigs(A, 6, ''sm'')', 'eig(full(A))', 2)
set(gca, 'XLim', [0.5 6.5])

However, the repeated eigenvalue at 4 must be handled more carefully. The call ei gs(A, 18, 4. 0) to compute 18 eigenvalues near 4.0 tries to find eigenvalues of A - 4. 0*I. This involves divisions of the form 1/(1 ambda - 4.0), where 1 ambda is an estimate of an eigenvalue of A. As 1 ambda gets closer to 4.0, eigs fails. We must use sigma near but not equal to 4 to find those 18 eigenvalues.

sigma = 4 - 1e-6 [V,D] = eigs(A, 18, sigma) The plot shows the 20 eigenvalues closest to 4 that were computed by eig, along with the 18 eigenvalues closest to 4 - 1e-6 that were computed by eigs.

See Also arpackc, eig, svds

References [1] Lehoucq, R.B. and D.C. Sorensen, "Deflation Techniques for an Implicitly Re-Started Arnoldi Iteration," *SIAM J. Matrix Analysis and Applications*, Vol. 17, 1996, pp. 789-821.

> [2] Lehoucq, R.B., D.C. Sorensen, and C. Yang, *ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods*, SIAM Publications, Philadelphia, 1998.

[3] Sorensen, D.C., "Implicit Application of Polynomial Filters in a k-Step Arnoldi Method," *SIAM J. Matrix Analysis and Applications*, Vol. 13, 1992, pp. 357-385.

ellipj

Purpose	Jacobi elliptic functions
Syntax	[SN, CN, DN] = ellipj(U, M) [SN, CN, DN] = ellipj(U, M, tol)
Definition	The Jacobi elliptic functions are defined in terms of the integral:
	$u = \int_0^{\phi} \frac{d\theta}{\left(1 - m\sin^2\theta\right)^{\frac{1}{2}}}$
	Then
	$sn(u) = \sin\phi, \ cn(u) = \cos\phi, \ dn(u) = (1 - m\sin^2\phi)^{\frac{1}{2}}, \ am(u) = \phi$
	Some definitions of the elliptic functions use the modulus k instead of the parameter m . They are related by
	$k^2 = m = \sin^2 \alpha$
	The Jacobi elliptic functions obey many mathematical identities; for a good sample, see [1].
Description	[SN, CN, DN] = ellipj (U, M) returns the Jacobi elliptic functions SN, CN, and DN, evaluated for corresponding elements of argument U and parameter M. Inputs U and M must be the same size (or either can be scalar).
	[SN, CN, DN] = ellipj(U, M, tol) computes the Jacobi elliptic functions to accuracy tol. The default is eps; increase this for a less accurate but more quickly computed answer.
Algorithm	ellipj computes the Jacobi elliptic functions using the method of the arithmetic-geometric mean [1]. It starts with the triplet of numbers:
	$a_0 = 1, \ b_0 = (1 - m)^{\frac{1}{2}}, \ c_0 = (m)^{\frac{1}{2}}$

ellipj computes successive iterates with

$$a_{i} = \frac{1}{2}(a_{i-1} + b_{i-1})$$
$$b_{i} = (a_{i-1}b_{i-1})^{\frac{1}{2}}$$
$$c_{i} = \frac{1}{2}(a_{i-1} - b_{i-1})$$

Next, it calculates the amplitudes in radians using:

$$\sin(2\phi_{n-1}-\phi_n) = \frac{c_n}{a_n}\sin(\phi_n)$$

being careful to unwrap the phases correctly. The Jacobian elliptic functions are then simply:

$$sn(u) = \sin\phi_0$$

$$cn(u) = \cos\phi_0$$

$$dn(u) = (1 - m \cdot sn(u)^2)^{\frac{1}{2}}$$

Limitations The ellipj function is limited to the input domain $0 \le m \le 1$. Map other values of Minto this range using the transformations described in [1], equations 16.10 and 16.11. U is limited to real values.

See Also ellipke

References [1] Abramowitz, M. and I.A. Stegun, *Handbook of Mathematical Functions*, Dover Publications, 1965, 17.6.

ellipke

 Purpose
 Complete elliptic integrals of the first and second kind

Syntax

K = ellipke(M)
[K, E] = ellipke(M)
[K, E] = ellipke(M, tol)

Definition The *complete* elliptic integral of the first kind [1] is

 $K(m) = F(\pi/2|m)$

where F, the elliptic integral of the first kind, is

$$K(m) = \int_0^1 \left[(1 - t^2)(1 - mt^2) \right]^{\frac{1}{2}} dt = \int_0^{\frac{\pi}{2}} (1 - m\sin^2\theta)^{\frac{1}{2}} d\theta$$

The complete elliptic integral of the second kind

$$E(m) = E(K(m)) = E\langle \pi/2 | m \rangle$$

is

$$E(m) = \int_0^1 (1 - t^2)^{\frac{1}{2}} (1 - mt^2)^{\frac{1}{2}} dt = \int_0^{\frac{\pi}{2}} (1 - m\sin^2\theta)^{\frac{1}{2}} d\theta$$

Some definitions of K and E use the modulus k instead of the parameter m. They are related by

$$k^2 = m = \sin^2 \alpha$$

Description K = ellipke(M) returns the complete elliptic integral of the first kind for the elements of M.

[K, E] = ellipke(M) returns the complete elliptic integral of the first and second kinds.

[K, E] = ellipke(M, tol) computes the Jacobian elliptic functions to accuracy tol. The default is eps; increase this for a less accurate but more quickly computed answer.

Algorithm ellipke computes the complete elliptic integral using the method of the arithmetic-geometric mean described in [1], section 17.6. It starts with the triplet of numbers

$$a_0 = 1, \ b_0 = (1 - m)^{\frac{1}{2}}, \ c_0 = (m)^{\frac{1}{2}}$$

ellipke computes successive iterations of a_i , b_j , and c_j with

$$a_{i} = \frac{1}{2}(a_{i-1} + b_{i-1})$$

$$b_{i} = (a_{i-1}b_{i-1})^{\frac{1}{2}}$$

$$c_{i} = \frac{1}{2}(a_{i-1} - b_{i-1})$$

stopping at iteration n when $cn \approx 0$, within the tolerance specified by eps. The complete elliptic integral of the first kind is then

$$K(m) = \frac{\pi}{2a_n}$$

Limitations elliphe is limited to the input domain $0 \le m \le 1$.

See Also ellipj

References [1] Abramowitz, M. and I.A. Stegun, *Handbook of Mathematical Functions*, Dover Publications, 1965, 17.6.

ellipsoid

Purpose	Generate ellipsoid
Syntax	<pre>[x, y, z] = ellipsoid(xc, yc, zc, xr, yr, zr, n) [x, y, z] = ellipsoid(xc, yc, zc, xr, yr, zr) ellipsoid()</pre>
Description	[x, y, z] = ellipsoid(xc, yc, zc, xr, yr, zr, n) generates three n+1-by-n+1 matrices so that surf(x, y, z) produces an ellipsoid with center (xc, yc, zc) and radii (xr, yr, zr).
	[x, y, z] = ellipsoid(xc, yc, zc, xr, yr, zr) uses $n = 20$.
	$\operatorname{ellipsoid}(\ldots)$ with no output arguments graphs the ellipsoid as a surface.
Algorithm	el l i psoi d generates the data using the following equation:
	$\frac{(x-xc)^2}{xr^2} + \frac{(y-yc)^2}{yr^2} + \frac{(z-zc)^2}{zr^2}$
See Also	cylinder, sphere, surf
	"Polygons and Surfaces" for related functions

Purpose	Conditionally execute statements
Syntax	<pre>if expression statements1 else statements2 end</pre>
Description	el se is used to delineate an alternate block of statements. If <i>expressi on</i> evaluates as fal se, MATLAB executes the one or more commands denoted here as <i>statements2</i> .
	A true expression has either a logical true or nonzero value. For nonscalar expressions, (for example, "if (matrix A is less than matrix B)"), true means that every element of the resulting matrix has a logical true or nonzero value.
	Expressions usually involve relational operations such as $(count < limit)$ or i sreal (A). Simple expressions can be combined by logical operators (&, ,~) into compound expressions such as: $(count < limit)$ & $((height - offset) >= 0)$.
	See if for more information.
Examples	In this example, if both of the conditions are not satisfied, then the student fails the course.
	<pre>if ((attendance >= 0.90) & (grade_average >= 60)) pass = 1; else fail = 1; end;</pre>
See Also	if, el seif, end, for, while, switch, break, return, relational_operators, logical_operators

elseif

Purpose	Conditionally execute statements	
Syntax	<pre>if expression1 statements1 elseif expression2 statements2 end</pre>	
Description	If <i>expressi on1</i> evaluates as fal se and executes the one or more commands de	-
	A true expression has either a logical expressions, (for example, is matrix A every element of the resulting matrix B	less then matrix B), true means that
	i sreal (A). Simple expressions can be c	<pre>operations such as (count < limit) or combined by logical operators (&, ,~) into < limit) & ((height - offset) >=</pre>
	See if for more information.	
Remarks	no space. The former introduces a new,	e and the if, differs from elseif, with nested if, which must have a matching ence of conditional statements with only
	The two segments shown below production four assignments to x is executed, dependent logical expressions, A, B, and C.	
	if A	if A
	$\mathbf{x} = \mathbf{a}$	$\mathbf{x} = \mathbf{a}$
	el se	elseif B
	if B	$\mathbf{x} = \mathbf{b}$
	$\mathbf{x} = \mathbf{b}$	elseif C
	el se	X = C
	if C	el se
	$\mathbf{X} = \mathbf{C}$	$\mathbf{x} = \mathbf{d}$

el se

 $\mathbf{x} = \mathbf{d}$

end

elseif

```
end
                          end
                      end
Examples
                   Here is an example showing if, else, and elseif.
                      for m = 1: k
                           for n = 1:k
                               if m == n
                                    a(m, n) = 2;
                               elseif abs(m-n) == 2
                                    a(m, n) = 1;
                               el se
                                    a(m, n) = 0;
                               end
                           end
                      end
                   For k=5 you get the matrix
                      a =
                            2
                                  0
                                         1
                                                0
                                                      0
                                  2
                            0
                                         0
                                                1
                                                      0
                            1
                                  0
                                         2
                                                0
                                                      1
                            0
                                  1
                                         0
                                                2
                                                      0
                                                      2
                            0
                                  0
                                                0
                                         1
See Also
                   if, else, end, for, while, switch, break, return, relational_operators,
                   logical_operators
```

Purpose	Terminate for, while, switch, try, and if statements or indicate last index
Syntax	<pre>while expression% (or if, for, or try) statements end B = A(index: end, index)</pre>
Description	end is used to terminate for, while, switch, try, and if statements. Without an end statement, for, while, switch, try, and if wait for further input. Each end is paired with the closest previous unpaired for, while, switch, try, or if and serves to delimit its scope.
	The end command also serves as the last index in an indexing expression. In that context, end = $(si ze(x, k))$ when used as part of the kth index. Examples of this use are X(3: end) and X(1, 1: 2: end- 1). When using end to grow an array, as in X(end+1) =5, make sure X exists first.
	You can overload the end statement for a user object by defining an end method for the object. The end method should have the calling sequence $end(obj, k, n)$, where obj is the user object, k is the index in the expression where the end syntax is used, and n is the total number of indices in the expression. For example, consider the expression
	A(end-1,:)
	MATLAB will call the end method defined for A using the syntax
	end(A, 1, 2)
Examples	This example shows end used with the for and if statements.
	for $k = 1: n$ if $a(k) == 0$ a(k) = a(k) + 2; end end
	In this example, end is used in an indexing expression.
	A = magic(5)

А	=				
	17	24	1	8	15
	23	5	7	14	16
	4	6	13	20	22
	10	12	19	21	3
	11	18	25	2	9
	= A(en	d, 2: en	d)		
В	=				
	18	25	2	9	

See Also

break, for, if, return, switch, try, while

eomday

Purpose	End of month					
Syntax	E = eomday(Y, M)					
Description	E = eomday(Y, M) retu corresponding elemen		• •	ear and mont	h given by	
Examples	Because 1996 is a leap	p year, the st	atement eom	day(1996, 2)	returns 29.	
	To show all the leap y	ears in this o	century, try:			
	y = 1900:1999; E = eomday(y, 2*o y(find(E==29))'	nes(length(y),1)');			
	ans =					
	Columns 1 thro	ugh 6				
	1904	1908	1912	1916	1920	1924
	Columns 7 thro	ugh 12				
	1928	1932	1936	1940	1944	1948
	Columns 13 thr	ough 18				
	1952	1956	1960	1964	1968	1972
	Columns 19 thr	ough 24				
	1976	1980	1984	1988	1992	1996

See Also datenum, datevec, weekday

Purpose	Floating-point relative accuracy
Syntax	eps
Description	eps returns the distance from 1.0 to the next largest floating-point number. The value eps is a default tolerance for pi nv and rank, as well as several other MATLAB functions. eps = $2^{(-52)}$, which is roughly 2. 22e-16.
See Also	real max, real min

Purpose	Error functions	
Syntax	Y = erf(X) Y = erfc(X) Y = erfcx(X) X = erfinv(Y) X = erfcinv(Y)	Error function Complementary error function Scaled complementary error function Inverse error function Inverse complementary error function
Definition	The error function erf(X) with 0 mean and variance erf(x) = $\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt$	is twice the integral of the Gaussian distribution of $1/2$.
	The complementary error $\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^2} dt$	
	$\operatorname{erfcx}(X) = e^{X^2} \operatorname{erfc}(X)$ For large X, $\operatorname{erfcx}(X)$ is a	pproximately $\left(\frac{1}{\sqrt{\pi}}\right) \frac{1}{x}$
Description	<pre>array X. Y = erfc(X) computes th Y = erfcx(X) computes t X = erfinv(Y) returns th of Y. Elements of Y must</pre>	alue of the error function for each element of real e value of the complementary error function. he value of the scaled complementary error function. he value of the inverse error function for each element be in the interval [-1 1]. The function erfinv
	function for each element	The value of the inverse of the complementary error of Y. Elements of Y must be in the interval [0 2]. sfies $y = \operatorname{erfc}(x)$ for $2 \ge y \ge 0$ and $-\infty \le x \le \infty$.

Remarks	The relationship between the complementary error function $erfc$ and the standard normal probability distribution returned by the Statistics Toolbox function normcdf is
	normcdf(x) = $0.5 * \operatorname{erfc}(-x/\sqrt{2})$
	The relationship between the inverse complementary error function erfcinv and the inverse standard normal probability distribution returned by the Statistics Toolbox function norminv is
	norminv(p) = $-\sqrt{2}$ * erfcinv($2p$)
Examples	erfinv(1) is Inf
	erfinv(-1) is -Inf.
	For $abs(Y) > 1$, $erfinv(Y)$ is NaN.
Algorithms	For the error functions, the MATLAB code is a translation of a Fortran program by W. J. Cody, Argonne National Laboratory, NETLIB/SPECFUN, March 19, 1990. The main computation evaluates near-minimax rational approximations from [1].
	For the inverse of the error function, rational approximations accurate to approximately six significant digits are used to generate an initial approximation, which is then improved to full accuracy by one step of Halley's method.
References	[1] Cody, W. J., "Rational Chebyshev Approximations for the Error Function," <i>Math. Comp.</i> , pgs. 631-638, 1969

error

Purpose	Display error messages
Syntax	<pre>error('message') error('message', a1, a2,) error('message_id', 'message') error('message_id', 'message', a1, a2,)</pre>
Description	error('message') displays an error message and returns control to the keyboard. The error message contains the input string message.
	The error command has no effect if message is a null string.
	error('message', a1, a2,) displays a message string that contains formatting conversion characters, such as those used with the MATLAB sprintf function. Each conversion character in message is converted to one of the values a1, a2, in the argument list.
	Note MATLAB converts special characters (like \n and %d) in the error message string only when you specify more than one input argument with error. See Example 3 below.
	error('message_id', 'message') attaches a unique message identifier, or message_id, to the error message. The identifier enables you to better identify the source of an error. See "Message Identifiers" and "Using Message Identifiers with lasterr" in the MATLAB documentation for more information on the message_id argument and how to use it.
	$error('message_id', 'message', a1, a2, \ldots)$ includes formatting conversion characters in message, and the character translations a1, a2,
Examples	Example 1
	The error function provides an error return from M-files:
	function foo(x, y)
	<pre>if nargin ~= 2 error('Wrong number of input arguments') end</pre>

The returned error message looks like this:

foo(pi)

```
??? Error using ==> foo
Wrong number of input arguments
```

Example 2

Specify a message identifier and error message string with error:

In your error handling code, use lasterr to determine the message identifier and error message string for the failing operation:

```
[errmsg, msgid] = lasterr
errmsg =
   The angle specified must be less than 90 degrees.
msgid =
   MyTool box: angleTooLarge
```

Example 3

MATLAB converts special characters (like \n and %d) in the error message string only when you specify more than one input argument with error. In the single argument case shown below, \n is taken to mean backsl ash-n. It is not converted to a newline character:

error('In this case, the newline \n is not converted.') ??? In this case, the newline \n is not converted.

But, when more than one argument is specified, MATLAB does convert special characters. This holds true regardless of whether the additional argument supplies conversion values or is a message identifier:

```
error('ErrorTests: convertTest', ...
    'In this case, the newline \n is converted.')
??? In this case, the newline
    is converted.
```

See Also lasterr, lasterror, rethrow, errordlg, warning, lastwarn, warndlg, dbstop, di sp, sprintf

errorbar

Purpose	Plot error bars along a curve
Syntax	<pre>errorbar(Y, E) errorbar(X, Y, E) errorbar(X, Y, L, U) errorbar(, Li neSpec) h = errorbar()</pre>
Description	Error bars show the confidence level of data or the deviation along a curve.
	errorbar(Y, E) plots Y and draws an error bar at each element of Y. The error bar is a distance of $E(i)$ above and below the curve so that each bar is symmetric and $2*E(i)$ long.
	errorbar(X, Y, E) plots X versus Y with symmetric error bars $2*E(i)$ long. X, Y, E must be the same size. When they are vectors, each error bar is a distance of $E(i)$ above and below the point defined by $(X(i), Y(i))$. When they are matrices, each error bar is a distance of $E(i, j)$ above and below the point defined by $(X(i, j), Y(i, j))$.
	errorbar(X, Y, L, U) plots X versus Y with error bars $L(i) + U(i)$ long specifying the lower and upper error bars. X, Y, L, and U must be the same size. When they are vectors, each error bar is a distance of $L(i)$ below and $U(i)$ above the point defined by $(X(i), Y(i))$. When they are matrices, each error bar is a distance of $L(i,j)$ below and $U(i,j)$ above the point defined by $(X(i,j), Y(i,j))$.
	$errorbar(\ldots$, Li neSpec) draws the error bars using the line type, marker symbol, and color specified by Li neSpec.
	h = errorbar() returns a vector of handles to line graphics objects.
Remarks	When the arguments are all matrices, errorbar draws one line per matrix column. If X and Y are vectors, they specify one curve.
Examples	<pre>Draw symmetric error bars that are two standard deviation units in length. X = 0: pi /10: pi; Y = sin(X); E = std(Y) *ones(size(X));</pre>

errorbar

errorbar(X,Y,E)

See Also Li neSpec, pl ot, std "Basic Plots and Graphs" for related functions

errordlg

Purpose	Create and display an error dialog box
Syntax	<pre>errordl g errordl g(' errorstring') errordl g(' errorstring', ' dl gname') errordl g(' errorstring', ' dl gname', ' on') h = errordl g()</pre>
Description	errordl g creates an error dialog box, or if the named dialog exists, errordl g pops the named dialog in front of other windows.
	errordlg displays a dialog box named 'Error Dialog' that contains the string 'This is the default error string.'
	errordlg('errorstring')displaysadialogboxnamed'ErrorDialog'that contains the string $'errorstring'.$
	errordlg('errorstring','dlgname')displaysadialogboxnamed'dlgname' that contains the string $'errorstring'.$
	errordl g('errorstring', 'dl gname', 'on') specifies whether to replace an existing dialog box having the same name. 'on' brings an existing error dialog having the same name to the foreground. In this case, errordl g does not create a new dialog.
	h = errordl g() returns the handle of the dialog box.
Remarks	MATLAB sizes the dialog box to fit the string ' errorstring'. The error dialog box has an OK pushbutton and remains on the screen until you press the OK button or the Return key. After pressing the button, the error dialog box disappears.
	The appearance of the dialog box depends on the windowing system you use.
Examples	The function errordlg('File not found', 'File Error');

displays this dialog box:

See Alsodi al og, hel pdl g, msgbox, questdl g, warndl g"Predefined Dialog Boxes" for related functions

etime

Purpose	Elapsed time
Syntax	e = etime(t2, t1)
Description	e = etime(t2, t1) returns the time in seconds between vectors t1 and t2. The two vectors must be six elements long, in the format returned by cl ock: T = [Year Month Day Hour Minute Second]
Examples	<pre>Calculate how long a 2048-point real FFT takes. x = rand(2048, 1); t = clock; fft(x); etime(clock, t) ans =</pre>
Limitations	As currently implemented, the etime function fails across month and year boundaries. Since etime is an M-file, you can modify the code to work across these boundaries if needed.
See Also	clock, cputime, tic, toc

etree

Purpose	Elimination tree
Syntax	<pre>p = etree(A) p = etree(A, 'col') p = etree(A, 'sym') [p,q] = etree()</pre>
Description	p = etree(A) returns an elimination tree for the square symmetric matrix whose upper triangle is that of A. $p(j)$ is the parent of column j in the tree, or 0 if j is a root.
	p = etree(A, 'col') returns the elimination tree of A' *A.
	p = etree(A, 'sym') is the same as $p = etree(A)$.
	[p, q] = etree() also returns a postorder permutation q of the tree.
See Also	treel ayout, treepl ot, etreepl ot

etreeplot

Purpose	Plot elimination tree
Syntax	etreepl ot (A) etreepl ot (A, nodeSpec, edgeSpec)
Description	etreeplot(A) plots the elimination tree of A (or A+A', if non-symmetric).
	etreeplot(A,nodeSpec,edgeSpec) allows optional parameters $nodeSpec$ and $edgeSpec$ to set the node or edge color, marker, and linestyle. Use ' ' to omit one or both.
See Also	etree, treepl ot, treel ayout

Purpose	Execute a string containing a MATLAB expression
Syntax	<pre>eval (expression) eval (expression, catch_expr) [a1, a2, a3,] = eval (function(b1, b2, b3,))</pre>
Description	<pre>eval (expression) executes expression, a string containing any valid MATLAB expression. You can construct expression by concatenating substrings and variables inside square brackets: expression = [string1, int2str(var), string2,]</pre>
	eval (expression, catch_expr) executes expression and, if an error is detected, executes the catch_expr string. If expression produces an error, the error string can be obtained with the lasterr function. This syntax is useful when expression is a string that must be constructed from substrings. If this is not the case, use the try catch control flow statement in your code.
	[a1, a2, a3,] = eval (function(b1, b2, b3,)) executes function with arguments b1, b2, b3,, and returns the results in the specified output variables.
Remarks	Using the eval output argument list is recommended over including the output arguments in the expression string. The first syntax below avoids strict checking by the MATLAB parser and can produce untrapped errors and other unexpected behavior.
	<pre>eval('[a1, a2, a3,] = function(var)') % not recommended</pre>
	<pre>[a1, a2, a3,] = eval('function(var)') % recommended syntax</pre>
Examples	This for loop generates a sequence of 12 matrices named M1 through M12: for $n = 1: 12$
	$magic_str = ['M', int2str(n), ' = magic(n)'];$ eval (magic_str)
	end

This example uses a function showdemo that runs a MATLAB demo selected by the user. If an error is encountered, a message is displayed that names the demo that failed.

```
function showdemo(demos)
errstring = 'Error running demo: ';
n = input('Select a demo number: ');
eval(demos(n,:),'[errstring demos(n,:)]')
% ----- end of file showdemo.m -----
D = ['odedemo'; 'quademo'; 'fitdemo'];
showdemo(D)
Select a demo number: 2
ans =
Error running demo: quademo
```

The next example executes the size function on a 3-dimensional array, returning the array dimensions in output variables d1, d2, and d3.

```
A = magi c(4);
A(:,:,2) = A';
[d1, d2, d3] = eval ('size(A)')
d1 =
4
d2 =
4
d3 =
2
```

See Also

assignin, catch, evalin, feval, lasterr, try

Purpose	Evaluate MATLAB expression with capture
Syntax	T = evalc(S) T = evalc(s1, s2) [T, X, Y, Z,] = evalc(S)
Description	T = eval c(S) is the same as eval (S) except that anything that would normally be written to the command window is captured and returned in the character array T (lines in T are separated by \n characters). T = eval c(s1, s2) is the same as eval (s1, s2) except that any output is
	captured into T. [T, X, Y, Z,] = eval c(S) is the same as [X, Y, Z,] = eval (S) except
	that any output is captured into T.
Remark	When you are using eval c, di ary, more, and i nput are disabled.
See Also	diary, eval, evalin, input, more

evalin

Purpose	Execute a string containing a MATLAB expression in a workspace
Syntax	<pre>evalin(ws, expression) [a1, a2, a3,] = evalin(ws, expression) evalin(ws, expression, catch_expr)</pre>
Description	eval i n(ws, <i>expressi on</i>) executes <i>expressi on</i> , a string containing any valid MATLAB expression, in the context of the workspace ws. ws can have a value of 'base' or 'caller' to denote the MATLAB base workspace or the workspace of the caller function. You can construct <i>expressi on</i> by concatenating substrings and variables inside square brackets:
	<pre>expression = [string1, int2str(var), string2,]</pre>
	[a1, a2, a3,] = eval in(ws, expression) executes expression and returns the results in the specified output variables. Using the eval in output argument list is recommended over including the output arguments in the expression string:
	<pre>evalin(ws, '[a1, a2, a3,] = function(var)')</pre>
	The above syntax avoids strict checking by the MATLAB parser and can produce untrapped errors and other unexpected behavior.
	eval in (ws, <i>expressi on</i> , <i>catch_expr</i>) executes <i>expressi on</i> and, if an error is detected, executes the <i>catch_expr</i> string. If <i>expressi on</i> produces an error, the error string can be obtained with the lasterr function. This syntax is useful when <i>expressi on</i> is a string that must be constructed from substrings. If this is not the case, use the try catch control flow statement in your code.
Remarks	The MATLAB base workspace is the workspace that is seen from the MATLAB command line (when not in the debugger). The caller workspace is the workspace of the function that called the M-file. Note, the base and caller workspaces are equivalent in the context of an M-file that is invoked from the MATLAB command line.
Examples	This example extracts the value of the variable var in the MATLAB base workspace and captures the value in the local variable v: v = evalin('base', 'var');

Limitation	eval i n cannot be used recursively to evaluate an expression. For example, a
	sequence of the form evalin('caller', 'evalin(''caller'', ''x'')')
	doesn't work.

See Also assignin, catch, eval, feval, lasterr, try

eventlisteners (COM)

Purpose	Return a list of events attached to listeners
Syntax	eventlisteners(h)
Arguments	h Handle for a MATLAB COM control object.
Description	eventl i steners lists any events, along with their callback or event handler routines, that have been registered with control, h. The function returns a cell array of strings, with each row containing the name of a registered event and the handler routine for that event. If the control has no registered events, then eventl i steners returns an empty cell array.
	Events and their callback or event handler routines must be registered in order for the control to respond to them. You can register events either when you create the control, using $actxcontrol$, or at any time afterwards, using registerevent.
Examples	<pre>Create an mwsamp control, registering only the Click event. eventlisteners returns the name of the event and its event handler routine, myclick: f = figure('pos', [100 200 200 200]); h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f,</pre>
	<pre>{'Click' 'myclick'}); eventlisteners(h) ans = 'click' 'myclick'</pre>
	Register two more events: Dbl Cl i ck and MouseDown. eventl i steners returns the names of the three registered events along with their respective handler routines:
	<pre>registerevent(h, {'DblClick', 'my2click'; 'MouseDown' 'mymoused'});</pre>
	<pre>eventlisteners(h) ans =</pre>

ans =

```
'click' 'myclick'
'dblclick' 'my2click'
```

	'mousedown' 'mymoused'
	Now unregister all events for the control, and <code>eventlisteners</code> returns an empty cell array, indicating that no events have been registered for the control:
	unregisterallevents(h)
	eventlisteners(h)
	ans = {}
	U
See Also	events, registerevent, unregisterevent, unregisterallevents, isevent

events (COM)

Purpose	Return a list of events that the control can trigger
Syntax	events(h)
Arguments	h Handle for a MATLAB COM control object.
Description	Returns a structure array containing all events, both registered and unregistered, known to the control, and the function prototype used when calling the event handler routine. For each array element, the structure field is the event name and the contents of that field is the function prototype for that event's handler.
	Note The send function is identical to events, but send will be made obsolete in a future release.
Examples	<pre>Create an mwsamp control and list all events: f = figure ('pos', [100 200 200 200]); h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f); events(h) Click = void Click() DblClick = void DblClick() MouseDown = void MouseDown(int16 Button, int16 Shift, Variant x, Variant y) Or assign the output to a variable and get one field of the returned structure: ev = events(h); ev. MouseDown ans =</pre>
See Also	void MouseDown(int16 Button, int16 Shift, Variant x, Variant y) isevent, eventlisteners, registerevent, unregisterevent, unregisterallevents

In the following example, exi st returns 8 on the Java class, Wel come, and returns 2 on the Java class file, Wel come. cl ass.

```
exist Welcome
ans =
8
exist javaclasses/Welcome.class
ans =
2
```

indicates there is a Java class Wel come and a Java class file Wel come. cl ass.

The following example indicates that testresults is both a variable in the workspace and a directory on the search path:

See Also dir, help, lookfor, partial path, what, which, who

exist

Durboso	Check if a variable or file exists
Purpose	Check if a variable of file exists
Graphical Interface	As an alternative to the exi st function, use the Workspace browser or the Current Directory Browser.
Syntax	exist item
	exist item kind
	a = exist('item',)
Description	exist item returns the status of the variable or file, item:
	0 If item does not exist.
	1 If the variable item exists in the workspace.
	2 If item is an M-file or a file of unknown type.
	3 If item is a MEX-file on your MATLAB search path.
	4 If item is an MDL-file on your MATLAB search path.
	5 If i tem is a built-in MATLAB function.
	6 If item is a P-file on your MATLAB search path.
	7 If item is a directory.
	8 If i tem is a Java class.
	If $item$ specifies a filename, that filename may include an extension to preclude conflicting with other similar filenames. For example, exist('file.ext').

MEX, MDL, and P-files must be on the MATLAB search path for exist to return the values shown above. If item is found, but is not on the MATLAB search path, exist('item') returns 2, because it considers item to be an unknown file type.

Any other file type or directory specified by item is not required to be on the MATLAB search path to be recognized by exist. If the file or directory is not on the search path, then item must specify either a full pathname, a partial pathname relative to MATLABPATH, or a partial pathname relative to your current directory.

	If i tomic a la	α_{1} along then α_{2} at ('it α_{1} ') returns on 8. However, if it α_{1} is a	
	If i tem is a Java class, then $exi st('item')$ returns an 8. However, if i tem is a Java class file, then $exi st('item')$ returns a 2.		
	exist item <i>kind</i> returns the status of item for the specified <i>kind</i> . If item of type <i>kind</i> does not exist, it returns 0. The <i>kind</i> argument may be one of the following:		
	builtin Checks only for built-in functions.		
	cl ass	Checks only for Java classes.	
	di r	Checks only for directories.	
	file	Checks only for files or directories.	
	var	Checks only for variables.	
	a = exist('i	item',) returns the status of the variable or file in variable a.	
Remarks	To check for the existence of more than one variable, use the ismember function. For example,		
	<pre>a = 5.83; c = 'teststring'; ismember({'a', 'b', 'c'}, who)</pre>		
	ans =		
	1	0 1	
Examples	This example function or a	uses exist to check whether a MATLAB function is a built-in file:	
	type = ex type = 5	ist('plot')	
	This indicator	s that nlat is a built in function	

This indicates that $\operatorname{pl}\operatorname{ot}$ is a built-in function.

exit

Purpose	Terminate MATLAB (same as qui t)
Graphical Interface	As an alternative to the exit function, select Exit MATLAB from the File menu or click the close box in the MATLAB desktop.
Syntax	exi t
Description	exit ends the current MATLAB session. It is the same as quit . See quit for termination options.
See Also	finish, quit

Purpose	Exponential	
Syntax	$Y = \exp(X)$	
Description	The \exp function is an elementary function that operates element-wise on arrays. Its domain includes complex numbers.	
	Y = exp(X) returns the exponential for each element of X. For complex $z = x + i^* y$, it returns the complex exponential $e^z = e^x(\cos(y) + i\sin(y))$.	
Remark	Use expm for matrix exponentials.	
See Also	expm, log, log10, expint	

expint

Purpose	Exponential integral
1 01 0 0 0 0	Exponential integral

Syntax Y = expint(X)

Definitions

The exponential integral computed by this function is defined as

$$E_1(x) = \int_x^\infty \frac{e^{-t}}{t} dt$$

Another common definition of the exponential integral function is the Cauchy principal value integral

$$Ei(x) = \int_{-\infty}^{x} \frac{e^{t}}{t} dt$$

which, for real positive x, is related to expint as

$$E_1(-x) = -Ei(x) - i\pi$$

Description	Y = expint(X) evaluates the exponential integral for each element of X.

References [1] Abramowitz, M. and I. A. Stegun. *Handbook of Mathematical Functions.* Chapter 5, New York: Dover Publications, 1965.

Purpose	Matrix exponent	tial		
Syntax	$Y = \exp(X)$			
Description	-		ant e to the matrix power X. The expm functions nonpositive eigenvalues.	tion
	Use exp for the e	element-by-ele	ement exponential.	
Algorithm	-		t uses the Padé approximation with scaling ing of this algorithm in the expm1 demo.	g and
	approximation, eigenvectors, res References [1] an	Taylor series a spectively, to c nd [2] describe	expm3 demos illustrate the use of Padé approximation, and eigenvalues and ompute the matrix exponential. e and compare many algorithms for comput in method, expm, is essentially method 3 o	
			in method, expin, is essentially method of	
Examples	This example co exponential of A.	-	ompares the matrix exponential of A and th	ne
	A = [1]		0	
	0 0	0 -	2 1];	
	(A)			
	expm(A) ans =			
	2. 7183	1. 7183	1.0862	
	0	1. 0000	1. 2642	
	0	0	0. 3679	
	exp(A)			
	ans =			
	2. 7183	2.718	3 1.0000	
	1.0000	1.000	0 7.3891	
	1.0000	1.000	0 0. 3679	

expm

	Notice that the diagonal elements of the two results are equal. This would be true for any triangular matrix. But the off-diagonal elements, including those below the diagonal, are different.
See Also	exp, funm, logm, sqrtm
References	[1] Golub, G. H. and C. F. Van Loan, <i>Matrix Computation</i> , p. 384, Johns Hopkins University Press, 1983.
	[2] Moler, C. B. and C. F. Van Loan, "Nineteen Dubious Ways to Compute the Exponential of a Matrix," <i>SIAM Review 20</i> , 1979, pp. 801-836.

Purpose	Identity matrix	
Syntax	Y = eye(n) Y = eye(m, n) Y = eye(size(A))	
Description	 Y = eye(n) returns the n-by-n identity matrix. Y = eye(m, n) or eye([m n]) returns an m-by-n matrix with 1's on the diagonal and 0's elsewhere. 	
	Y = eye(si ze(A)) returns an identity matrix the same size as A.	
Limitations	The identity matrix is not defined for higher-dimensional arrays. The assignment $y = eye([2, 3, 4])$ results in an error.	
See Also	ones, rand, randn, zeros	

ezcontour

Purpose	Easy to use contour plotter
Syntax	ezcontour(f) ezcontour(f, domain) ezcontour(,n)
Description	ezcontour(f) plots the contour lines of $f(x, y)$, where f is a string that represents a mathematical function of two variables, such as x and y.
	The function <i>f</i> is plotted over the default domain: $-2\pi < x < 2\pi$, $-2\pi < y < 2\pi$. MATLAB chooses the computational grid according to the amount of variation that occurs; if the function <i>f</i> is not defined (singular) for points on the grid, then these points are not plotted.
	ezcontour(f, domain) plots $f(x, y)$ over the specified domain. domain can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where min < x < max, min < y < max).
	If <i>f</i> is a function of the variables <i>u</i> and <i>v</i> (rather than <i>x</i> and <i>y</i>), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezcontour (' u^2 - v^3', [0, 1], [3, 6]) plots the contour lines for $u^2 - v^3$ over $0 < u < 1, 3 < v < 6$.
	ezcontour(, n) plots <i>f</i> over the default domain using an n-by-n grid. The default value for n is 60.
	ezcontour automatically adds a title and axis labels.
Remarks	Array multiplication, division, and exponentiation are always implied in the expression you pass to ezcontour. For example, the MATLAB syntax for a contour plot of the expression,
	sqrt(x. ^2 + y. ^2)
	is written as:
	$ezcontour('sqrt(x^2 + y^2)')$
	That is, x^2 is interpreted as x. ^2 in the string you pass to ${\tt ezcontour}.$
Examples	The following mathematical expression defines a function of two variables, x and y .

$$f(x, y) = 3(1-x)^2 e^{-x^2 - (y+1)^2} - 10\left(\frac{x}{5} - x^3 - y^5\right) e^{-x^2 - y^2} - \frac{1}{3}e^{-(x+1)^2 - y^2}$$

ezcont our requires a string argument that expresses this function using MATLAB syntax to represent exponents, natural logs, etc. This function is represented by the string:

$$f = ['3^{*}(1-x)^{2} \exp(-(x^{2}) - (y+1)^{2})', ... '- 10^{*}(x/5 - x^{3} - y^{5}) \exp(-x^{2} - y^{2})', ... '- 1/3^{*} \exp(-(x+1)^{2} - y^{2})'];$$

For convenience, this string is written on three lines and concatenated into one string using square brackets.

Pass the string variable f to ezcontour along with a domain ranging from -3 to 3 and specify a computational grid of 49-by-49:

ezcontour(f, [-3, 3], 49)

In this particular case, the title is too long to fit at the top of the graph so MATLAB abbreviates the string.

ezcontour

See Also contour, ezcontourf, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar, ezsurf, ezsurfc

"Contour Plots" for related functions

ezcontourf

Purpose	Easy to use filled contour plotter
Syntax	<pre>ezcontourf(f) ezcontourf(f, domain) ezcontourf(, n)</pre>
Description	ezcontourf(f) plots the contour lines of $f(x, y)$, where f is a string that represents a mathematical function of two variables, such as x and y.
	The function <i>f</i> is plotted over the default domain: $-2\pi < x < 2\pi$, $-2\pi < y < 2\pi$. MATLAB chooses the computational grid according to the amount of variation that occurs; if the function <i>f</i> is not defined (singular) for points on the grid, then these points are not plotted.
	ezcontourf(f, domai n) plots $f(x, y)$ over the specified domai n. domai n can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < x < max, min < y < max).
	If <i>f</i> is a function of the variables <i>u</i> and <i>v</i> (rather than <i>x</i> and <i>y</i>), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezcontourf('u^2 - v^3', [0, 1], [3, 6]) plots the contour lines for $u^2 - v^3$ over $0 < u < 1, 3 < v < 6$.
	$ezcontourf(\ldots, n)$ plots <i>f</i> over the default domain using an n-by-n grid. The default value for n is 60.
	ezcontourf automatically adds a title and axis labels.
expression you pass to ezcor	Array multiplication, division, and exponentiation are always implied in the expression you pass to <code>ezcontourf</code> . For example, the MATLAB syntax for a filled contour plot of the expression,
	$sqrt(x.^{2} + y.^{2});$
	is written as:
	$ezcontourf('sqrt(x^2 + y^2)')$
	That is, x^2 is interpreted as x. ^2 in the string you pass to ${\tt ezcontourf}.$
Examples	The following mathematical expression defines a function of two variables, <i>x</i> and <i>y</i> .

$$f(x, y) = 3(1-x)^2 e^{-x^2 - (y+1)^2} - 10\left(\frac{x}{5} - x^3 - y^5\right) e^{-x^2 - y^2} - \frac{1}{3}e^{-(x+1)^2 - y^2}$$

ezcont ourf requires a string argument that expresses this function using MATLAB syntax to represent exponents, natural logs, etc. This function is represented by the string:

$$f = ['3^{*}(1-x)^{2} \exp(-(x^{2}) - (y+1)^{2})', ... '- 10^{*}(x/5 - x^{3} - y^{5}) \exp(-x^{2}-y^{2})', ... '- 1/3^{*} \exp(-(x+1)^{2} - y^{2})'];$$

For convenience, this string is written on three lines and concatenated into one string using square brackets.

Pass the string variable f to ezcont ourf along with a domain ranging from -3 to 3 and specify a grid of 49-by-49:

ezcontourf(f, [-3, 3], 49)

In this particular case, the title is too long to fit at the top of the graph so MATLAB abbreviates the string.

See Also contourf, ezcontour, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar, ezsurf, ezsurfc

"Contour Plots" for related functions

ezmesh

Purpose	Easy to use 3-D mesh plotter
Syntax	<pre>ezmesh(f) ezmesh(f, domai n) ezmesh(x, y, z) ezmesh(x, y, z, [smi n, smax, tmi n, tmax]) or ezmesh(x, y, z, [mi n, max]) ezmesh(, n) ezmesh(, 'circ')</pre>
Description	ezmesh(f) creates a graph of $f(x, y)$, where f is a string that represents a mathematical function of two variables, such as x and y.
	The function <i>f</i> is plotted over the default domain: $-2\pi < x < 2\pi$, $-2\pi < y < 2\pi$. MATLAB chooses the computational grid according to the amount of variation that occurs; if the function <i>f</i> is not defined (singular) for points on the grid, then these points are not plotted.
	ezmesh(f, domai n) plots <i>f</i> over the specified domai n. domai n can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, $min < x < max$, $min < y < max$).
	If <i>f</i> is a function of the variables <i>u</i> and <i>v</i> (rather than <i>x</i> and <i>y</i>), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezmesh(' u^2 - v^3', [0, 1], [3, 6]) plots $u^2 - v^3$ over $0 < u < 1$, $3 < v < 6$.
	ezmesh(x, y, z) plots the parametric surface $x = x(s,t)$, $y = y(s,t)$, and $z = z(s,t)$ over the square: $-2\pi < s < 2\pi$, $-2\pi < t < 2\pi$.
	ezmesh(x, y, z, [smin, smax, tmin, tmax]) or $ezmesh(x, y, z, [min, max])$ plots the parametric surface using the specified domain.
	ezmesh(, n) plots <i>f</i> over the default domain using an n-by-n grid. The default value for n is 60.
	ezmesh(, 'circ') plots fover a disk centered on the domain.
Remarks	Array multiplication, division, and exponentiation are always implied in the expression you pass to ezmesh. For example, the MATLAB syntax for a mesh plot of the expression, sqrt (x. $^2 + y$. 2);
	Syr(m, w + j, w),

is written as:

 $ezmesh('sqrt(x^2 + y^2)')$

That is, x^2 is interpreted as x. 2 in the string you pass to ezmesh.

Examples

This example visualizes the function,

 $f(x, y) = x e^{-x^2 - y^2}$

with a mesh plot drawn on a 40-by-40 grid. The mesh lines are set to a uniform blue color by setting the colormap to a single color:

ezmesh('x*exp(-x^2-y^2)',40) colormap([0 0 1])

"Function Plots" for related functions

ezmeshc

Purpose	Easy to use combination mesh/contour plotter
Syntax	<pre>ezmeshc(f) ezmeshc(f, domai n) ezmeshc(x, y, z) ezmeshc(x, y, z, [smi n, smax, tmi n, tmax]) or ezmeshc(x, y, z, [mi n, max]) ezmeshc(, n) ezmeshc(, 'ci rc')</pre>
Description	ezmeshc(f) creates a graph of $f(x, y)$, where f is a string that represents a mathematical function of two variables, such as x and y .
	The function <i>f</i> is plotted over the default domain: $-2\pi < x < 2\pi$, $-2\pi < y < 2\pi$. MATLAB chooses the computational grid according to the amount of variation that occurs; if the function <i>f</i> is not defined (singular) for points on the grid, then these points are not plotted.
	ezmeshc(f, domain) plots <i>f</i> over the specified domain. domain can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < <i>x</i> < max, min < <i>y</i> < max).
	If <i>f</i> is a function of the variables <i>u</i> and <i>v</i> (rather than <i>x</i> and <i>y</i>), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezmeshc('u^2 - v^3', [0, 1], [3, 6]) plots $u^2 - v^3$ over $0 < u < 1$, $3 < v < 6$.
	ezmeshc(x, y, z) plots the parametric surface $x = x(s,t)$, $y = y(s,t)$, and $z = z(s,t)$ over the square: $-2\pi < s < 2\pi$, $-2\pi < t < 2\pi$.
	ezmeshc(x, y, z, [smin, smax, tmin, tmax]) or $ezmeshc(x, y, z, [min, max])plots the parametric surface using the specified domain.$
	ezmeshc(, n) plots <i>f</i> over the default domain using an n-by-n grid. The default value for n is 60.
	ezmeshc(, 'circ') plots fover a disk centered on the domain.
Remarks	Array multiplication, division, and exponentiation are always implied in the expression you pass to ezmeshc. For example, the MATLAB syntax for a mesh/contour plot of the expression, $sqrt(x, ^2 + y, ^2);$

is written as:

 $ezmeshc('sqrt(x^2 + y^2)')$

That is, x^2 is interpreted as x. 2 in the string you pass to ezmeshc.

Examples

Create a mesh/contour graph of the expression,

$$f(x, y) = \frac{y}{1 + x^2 + y^2}$$

over the domain -5 < x < 5, -2*pi < y < 2*pi:

$$ezmeshc('y/(1 + x^2 + y^2)', [-5, 5, -2*pi, 2*pi])$$

Use the mouse to rotate the axes to better observe the contour lines (this picture uses a view of azimuth = -65.5 and elevation = 26).

See Also

ezmesh, ezsurfc, meshc

"Function Plots" for related functions

ezplot

Purpose	Easy to use function plotter
Syntax	<pre>ezplot(f) ezplot(f, [min, max]) ezplot(f, [xmin, xmax, ymin, ymax]) ezplot(x, y) ezplot(x, y, [tmin, tmax]) ezplot(, figure)</pre>
Description	ezpl ot (f) plots the expression $f = f(x)$ over the default domain: $-2\pi < x < 2\pi$. ezpl ot (f, [mi n, max]) plots $f = f(x)$ over the domain: mi n $< x <$ max. For implicitly defined functions, $f = f(x,y)$: ezpl ot (f) plots $f(x,y) = 0$ over the default domain $-2\pi < x < 2\pi$, $-2\pi < y < 2\pi$. ezpl ot (f, [xmi n, xmax, ymi n, ymax]) plots $f(x,y) = 0$ over xmi n $< x <$ xmax and ymi n $< y <$ ymax. ezpl ot (f, [mi n, max]) plots $f(x,y) = 0$ over mi n $< x <$ max and mi n $< y <$ max. If <i>f</i> is a function of the variables <i>u</i> and <i>v</i> (rather than <i>x</i> and <i>y</i>), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezpl ot ('u^2 - v^2 - 1', [-3, 2, -2, 3]) plots $u^2 - v^2 - 1 = 0$ over $-3 < u < 2, -2 < v < 3$. ezpl ot (x, y) plots the parametrically defined planar curve $x = x(t)$ and $y = y(t)$ over the default domain $0 < t < 2\pi$.
	ezplot(x, y, [tmin, tmax]) plots $x = x(t)$ and $y = y(t)$ over tmin < t < tmax. ezplot(, figure) plots the given function over the specified domain in the figure window identified by the handle figure.
Remarks	Array multiplication, division, and exponentiation are always implied in the expression you pass to ezplot. For example, the MATLAB syntax for a plot of the expression, $x. ^2 - y. ^2$ which represents an implicitly defined function, is written as:

ezplot('x^2 - y^2')

That is, x^2 is interpreted as x. 2 in the string you pass to ezplot.

Examples

This example plots the implicitly defined function,

 $x^2 - y^4 = 0$

over the domain $[-2\pi, 2\pi]$:

ezpl ot (' x^2-y^4')

See Also ezplot3, ezpolar, plot "Function Plots" for related functions

ezplot3

Purpose	Easy to use 3-D parametric curve plotter
Syntax	<pre>ezpl ot3(x, y, z) ezpl ot3(x, y, z, [tmi n, tmax]) ezpl ot3(, 'ani mate')</pre>
Description	ezpl ot 3(x, y, z) plots the spatial curve $x = x(t)$, $y = y(t)$, and $z = z(t)$ over the default domain $0 < t < 2\pi$.
	ezpl ot3(x, y, z, [tmin, tmax]) plots the curve $x = x(t)$, $y = y(t)$, and $z = z(t)$ over the domain tmin < t < tmax.
	${\tt ezpl}{\tt ot3}(\ldots, '{\tt animate}'){\tt produces}$ an animated trace of the spatial curve.
Remarks	Array multiplication, division, and exponentiation are always implied in the expression you pass to ezpl ot 3. For example, the MATLAB syntax for a plot of the expression,
	$x = s. /2, y = 2. *s, z = s. ^2;$
	which represents a parametric function, is written as:
	ezpl ot3(' s/2' , ' 2*s' , ' s^2')
	That is, $s/2$ is interpreted as $s.\ /2$ in the string you pass to $ezplot3.$
Examples	This example plots the parametric curve,
	$x = \sin t$, $y = \cos t$, $z = t$
	over the domain $[0,6\pi]$:
	ezplot3('sin(t)','cos(t)','t',[0,6*pi])

ezpolar

Purpose	Easy to use polar coordinate plotter
Syntax	ezpol ar(f) ezpol ar(f, [a, b])
Description	ezpol ar(f) plots the polar curve <i>rho</i> = $f(theta)$ over the default domain 0 < theta < 2π . ezpol ar(f, [a, b]) plots <i>f</i> for a < <i>theta</i> < b.
Examples	This example creates a polar plot of the function, 1 + cos(t) over the domain [0, 2π]:
	ezpolar('1+cos(t)')

"Function Plots" for related functions

ezsurf

Purpose	Easy to use 3-D colored surface plotter
Syntax	<pre>ezsurf(f) ezsurf(f, domain) ezsurf(x, y, z) ezsurf(x, y, z, [smin, smax, tmin, tmax]) or ezsurf(x, y, z, [min, max]) ezsurf(, n) ezsurf(, 'circ')</pre>
Description	ezsurf(f) creates a graph of $f(x, y)$, where f is a string that represents a mathematical function of two variables, such as x and y.
	The function <i>f</i> is plotted over the default domain: $-2\pi < x < 2\pi$, $-2\pi < y < 2\pi$. MATLAB chooses the computational grid according to the amount of variation that occurs; if the function <i>f</i> is not defined (singular) for points on the grid, then these points are not plotted.
	ezsurf(f, domai n) plots <i>f</i> over the specified domai n. domai n can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < x < max, min < y < max).
	If <i>f</i> is a function of the variables <i>u</i> and <i>v</i> (rather than <i>x</i> and <i>y</i>), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezsurf (' $u^2 - v^3$ ', [0, 1], [3, 6]) plots $u^2 - v^3$ over $0 < u < 1$, $3 < v < 6$.
	ezsurf (x, y, z) plots the parametric surface $x = x(s,t)$, $y = y(s,t)$, and $z = z(s,t)$ over the square: $-2\pi < s < 2\pi$, $-2\pi < t < 2\pi$.
	ezsurf(x, y, z, [smin, smax, tmin, tmax]) or $ezsurf(x, y, z, [min, max])$ plots the parametric surface using the specified domain.
	ezsurf (\ldots, n) plots <i>f</i> over the default domain using an n-by-n grid. The default value for n is 60.
	$ezsurf(\ldots, 'circ')$ plots fover a disk centered on the domain.
Remarks	Array multiplication, division, and exponentiation are always implied in the expression you pass to ezsurf. For example, the MATLAB syntax for a surface plot of the expression,
	$sqrt(x.^{2} + y.^{2});$

is written as:

 $ezsurf('sqrt(x^2 + y^2)')$

That is, x^2 is interpreted as x. 2 in the string you pass to ezsurf.

Examples

ezsurf does not graph points where the mathematical function is not defined (these data points are set to NaNs, which MATLAB does not plot). This example illustrates this filtering of singularities/discontinuous points by graphing the function,

f(x, y) = real(atan(x + iy))

over the default domain $-2\pi < x < 2\pi$, $-2\pi < y < 2\pi$:

ezsurf('real(atan(x+i*y))')

Using surf to plot the same data produces a graph without filtering of discontinuities (as well as requiring more steps):

```
[x, y] = meshgrid(linspace(-2*pi, 2*pi, 60));
z = real(atan(x+i.*y));
```


Note also that ezsurf creates graphs that have axis labels, a title, and extend to the axis limits.

See Also ezmesh, ezsurfc, surf

"Function Plots" for related functions

Purpose	Easy to use combination surface/contour plotter
Syntax	<pre>ezsurfc(f) ezsurfc(f, domai n) ezsurfc(x, y, z) ezsurfc(x, y, z, [smi n, smax, tmi n, tmax]) or ezsurfc(x, y, z, [mi n, max]) ezsurfc(, n) ezsurfc(, 'ci rc')</pre>
Description	ezsurfc(f) creates a graph of $f(x, y)$, where f is a string that represents a mathematical function of two variables, such as x and y.
	The function <i>f</i> is plotted over the default domain: $-2\pi < x < 2\pi$, $-2\pi < y < 2\pi$. MATLAB chooses the computational grid according to the amount of variation that occurs; if the function <i>f</i> is not defined (singular) for points on the grid, then these points are not plotted.
	ezsurfc(f, domai n) plots f over the specified domai n. domai n can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < x < max, min < y < max).
	If <i>f</i> is a function of the variables <i>u</i> and <i>v</i> (rather than <i>x</i> and <i>y</i>), then the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezsurfc('u^2 - v^3', [0, 1], [3, 6]) plots $u^2 - v^3$ over $0 < u < 1$, $3 < v < 6$.
	ezsurf c(x, y, z) plots the parametric surface $x = x(s,t)$, $y = y(s,t)$, and $z = z(s,t)$ over the square: $-2\pi < s < 2\pi$, $-2\pi < t < 2\pi$.
	ezsurfc(x, y, z, [smin, smax, tmin, tmax]) or $ezsurfc(x, y, z, [min, max])$ plots the parametric surface using the specified domain.
	ezsurfc(, n) plots <i>f</i> over the default domain using an n-by-n grid. The default value for n is 60.
	$ezsurfc(\ldots, 'circ')$ plots fover a disk centered on the domain.
Remarks	Array multiplication, division, and exponentiation are always implied in the expression you pass to ezsurfc. For example, the MATLAB syntax for a surface/contour plot of the experssion, $sqrt(x. ^2 + y. ^2);$

is written as:

 $ezsurfc('sqrt(x^2 + y^2)')$

That is, x^2 is interpreted as x. 2 in the string you pass to ezsurf c.

Examples

Create a surface/contour plot of the expression,

$$f(x, y) = \frac{y}{1 + x^2 + y^2}$$

over the domain -5 < x < 5, -2*pi < y < 2*pi, with a computational grid of size 35-by-35:

Use the mouse to rotate the axes to better observe the contour lines (this picture uses a view of azimuth = -65.5 and elevation = 26)

ezmesh, ezmeshc, ezsurf, surfc

"Function Plots" for related functions

Index

Symbols	
! 2-24	acot 2-34
- 2-11	acoth 2-36
% 2-24	acsc 2-38
& 2-20, 2-22	acsch 2-40
&& 2-22	actxcontrol 2-42
' 2-11, 2-24	actxserver 2-46
() 2-24	addframe
* 2-11	AVI files 2-48
+ 2-11	addition (arithmetic operator) 2-11
, 2-24	addpath 2-50
. 2-24	addproperty 2-52
2-24	addressing selected array elements 2-27
/ 2-11	adjacency graph 2-535
: 2-27	ai ry 2-53
< 2-19	Airy functions
= 2-24	relationship to modified Bessel functions 2-53
== 2-19	ALi m, Axes property 2-117
> 2-19	all 2-56
\ 2-11	Ambi entLi ghtCol or, Axes property 2-117
^ 2-11	and (M-file function equivalent for &) 2-21
{} 2-24	AND, logical
2-20, 2-22	bit-wise 2-190
2-22	angl e 2-64
~ 2-20, 2-22	ans 2-65
~= 2-19	any 2-66
	arccosecant 2-38
	arccosine 2-30
Α	arccotangent 2-34
abs 2-29	arcsecant 2-70
absolute value 2-29	arcsine 2-74
accuracy	arctangent 2-80
of linear equation solution 2-357	four-quadrant 2-82
of matrix inversion 2-357	area 2-68
relative floating-point 2-573	arithmetic operations, matrix and array
acos 2-30	distinguished 2-11

arithmetic operators

acosh **2-32**

reference 2-11 array addressing selected elements of 2-27 displaying 2-525 left division (arithmetic operator) 2-12 multiplication (arithmetic operator) 2-11 power (arithmetic operator) 2-12 right division (arithmetic operator) 2-12 shift circularly 2-297 transpose (arithmetic operator) 2-12 arrays maximum size of 2-356 arrowhead matrix 2-348 ASCII delimited files writing 2-534 ASCII data printable characters (list of) 2-278 reading 2-533 asec 2-70 asech 2-72 asi n 2-74 asi nh 2-76 aspect ratio of axes 2-428 assi gni n 2-78 atan 2-80 atan2 2-82 atanh 2-84 . au files reading 2-97 writing 2-98 audio saving in AVI format 2-99 audio devices 2-86 audiodevinfo 2-86 audioplayer 2-88 audiorecorder 2-92

auwri te **2-98** avi 2-99 avi fi le **2-99** avi nfo **2-102** avi read **2-104** Axes creating 2-105 defining default properties 2-109 fixed-width font 2-126 property descriptions 2-117 axes setting and querying data aspect ratio 2-428 axes 2-105 axi s 2-138

В

bal ance 2-144 bar 2-147 bar3 2-151 bar3h 2-151 barh 2-147 base to decimal conversion 2-155 base two operations conversion from decimal to binary 2-481 base2dec 2-155 beep 2-156 **Bessel functions** first kind 2-167 modified, first kind 2-161 modified, second kind 2-164 second kind 2-170 Bessel functions, modified relationship to Airy functions 2-53 Bessel's equation (defined) 2-167 modified (defined) 2-161

bessel i 2-161 besselj 2-167 bessel k 2-164 bessel y 2-170 beta 2-173 beta function (defined) 2-173 incomplete (defined) 2-175 natural logarithm 2-176 bet ai nc 2-175 betal n 2-176 bi cg 2-177 bi cgstab 2-184 **BiConjugate Gradients method 2-177 BiConjugate Gradients Stabilized method 2-184** bi n2dec 2-189 binary to decimal conversion 2-189 bit and 2-190 bitcmp 2-191 bitget 2-192 bitmax 2-193 bitor 2-194 bitset 2-195 bitshift 2-196 bit-wise operations AND 2-190 get 2-192 OR 2-194 set bit 2-195 shift 2-196 XOR 2-197 bitxor 2-197 blanks removing trailing 2-479 bl anks 2-198 bl kdi ag 2-199 box 2-200

Box, Axes property 2-118 braces, curly (special characters) 2-24 brackets (special characters) 2-24 break 2-201 breakpoints listing 2-451 removing 2-442 resuming execution from 2-444 setting in M-files 2-453 brighten 2-202 builtin 2-204 **BusyAction** Axes property 2-118 ButtonDownFcn Axes property 2-118 bvp4c **2-205** bvpget 2-212 bvpi ni t 2-213 bvpset 2-215 bvpval 2-218

С

cal endar **2-219** camdol 1 y 2-220 camera dollying position 2-220 moving camera and target postions 2-220 placing a light at 2-222 positioning to view objects 2-224 rotating around camera target 2-226, 2-228 rotating around viewing axis 2-232 setting and querying position 2-229 setting and querying projection type 2-231 setting and querying target 2-233 setting and querying up vector 2-235 setting and querying view angle 2-237

CameraPosition, Axes property 2-119 CameraPositionMode, Axes property 2-119 CameraTarget, Axes property 2-119 CameraTargetMode, Axes property 2-119 CameraUpVector, Axes property 2-119 CameraUpVectorMode, Axes property 2-119 CameraVi ewAngl e, Axes property 2-120 CameraVi ewAngl eMode, Axes property 2-120 caml i ght 2-222 caml ookat 2-224 camorbit 2-226 campan 2-228 campos 2-229 camproj 2-231 camrol1 2-232 camtarget 2-233 camup 2-235 camva 2-237 camzoom 2-239 capture 2-240 cart2pol 2-241 cart2sph 2-242 Cartesian coordinates 2-241, 2-242 case 2-243 cat 2-244 catch 2-245 caxi s 2-246 cd 2-250 cdf2rdf 2-251 cdfepoch 2-253 cdfinfo 2-254 cdfread 2-258 cdfwrite 2-260 ceil 2-263 cell 2-264 cell array creating 2-264

structure of, displaying 2-272 cell2mat 2-266 cell2struct 2-268 celldisp 2-269 cellfun 2-270 cellplot 2-272 cgs 2-274 char 2-278 checki n 2-280 examples 2-281 options 2-280 checkout 2-282 examples 2-283 options 2-282 Children Axes property 2-121 chol 2-285 Cholesky factorization 2-285 (as algorithm for solving linear equations) 2-15 preordering for 2-348 chol i nc 2-287 chol update 2-294 circshift 2-297 cl a 2-298 clabel 2-299 cl ass 2-301 cl c 2-303, 2-309 cl ear 2-304 cl ear serial port I/O 2-308 clearing Command Window 2-303 items from workspace 2-304 Java import list 2-305 clf 2-309 CLim, Axes property 2-121 CLi mMode, Axes property 2-121

cl i pboard 2-310 Cl i ppi ng Axes property 2-121 cl ock 2-311 close 2-312 AVI files 2-314 closest point search 2-546 cmapeditor 2-330 cmopts 2-316 col and 2-317 col mmd 2-319 Color Axes property 2-122 col orbar 2-322 colormap editor 2-330 colormap 2-326 Col or Order, Axes property 2-122 Col or Spec 2-346 col perm 2-348 COM object methods actxcontrol 2-42 actxserver 2-46 addproperty 2-52 del et e 2-499 del eteproperty 2-503 eventlisteners 2-590 events 2-592 comet 2-349 comet 3 2-350 comma (special characters) 2-26 **Command Window** clearing 2-303 compan 2-351 companion matrix 2-351 compass 2-352

complementary error function (defined) 2-574 scaled (defined) 2-574 complete elliptic integral (defined) 2-564 modulus of 2-562, 2-564 complex exponential (defined) 2-597 phase angle 2-64 complex 2-354 complex conjugate 2-365 sorting pairs of 2-407 complex data creating 2-354 complex numbers, magnitude 2-29 computer 2-356 computer MATLAB is running on 2-356 concatenating arrays 2-244 cond 2-357 condei g 2-358 condest 2-359 condition number of matrix 2-357 improving 2-144 conepl ot 2-360 conj 2-365 conjugate, complex 2-365 sorting pairs of 2-407 continuation (..., special characters) 2-25 continue 2-366 contour and mesh plot 2-610 filled plot 2-605 functions 2-602 of mathematical expression 2-602 with surface plot 2-621 contour 2-367 contour3 2-371

contourc 2-373 contourf 2-375 contours in slice planes 2-377 contourslice 2-377 contrast 2-380 conv 2-381 conv2 2-382 conversion base to decimal 2-155 binary to decimal 2-189 Cartesian to cylindrical 2-241 Cartesian to polar 2-241 complex diagonal to real block diagonal 2-251 decimal number to base 2-477, 2-480 decimal to binary 2-481 decimal to hexadecimal 2-482 string matrix to cell array 2-273 vector to character string 2-278 convex hulls multidimensional vizualization 2-388 two-dimensional vizualization 2-386 convhul 1 2-386 convhul l n 2-388 convn 2-390 convolution 2-381 inverse See deconvolution two-dimensional 2-382 coordinates Cartesian 2-241, 2-242 cylindrical 2-241, 2-242 polar 2-241, 2-242 coordinates. See also conversion copyfile 2-391 copyobj 2-393 corrcoef 2-395 cos 2-398

cosecant hyperbolic 2-412 inverse 2-38 inverse hyperbolic 2-40 cosh 2-400 cosine 2-398 hyperbolic 2-400 inverse 2-30 inverse hyperbolic 2-32 cot 2-402 cotangent 2-402 hyperbolic 2-404 inverse 2-34 inverse hyperbolic 2-36 coth 2-404 cov 2-406 cpl xpai r 2-407 cputime 2-408 CreateFcn Axes property 2-122 cross 2-409 cross product 2-409 csc 2-410 csch 2-412 csvread 2-414 csvwrite 2-416 ctranspose (M-file function equivalent for ') 2-13 cumprod 2-417 cumsum 2-418 cumtrapz 2-419 cumulative product 2-417 sum 2-418 curl 2-421 curly braces (special characters) 2-24 current directory changing 2-250

CurrentPoint Axes property 2-123 customverctrl 2-424 cylinder 2-425 cylindrical coordinates 2-241, 2-242

D

daspect 2-428 data aspect ratio of axes 2-428 data types complex 2-354 DataAspectRatio, Axes property 2-123 DataAspectRatioMode, Axes property 2-125 date 2-431 date and time functions 2-572 date string format of 2-434 date vector 2-440 datenum 2-432 datestr 2-434 datevec 2-440 dbcl ear 2-442 dbcont 2-444 dbdown 2-445 dbl quad 2-446 dbmex 2-448 dbqui t 2-449 dbstack 2-450 dbstatus 2-451 dbstep 2-452 dbstop 2-453 dbtype 2-457 dbup 2-458 dde23 2-459 ddeadv 2-463 ddeexec 2-465

ddeget 2-466 ddei ni t 2-467 ddepoke 2-468 ddereq 2-470 ddeset 2-472 ddeterm 2-475 ddeunady 2-476 deal 2-477 debl ank 2-479 debugging changing workspace context 2-445 changing workspace to calling M-file 2-458 displaying function call stack 2-450 MEX-files on UNIX 2-448 quitting debug mode 2-449 removing breakpoints 2-442 resuming execution from breakpoint 2-452 setting breakpoints in 2-453 stepping through lines 2-452 dec2base 2-477. 2-480 dec2bi n 2-481 dec2hex 2-482 decimal number to base conversion 2-477, 2-480 decimal point (.) (special characters) 2-25 to distinguish matrix and array operations 2-11 decomposition Dulmage-Mendelsohn 2-535 deconv 2-483 deconvolution 2-483 default tolerance 2-573 del operator 2-484 del 2 2-484 del aunay 2-487 **Delaunay tessellation** 3-dimensional vizualization 2-492

multidimensional vizualization 2-495 **Delaunay triangulation** vizualization 2-487 del aunav3 2-492 del aunayn 2-495 del ete 2-498, 2-499 delete serial port I/O 2-501 timer object 2-502 DeleteFcn Axes property 2-125 del eteproperty 2-503 deleting files 2-498 items from workspace 2-304 delimiters in ASCII files 2-533, 2-534 demo 2-504 depdi r 2-507 depfun 2-508 derivative approximate 2-521 det 2-512 determinant of a matrix 2-512 detrend 2-513 deval 2-515 di ag **2-517** diagonal 2-517 main 2-517 di al og 2-519dialog box error 2-580 di ary 2-520 diff 2-521 differences between adjacent array elements 2-521 differential equation solvers ODE boundary value problems 2-205

adjusting parameters 2-215 extracting properties 2-212 extracting properties of 2-583, 2-584 forming initial guess 2-213 di r 2-523 directories adding to search path 2-50 checking existence of 2-594 copying 2-391 listing contents of 2-523 See also directory, search path directory See also directories directory, changing 2-250 discontinuities, plotting functions with 2-619 di sp 2-525 di sp serial port I/O 2-526 timer object 2-527 di spl ay 2-529 distribution Gaussian 2-574 division array, left (arithmetic operator) 2-12 array, right (arithmetic operator) 2-12 matrix, left (arithmetic operator) 2-12 matrix, right (arithmetic operator) 2-11 of polynomials 2-483 dlmread 2-533 dlmwrite 2-534 dmperm 2-535 docroot 2-538 documentation location of files for UNIX 2-537 documentation location 2-538 dolly camera 2-220 dos 2-539

dot **2-541** dot product 2-409, 2-541 doubl e **2-542** double integral numerical evaluation 2-446 dragrect 2-543 DrawMode, Axes property 2-125 drawnow 2-544 dsearch **2-545** dsearchn **2-546** Dulmage-Mendelsohn decomposition 2-535

Ε

echo 2-547 edge finding, Sobel technique 2-383 editing **M-files 2-548** ei g **2-550** eigensystem transforming 2-251 eigenvalue accuracy of 2-550 complex 2-251 of companion matrix 2-351 problem 2-551 problem, generalized 2-551 repeated 2-552 eigenvalues effect of roundoff error 2-144 improving accuracy 2-144 eigenvector left 2-551 right 2-551 ei gs 2-554 ellipj 2-562 ellipke 2-564

elliptic functions, Jacobian (defined) 2-562 elliptic integral complete (defined) 2-564 modulus of 2-562, 2-564 el se 2-567 el sei f 2-568 end 2-570 end of line, indicating 2-26 eomday 2-572 eps 2-573 equal sign (special characters) 2-25 equations, linear accuracy of solution 2-357 erf 2-574 erfc 2-574 erfcinv 2-574 erfcx 2-574 erfiny 2-574 error **2-576** error function (defined) 2-574 complementary 2-574 scaled complementary 2-574 error message displaying 2-576 errorbar 2-578 errordl g 2-580 etime 2-582 etree 2-583 etreepl ot 2-584 eval 2-585 eval c 2-587 eval i n 2-588 eventlisteners 2-590 events 2-592 examples

contouring mathematical expressions 2-602 mesh plot of mathematical function 2-609 mesh/contour plot 2-611 plotting filled contours 2-605 plotting function of two variables 2-613 plotting parametric curves 2-614 polar plot of function 2-616 surface plot of mathematical function 2-619 surface/contour plot 2-622 exclamation point (special characters) 2-26 execution resuming from breakpoint 2-444 exi st 2-594 exit 2-596 exp 2-597 expi nt 2-598 expm 2-599 exponential 2-597 complex (defined) 2-597 integral 2-598 matrix 2-599 exponentiation array (arithmetic operator) 2-12 matrix (arithmetic operator) 2-12 eye **2-601** ezcontour 2-602 ezcontourf 2-605 ezmesh 2-608 ezmeshc 2-610 ezpl ot 2-612 ezpl ot 3 2-614 ezpol ar 2-616 ezsurf 2-618 ezsurfc 2-621

F

factorization, Cholesky 2-285 (as algorithm for solving linear equations) 2-15 preordering for 2-348 Figures updating from M-file 2-544 files **ASCII** delimited reading 2-533 writing 2-534 checking existence of 2-594 copying 2-391 deleting 2-498 listing names in a directory 2-523 sound reading 2-97 writing 2-98, 2-99 filter two-dimensional 2-382 fixed-width font axes 2-126 flint See floating-point, integer floating-point integer 2-191, 2-195 integer, maximum 2-193 numbers, interval between 2-573 flow control break 2-201 case 2-243 end 2-570 error 2-576 font fixed-width, axes 2-126 FontAngl e Axes property 2-125 FontName

Axes property 2-126 Font Si ze Axes property 2-126 Font Units Axes property 2-126 Font Wei ght Axes property 2-127 Fourier transform convolution theorem and 2-381 functions call stack for 2-450 checking existence of 2-594 clearing from workspace 2-304

G

Gaussian distribution function 2-574 Gaussian elimination (as algorithm for solving linear equations) 2-16 generalized eigenvalue problem 2-551 generating a sequence of matrix names (M1 through M12) 2-585 global variables, clearing from workspace 2-304 graph adjacency 2-535 graphics objects Axes 2-105 graphics objects, deleting 2-498 Gri dLi neStyl e, Axes property 2-127

Η

Handl eVi si bi l i ty Axes property 2-127 help files, location for UNIX 2-537 Help browser accessing from doc 2-536 help files 2-538 HitTest Axes property 2-128 horzcat (M-file function equivalent for [,]) 2-26 Householder reflections (as algorithm for solving linear equations) 2-16 hyperbolic cosecant 2-412 cosecant, inverse 2-40 cosine 2-400 cosine, inverse 2-32 cotangent 2-404 cotangent, inverse 2-36 secant. inverse 2-72 sine, inverse 2-76 tangent, inverse 2-84

I

identity matrix 2-601 incomplete beta function (defined) 2-175 inheritance, of objects 2-302 integer floating-point 2-191, 2-195 floating-point, maximum 2-193 Interrupti bl e Axes property 2-128 inverse cosecant 2-38 cosine 2-30 cotangent 2-34 hyperbolic cosecant 2-40 hyperbolic cosine 2-32 hyperbolic cotangent 2-36

hyperbolic secant 2-72 hyperbolic sine 2-76 hyperbolic tangent 2-84 secant 2-70 sine 2-74 tangent 2-80 tangent, four-quadrant 2-82 inversion, matrix accuracy of 2-357

J

Jacobian elliptic functions (defined) 2-562 Java class names 2-305 Java import list clearing 2-305 joining arrays *See* concatenating arrays

L labeling matrix columns 2-525 Laplacian 2-484 Layer, Axes property 2-128 l di vi de (M-file function equivalent for .) 2-13 Light positioning in camera coordinates 2-222 line numbers in M-files 2-457 linear equation systems accuracy of solution 2-357 linear equation systems, methods for solving **Cholesky factorization 2-15** Gaussian elimination 2-16 Householder reflections 2-16 LineStyleOrder

Axes property 2-129 Li neWi dth Axes property 2-129 Lobatto IIIa ODE solver 2-211 log saving session to file 2-520 logarithm of beta function (natural) 2-176 logical operations AND, bit-wise 2-190 OR, bit-wise 2-194 XOR, bit-wise 2-197 logical operators 2-20, 2-22 logical tests all 2-56 any 2-66

Μ

matrix addressing selected rows and columns of 2-27 arrowhead 2-348 companion 2-351 condition number of 2-357 condition number, improving 2-144 converting to vector 2-27 defective (defined) 2-552 determinant of 2-512 diagonal of 2-517 Dulmage-Mendelsohn decomposition 2-535 exponential 2-599 identity 2-601 inversion, accuracy of 2-357 left division (arithmetic operator) 2-12 maximum size of 2-356 modal 2-550 multiplication (defined) 2-11

power (arithmetic operator) 2-12 reading files into 2-533 right division (arithmetic operator) 2-11 singularity, test for 2-512 trace of 2-517 transpose (arithmetic operator) 2-12 transposing 2-25 writing to ASCII delimited file 2-534 See also array matrix names, (M1 through M12) generating a sequence of 2-585 matrix power See matrix, exponential maximum matching 2-535 MDL-files checking existence of 2-594 memory clearing 2-304 methods inheritance of 2-302 **MEX-files** clearing from workspace 2-304 debugging on UNIX 2-448 M-file displaying during execution 2-547 function file, echoing 2-547 script file, echoing 2-547 M-files checking existence of 2-594 clearing from workspace 2-304 deleting 2-498 editing 2-548 line numbers, listing 2-457 setting breakpoints 2-453 Mi norGri dLi neStyl e, Axes property 2-129 mi nus (M-file function equivalent for -) 2-13 ml di vi de (M-file function equivalent for $\)$ 2-13 modal matrix 2-550

modified Bessel functions relationship to Airy functions 2-53
modifying for PVCS 2-316
movies exporting in AVI format 2-99
mpower (M-file function equivalent for ^) 2-13
mrdi vi de (M-file function equivalent for /) 2-13
mt i mes (M-file function equivalent for *) 2-13
multidimensional arrays concatenating 2-244
multiplication array (arithmetic operator) 2-11 matrix (defined) 2-11 of polynomials 2-381

Ν

NextPl ot Axes property 2-130 not (M-file function equivalent for ~) 2-21 numerical evaluation double integral 2-446

0

object inheritance 2-302 object classes, list of predefined 2-301 online help location of files for UNIX 2-537 operating system command, issuing 2-26 operators arithmetic 2-11 logical 2-20, 2-22 relational 2-19 special characters 2-24 logical OR bit-wise 2-194 or (M-file function equivalent for |) 2-21 orthographic projection, setting and querying 2-231

Ρ

parametric curve, plotting 2-614 Parent Axes property 2-130 parentheses (special characters) 2-25 path adding directories to 2-50 pauses, removing 2-442 percent sign (special characters) 2-26 perfect matching 2-535 period (.), to distinguish matrix and array operations 2-11 period (special characters) 2-25 perspective projection, setting and querying 2 - 231**P**-files checking existence of 2-594 phase angle, complex 2-64 platform MATLAB is running on 2-356 PlotBoxAspectRatio, Axes property 2-130 Pl otBoxAspectRati oMode, Axes property 2-130 plotting contours (a 2-602 contours (ez function) 2-602 errorbars 2-578 ez-function mesh plot 2-608 filled contours 2-605 functions with discontinuities 2-619 in polar coordinates 2-616 mathematical function 2-612 mesh contour plot 2-610

parametric curve 2-614 surfaces 2-618 velocity vectors 2-360 pl us (M-file function equivalent for +) 2-13 polar coordinates computing the angle 2-64 converting from Cartesian 2-241 plotting in 2-616 polynomial division 2-483 multiplication 2-381 poorly conditioned eigenvalues 2-144 Position Axes property 2-131 position of camera dollying 2-220 position of camera, setting and querying 2-229 power matrix See matrix exponential power (M-file function equivalent for . ^) 2-13 printing, suppressing 2-26 product cumulative 2-417 of vectors (cross) 2-409 scalar (dot) 2-409 projection type, setting and querying 2-231 Proj ecti onType, Axes property 2-131

R

rdi vi de (M-file function equivalent for . /) 2-13 rearranging arrays converting to vector 2-27 rearranging matrices converting to vector 2-27 transposing 2-25 reference page accessing from doc 2-536 regularly spaced vectors, creating 2-27 relational operators 2-19 relative accuracy floating-point 2-573 rolling camera 2-232 rotating camera 2-226 rotating camera target 2-228 round towards infinity 2-263 roundoff error convolution theorem and 2-381 effect on eigenvalues 2-144

S

saving session to a file 2-520 scalar product (of vectors) 2-409 scaled complementary error function (defined) 2 - 574search path adding directories to 2-50 secant inverse 2-70 inverse hyperbolic 2-72 Selected Axes property 2-131 Sel ecti onHi ghl i ght Axes property 2-132 semicolon (special characters) 2-26 sequence of matrix names (M1 through M12) generating 2-585 session saving 2-520 shifting array circular 2-297

sine inverse 2-74 inverse hyperbolic 2-76 single quote (special characters) 2-25 slice planes, contouring 2-377 sorting complex conjugate pairs 2-407 sound files reading 2-97 writing 2-98 source control systems checking in files 2-280 checking out files 2-282 viewing current system 2-316 sparse matrix minimum degree ordering of 2-319 permuting columns of 2-348 spreadsheets reading into a matrix 2-533 writing matrices into 2-534 stack, displaying 2-450 str2cell 2-273 stretch-to-fill 2-106 string converting from vector to 2-278 string matrix to cell array conversion 2-273 subsref (M-file function equivalent for A(i, j, k...)) 2-26 subtraction (arithmetic operator) 2-11 sum cumulative 2-418 Surface and contour plotter 2-621 plotting mathematical functions 2-618

Т

Tag Axes property 2-132 tangent four-quadrant, inverse 2-82 inverse 2-80 inverse hyperbolic 2-84 target, of camera 2-233 test, logical See logical tests and detecting Ti ckDi r, Axes property 2-132 Ti ckDi rMode, Axes property 2-132 Ti ckLength, Axes property 2-132 time CPU 2-408 required to execute commands 2-582 time and date functions 2-572 times (M-file function equivalent for . *) 2-13 Title, Axes property 2-133 tolerance. default 2-573 trace of a matrix 2-517 trailing blanks removing 2-479 transformation See also conversion transpose array (arithmetic operator) 2-12 matrix (arithmetic operator) 2-12 transpose (M-file function equivalent for . ') 2 - 13truth tables (for logical operations) 2-20 Type Axes property 2-133

U

UI ContextMenu Axes property 2-133 umi nus (M-file function equivalent for unary –) 2-13 Uni ts Axes property 2-133 up vector, of camera 2-235 updating figure during M-file execution 2-544 upl us (M-file function equivalent for unary +) 2-13 UserData Axes property 2-134

V

variables checking existence of 2-594 clearing from workspace 2-304 vector dot product 2-541 product (cross) 2-409 vector field, plotting 2-360 vectorizing ODE function (BVP) 2-216 vectors, creating regularly spaced 2-27 velocity vectors, plotting 2-360 vertcat (M-file function equivalent for [;]) 2-26 video saving in AVI format 2-99 view 2-224 view angle, of camera 2-237 Vi ew, Axes property (obsolete) 2-134 viewing a group of object 2-224 a specific object in a scene 2-224 Vi si bl e Axes property 2-134 visualizing cell array structure 2-272 volumes

contouring slice planes 2-377

W

workspace changing context while debugging 2-445, 2-458 clearing items from 2-304

Х

XAxi sLocati on, Axes property 2-134 XCol or, Axes property 2-134 XDi r, Axes property 2-134 XGri d, Axes property 2-135 XLabel , Axes property 2-135 XLi m, Axes property 2-136 XLi mMode, Axes property 2-136 XMi norGri d, Axes property 2-136 logical XOR bit-wise 2-197 XScal e, Axes property 2-136 XTi ck, Axes property 2-136 XTi ckLabel , Axes property 2-136 XTi ckLabel , Axes property 2-137 XTi ckMode, Axes property 2-137

Υ

YAxi sLocati on, Axes property 2-134 YCol or, Axes property 2-134 YDi r, Axes property 2-134 YGri d, Axes property 2-135 YLabel, Axes property 2-135 YLi m, Axes property 2-135 YLi mMode, Axes property 2-136 YMi norGri d, Axes property 2-136 YScal e, Axes property 2-136 YTi ck, Axes property 2-136 YTi ckLabel , Axes property 2-136 YTi ckLabel Mode, Axes property 2-137 YTi ckMode, Axes property 2-137

Ζ

ZCol or, Axes property 2-134 ZDi r, Axes property 2-134 ZGri d, Axes property 2-135 ZLi m, Axes property 2-135 ZLi mMode, Axes property 2-136 ZMi norGri d, Axes property 2-136 ZScal e, Axes property 2-136 ZTi ck, Axes property 2-136 ZTi ckLabel , Axes property 2-137 ZTi ckLabel Mode, Axes property 2-137