
Computation

Visualization

Programming

MATLAB Function Reference
Volume 1: A - E
Version 6

MATLAB
®

The Language of Technical Computing

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Function Reference Volume 1: A - E
 COPYRIGHT 1984 - 2002 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: December 1996 First printing For MATLAB 5
June 1997 Online only Revised for 5.1
October 1997 Online only Revised for 5.2
January 1999 Online only Revised for Release 11
June 1999 Second printing For Release 11
June 2001 Online only Revised for 6.1
July 2002 Online only Revised for 6.5 (Release 13)

i

Contents

1
Functions – By Category

Development Environment . 1-2
Starting and Quitting . 1-2
Command Window . 1-2
Getting Help . 1-3
Workspace, File, and Search Path . 1-3
Programming Tools . 1-4
System . 1-5
Performance Improvement Tools and Techniques 1-5

Mathematics . 1-6
Arrays and Matrices . 1-7
Linear Algebra . 1-9
Elementary Math . 1-11
Data Analysis and Fourier Transforms 1-13
Polynomials . 1-14
Interpolation and Computational Geometry 1-15
Coordinate System Conversion . 1-16
Nonlinear Numerical Methods . 1-16
Specialized Math . 1-18
Sparse Matrices . 1-18
Math Constants . 1-20

Programming and Data Types . 1-21
Data Types . 1-21
Arrays . 1-25
Operators and Operations . 1-27
Programming in MATLAB . 1-29

File I/O . 1-34
Filename Construction . 1-34
Opening, Loading, Saving Files . 1-34
Low-Level File I/O . 1-35
Text Files . 1-35
XML Documents . 1-35

ii Contents

Spreadsheets . 1-35
Scientific Data . 1-36
Audio and Audio/Video . 1-36
Images . 1-37

Graphics . 1-38
Basic Plots and Graphs . 1-38
Annotating Plots . 1-38
Specialized Plotting . 1-39
Bit-Mapped Images . 1-41
Printing . 1-41
Handle Graphics . 1-42

3-D Visualization . 1-44
Surface and Mesh Plots . 1-44
View Control . 1-45
Lighting . 1-46
Transparency . 1-47
Volume Visualization . 1-47

Creating Graphical User Interfaces . 1-48
Predefined Dialog Boxes . 1-48
Deploying User Interfaces . 1-49
Developing User Interfaces . 1-49
User Interface Objects . 1-49
Finding Objects from Callbacks . 1-49
GUI Utility Functions . 1-49
Controlling Program Execution . 1-50

2
Functions – Alphabetical List

Index

1
Functions – By Category

The MATLAB Function Reference contains descriptions of all MATLAB commands and functions.

Select a category from the following table to see a list of related functions.

See Simulink, Stateflow, Real-Time Workshop, and the individual toolboxes for lists of their functions

Development Environment Startup, Command Window, help, editing and debugging, other
general functions

Mathematics Arrays and matrices, linear algebra, data analysis, other areas of
mathematics

Programming and Data
Types

Function/expression evaluation, program control, function handles,
object oriented programming, error handling, operators, data types,
dates and times, timers

File I/O General and low-level file I/O, plus specific file formats, like audio,
spreadsheet, HDF, images

Graphics Line plots, annotating graphs, specialized plots, images, printing,
Handle Graphics

3-D Visualization Surface and mesh plots, view control, lighting and transparency,
volume visualization.

Creating Graphical User
Interface

GUIDE, programming graphical user interfaces.

External Interfaces Java, COM, Serial Port functions.

1 Functions – By Category

1-2

Development Environment
General functions for working in MATLAB, including functions for startup,
Command Window, help, and editing and debugging.

Starting and Quitting
exit Terminate MATLAB (same as quit)
finish MATLAB termination M-file
matlab Start MATLAB (UNIX systems only)
matlabrc MATLAB startup M-file for single user systems or

administrators
quit Terminate MATLAB
startup MATLAB startup M-file for user-defined options

Command Window
clc Clear Command Window
diary Save session to file
dos Execute DOS command and return result
format Control display format for output
home Move cursor to upper left corner of Command Window
more Control paged output for Command Window
notebook Open M-book in Microsoft Word (Windows only)
system Execute operating system command and return result
unix Execute UNIX command and return result

“Starting and Quitting” Startup and shutdown options

“Command Window” Controlling Command Window

“Getting Help” Finding information

“Workspace, File, and
Search Path”

File, search path, variable management

“Programming Tools” Editing and debugging, source control, Notebook

“System” Identifying current computer, license, product
version, and more

“Performance
Improvement Tools and
Techniques”

Improving and assessing performance, e.g.,
profiling and memory use

Development Environment

1-3

Getting Help
doc Display online documentation in MATLAB Help browser
demo Access product demos via Help browser
docopt Location of help file directory for UNIX platforms
help Display help for MATLAB functions in Command Window
helpbrowser Display Help browser for access to extensive online help
helpwin Display M-file help, with access to M-file help for all functions
info Display information about The MathWorks or products
lookfor Search for specified keyword in all help entries
support Open MathWorks Technical Support Web page
web Point Help browser or Web browser to file or Web site
whatsnew Display information about MATLAB and toolbox releases

Workspace, File, and Search Path
• “Workspace”

• “File”

• “Search Path”

Workspace
assignin Assign value to workspace variable
clear Remove items from workspace, freeing up system memory
evalin Execute string containing MATLAB expression in a workspace
exist Check if variable or file exists
openvar Open workspace variable in Array Editor for graphical editing
pack Consolidate workspace memory
which Locate functions and files
who, whos List variables in the workspace
workspace Display Workspace browser, a tool for managing the workspace

File
cd Change working directory
copyfile Copy file or directory
delete Delete files or graphics objects
dir Display directory listing
exist Check if a variable or file exists
fileattrib Set or get attributes of file or directory
filebrowser Display Current Directory browser, a tool for viewing files
lookfor Search for specified keyword in all help entries
ls List directory on UNIX

1 Functions – By Category

1-4

matlabroot Return root directory of MATLAB installation
mkdir Make new directory
movefile Move file or directory
pwd Display current directory
rehash Refresh function and file system caches
rmdir Remove directory
type List file
what List MATLAB specific files in current directory
which Locate functions and files

See also “File I/O” functions.

Search Path
addpath Add directories to MATLAB search path
genpath Generate path string
partialpath Partial pathname
path View or change the MATLAB directory search path
path2rc Save current MATLAB search path to pathdef.m file
pathtool Open Set Path dialog box to view and change MATLAB path
rmpath Remove directories from MATLAB search path

Programming Tools
• “Editing and Debugging”

• “Source Control”

• “Notebook”

Editing and Debugging
dbclear Clear breakpoints
dbcont Resume execution
dbdown Change local workspace context
dbquit Quit debug mode
dbstack Display function call stack
dbstatus List all breakpoints
dbstep Execute one or more lines from current breakpoint
dbstop Set breakpoints in M-file function
dbtype List M-file with line numbers
dbup Change local workspace context
edit Edit or create M-file
keyboard Invoke the keyboard in an M-file

Development Environment

1-5

Source Control
checkin Check file into source control system
checkout Check file out of source control system
cmopts Get name of source control system
customverctrlAllow custom source control system
undocheckout Undo previous checkout from source control system
verctrl Version control operations on PC platforms

Notebook
notebook Open M-book in Microsoft Word (Windows only)

System
computer Identify information about computer on which MATLAB is

running
javachk Generate error message based on Java feature support
license Show license number for MATLAB
prefdir Return directory containing preferences, history, and .ini files
usejava Determine if a Java feature is supported in MATLAB
ver Display version information for MathWorks products
version Get MATLAB version number

Performance Improvement Tools and Techniques
memory Help for memory limitations
pack Consolidate workspace memory
profile Optimize performance of M-file code
profreport Generate profile report
rehash Refresh function and file system caches
sparse Create sparse matrix
zeros Create array of all zeros

1 Functions – By Category

1-6

Mathematics
Functions for working with arrays and matrices, linear algebra, data analysis,
and other areas of mathematics.

“Arrays and Matrices” Basic array operators and operations, creation of
elementary and specialized arrays and matrices

“Linear Algebra” Matrix analysis, linear equations, eigenvalues,
singular values, logarithms, exponentials,
factorization

“Elementary Math” Trigonometry, exponentials and logarithms,
complex values, rounding, remainders, discrete
math

“Data Analysis and
Fourier Transforms”

Descriptive statistics, finite differences, correlation,
filtering and convolution, fourier transforms

“Polynomials” Multiplication, division, evaluation, roots,
derivatives, integration, eigenvalue problem, curve
fitting, partial fraction expansion

“Interpolation and
Computational
Geometry”

Interpolation, Delaunay triangulation and
tessellation, convex hulls, Voronoi diagrams,
domain generation

“Coordinate System
Conversion”

Conversions between Cartesian and polar or
spherical coordinates

“Nonlinear Numerical
Methods”

Differential equations, optimization, integration

“Specialized Math” Airy, Bessel, Jacobi, Legendre, beta, elliptic, error,
exponential integral, gamma functions

“Sparse Matrices” Elementary sparse matrices, operations, reordering
algorithms, linear algebra, iterative methods, tree
operations

“Math Constants” Pi, imaginary unit, infinity, Not-a-Number, largest
and smallest positive floating point numbers,
floating point relative accuracy

Mathematics

1-7

Arrays and Matrices
• “Basic Information”

• “Operators”

• “Operations and Manipulation”

• “Elementary Matrices and Arrays”

• “Specialized Matrices”

Basic Information
disp Display array
display Display array
isempty True for empty matrix
isequal True if arrays are identical
islogical True for logical array
isnumeric True for numeric arrays
issparse True for sparse matrix
length Length of vector
ndims Number of dimensions
numel Number of elements
size Size of matrix

Operators
+ Addition
+ Unary plus
- Subtraction
- Unary minus
* Matrix multiplication
^ Matrix power
\ Backslash or left matrix divide
/ Slash or right matrix divide
' Transpose
.' Nonconjugated transpose
.* Array multiplication (element-wise)
.^ Array power (element-wise)
.\ Left array divide (element-wise)
./ Right array divide (element-wise)

Operations and Manipulation
: (colon) Index into array, rearrange array
blkdiag Block diagonal concatenation

1 Functions – By Category

1-8

cat Concatenate arrays
cross Vector cross product
cumprod Cumulative product
cumsum Cumulative sum
diag Diagonal matrices and diagonals of matrix
dot Vector dot product
end Last index
find Find indices of nonzero elements
fliplr Flip matrices left-right
flipud Flip matrices up-down
flipdim Flip matrix along specified dimension
horzcat Horizontal concatenation
ind2sub Multiple subscripts from linear index
ipermute Inverse permute dimensions of multidimensional array
kron Kronecker tensor product
max Maximum elements of array
min Minimum elements of array
permute Rearrange dimensions of multidimensional array
prod Product of array elements
repmat Replicate and tile array
reshape Reshape array
rot90 Rotate matrix 90 degrees
sort Sort elements in ascending order
sortrows Sort rows in ascending order
sum Sum of array elements
sqrtm Matrix square root
sub2ind Linear index from multiple subscripts
tril Lower triangular part of matrix
triu Upper triangular part of matrix
vertcat Vertical concatenation

See also “Linear Algebra” for other matrix operations.
See also “Elementary Math” for other array operations.

Elementary Matrices and Arrays
: (colon) Regularly spaced vector
blkdiag Construct block diagonal matrix from input arguments
diag Diagonal matrices and diagonals of matrix
eye Identity matrix
freqspace Frequency spacing for frequency response
linspace Generate linearly spaced vectors
logspace Generate logarithmically spaced vectors

Mathematics

1-9

meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Arrays for multidimensional functions and interpolation
ones Create array of all ones
rand Uniformly distributed random numbers and arrays
randn Normally distributed random numbers and arrays
repmat Replicate and tile array
zeros Create array of all zeros

Specialized Matrices
compan Companion matrix
gallery Test matrices
hadamard Hadamard matrix
hankel Hankel matrix
hilb Hilbert matrix
invhilb Inverse of Hilbert matrix
magic Magic square
pascal Pascal matrix
rosser Classic symmetric eigenvalue test problem
toeplitz Toeplitz matrix
vander Vandermonde matrix
wilkinson Wilkinson’s eigenvalue test matrix

Linear Algebra
• “Matrix Analysis”

• “Linear Equations”

• “Eigenvalues and Singular Values”

• “Matrix Logarithms and Exponentials”

• “Factorization”

Matrix Analysis
cond Condition number with respect to inversion
condeig Condition number with respect to eigenvalues
det Determinant
norm Matrix or vector norm
normest Estimate matrix 2-norm
null Null space
orth Orthogonalization
rank Matrix rank
rcond Matrix reciprocal condition number estimate

1 Functions – By Category

1-10

rref Reduced row echelon form
subspace Angle between two subspaces
trace Sum of diagonal elements

Linear Equations
\ and / Linear equation solution
chol Cholesky factorization
cholinc Incomplete Cholesky factorization
cond Condition number with respect to inversion
condest 1-norm condition number estimate
funm Evaluate general matrix function
inv Matrix inverse
lscov Least squares solution in presence of known covariance
lsqnonneg Nonnegative least squares
lu LU matrix factorization
luinc Incomplete LU factorization
pinv Moore-Penrose pseudoinverse of matrix
qr Orthogonal-triangular decomposition
rcond Matrix reciprocal condition number estimate

Eigenvalues and Singular Values
balance Improve accuracy of computed eigenvalues
cdf2rdf Convert complex diagonal form to real block diagonal form
condeig Condition number with respect to eigenvalues
eig Eigenvalues and eigenvectors
eigs Eigenvalues and eigenvectors of sparse matrix
gsvd Generalized singular value decomposition
hess Hessenberg form of matrix
poly Polynomial with specified roots
polyeig Polynomial eigenvalue problem
qz QZ factorization for generalized eigenvalues
rsf2csf Convert real Schur form to complex Schur form
schur Schur decomposition
svd Singular value decomposition
svds Singular values and vectors of sparse matrix

Matrix Logarithms and Exponentials
expm Matrix exponential
logm Matrix logarithm
sqrtm Matrix square root

Mathematics

1-11

Factorization
balance Diagonal scaling to improve eigenvalue accuracy
cdf2rdf Complex diagonal form to real block diagonal form
chol Cholesky factorization
cholinc Incomplete Cholesky factorization
cholupdate Rank 1 update to Cholesky factorization
lu LU matrix factorization
luinc Incomplete LU factorization
planerot Givens plane rotation
qr Orthogonal-triangular decomposition
qrdelete Delete column or row from QR factorization
qrinsert Insert column or row into QR factorization
qrupdate Rank 1 update to QR factorization
qz QZ factorization for generalized eigenvalues
rsf2csf Real block diagonal form to complex diagonal form

Elementary Math
• “Trigonometric”

• “Exponential”

• “Complex”

• “Rounding and Remainder”

• “Discrete Math (e.g., Prime Factors)”

Trigonometric
acos Inverse cosine
acosh Inverse hyperbolic cosine
acot Inverse cotangent
acoth Inverse hyperbolic cotangent
acsc Inverse cosecant
acsch Inverse hyperbolic cosecant
asec Inverse secant
asech Inverse hyperbolic secant
asin Inverse sine
asinh Inverse hyperbolic sine
atan Inverse tangent
atanh Inverse hyperbolic tangent
atan2 Four-quadrant inverse tangent
cos Cosine
cosh Hyperbolic cosine
cot Cotangent
coth Hyperbolic cotangent

1 Functions – By Category

1-12

csc Cosecant
csch Hyperbolic cosecant
sec Secant
sech Hyperbolic secant
sin Sine
sinh Hyperbolic sine
tan Tangent
tanh Hyperbolic tangent

Exponential
exp Exponential
log Natural logarithm
log2 Base 2 logarithm and dissect floating-point numbers into

exponent and mantissa
log10 Common (base 10) logarithm
nextpow2 Next higher power of 2
pow2 Base 2 power and scale floating-point number
reallog Natural logarithm for nonnegative real arrays
realpow Array power for real-only output
realsqrt Square root for nonnegative real arrays
sqrt Square root

Complex
abs Absolute value
angle Phase angle
complex Construct complex data from real and imaginary parts
conj Complex conjugate
cplxpair Sort numbers into complex conjugate pairs
i Imaginary unit
imag Complex imaginary part
isreal True for real array
j Imaginary unit
real Complex real part
unwrap Unwrap phase angle

Rounding and Remainder
fix Round towards zero
floor Round towards minus infinity
ceil Round towards plus infinity
round Round towards nearest integer
mod Modulus after division
rem Remainder after division
sign Signum

Mathematics

1-13

Discrete Math (e.g., Prime Factors)
factor Prime factors
factorial Factorial function
gcd Greatest common divisor
isprime True for prime numbers
lcm Least common multiple
nchoosek All combinations of N elements taken K at a time
perms All possible permutations
primes Generate list of prime numbers
rat, rats Rational fraction approximation

Data Analysis and Fourier Transforms
• “Basic Operations”

• “Finite Differences”

• “Correlation”

• “Filtering and Convolution”

• “Fourier Transforms”

Basic Operations
cumprod Cumulative product
cumsum Cumulative sum
cumtrapz Cumulative trapezoidal numerical integration
max Maximum elements of array
mean Average or mean value of arrays
median Median value of arrays
min Minimum elements of array
prod Product of array elements
sort Sort elements in ascending order
sortrows Sort rows in ascending order
std Standard deviation
sum Sum of array elements
trapz Trapezoidal numerical integration
var Variance

Finite Differences
del2 Discrete Laplacian
diff Differences and approximate derivatives
gradient Numerical gradient

1 Functions – By Category

1-14

Correlation
corrcoef Correlation coefficients
cov Covariance matrix
subspace Angle between two subspaces

Filtering and Convolution
conv Convolution and polynomial multiplication
conv2 Two-dimensional convolution
convn N-dimensional convolution
deconv Deconvolution and polynomial division
detrend Linear trend removal
filter Filter data with infinite impulse response (IIR) or finite

impulse response (FIR) filter
filter2 Two-dimensional digital filtering

Fourier Transforms
abs Absolute value and complex magnitude
angle Phase angle
fft One-dimensional discrete Fourier transform
fft2 Two-dimensional discrete Fourier transform
fftn N-dimensional discrete Fourier Transform
fftshift Shift DC component of discrete Fourier transform to center of

spectrum
ifft Inverse one-dimensional discrete Fourier transform
ifft2 Inverse two-dimensional discrete Fourier transform
ifftn Inverse multidimensional discrete Fourier transform
ifftshift Inverse fast Fourier transform shift
nextpow2 Next power of two
unwrap Correct phase angles

Polynomials
conv Convolution and polynomial multiplication
deconv Deconvolution and polynomial division
poly Polynomial with specified roots
polyder Polynomial derivative
polyeig Polynomial eigenvalue problem
polyfit Polynomial curve fitting
polyint Analytic polynomial integration
polyval Polynomial evaluation
polyvalm Matrix polynomial evaluation
residue Convert between partial fraction expansion and polynomial

Mathematics

1-15

coefficients
roots Polynomial roots

Interpolation and Computational Geometry
• “Interpolation”

• “Delaunay Triangulation and Tessellation”

• “Convex Hull”

• “Voronoi Diagrams”

• “Domain Generation”

Interpolation
dsearch Search for nearest point
dsearchn Multidimensional closest point search
griddata Data gridding
griddata3 Data gridding and hypersurface fitting for three-dimensional

data
griddatan Data gridding and hypersurface fitting (dimension >= 2)
interp1 One-dimensional data interpolation (table lookup)
interp2 Two-dimensional data interpolation (table lookup)
interp3 Three-dimensional data interpolation (table lookup)
interpft One-dimensional interpolation using fast Fourier transform

method
interpn Multidimensional data interpolation (table lookup)
meshgrid Generate X and Y matrices for three-dimensional plots
mkpp Make piecewise polynomial
ndgrid Generate arrays for multidimensional functions and

interpolation
pchip Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
ppval Piecewise polynomial evaluation
spline Cubic spline data interpolation
tsearchn Multidimensional closest simplex search
unmkpp Piecewise polynomial details

Delaunay Triangulation and Tessellation
delaunay Delaunay triangulation
delaunay3 Three-dimensional Delaunay tessellation
delaunayn Multidimensional Delaunay tessellation
dsearch Search for nearest point
dsearchn Multidimensional closest point search

1 Functions – By Category

1-16

tetramesh Tetrahedron mesh plot
trimesh Triangular mesh plot
triplot Two-dimensional triangular plot
trisurf Triangular surface plot
tsearch Search for enclosing Delaunay triangle
tsearchn Multidimensional closest simplex search

Convex Hull
convhull Convex hull
convhulln Multidimensional convex hull
patch Create patch graphics object
plot Linear two-dimensional plot
trisurf Triangular surface plot

Voronoi Diagrams
dsearch Search for nearest point
patch Create patch graphics object
plot Linear two-dimensional plot
voronoi Voronoi diagram
voronoin Multidimensional Voronoi diagrams

Domain Generation
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Generate arrays for multidimensional functions and

interpolation

Coordinate System Conversion

Cartesian
cart2sph Transform Cartesian to spherical coordinates
cart2pol Transform Cartesian to polar coordinates
pol2cart Transform polar to Cartesian coordinates
sph2cart Transform spherical to Cartesian coordinates

Nonlinear Numerical Methods
• “Ordinary Differential Equations (IVP)”

• “Delay Differential Equations”

• “Boundary Value Problems”

Mathematics

1-17

• “Partial Differential Equations”

• “Optimization”

• “Numerical Integration (Quadrature)”

Ordinary Differential Equations (IVP)
deval Evaluate solution of differential equation problem
ode113 Solve non-stiff differential equations, variable order method
ode15s Solve stiff ODEs and DAEs Index 1, variable order method
ode23 Solve non-stiff differential equations, low order method
ode23s Solve stiff differential equations, low order method
ode23t Solve moderately stiff ODEs and DAEs Index 1, trapezoidal

rule
ode23tb Solve stiff differential equations, low order method
ode45 Solve non-stiff differential equations, medium order method
odeget Get ODE options parameters
odeset Create/alter ODE options structure

Delay Differential Equations
dde23 Solve delay differential equations with constant delays
ddeget Get DDE options parameters
ddeset Create/alter DDE options structure

Boundary Value Problems
bvp4c Solve two-point boundary value problems for ODEs by

collocation
bvpget Get BVP options parameters
bvpset Create/alter BVP options structure
deval Evaluate solution of differential equation problem

Partial Differential Equations
pdepe Solve initial-boundary value problems for parabolic-elliptic

PDEs
pdeval Evaluates by interpolation solution computed by pdepe

Optimization
fminbnd Scalar bounded nonlinear function minimization
fminsearch Multidimensional unconstrained nonlinear minimization, by

Nelder-Mead direct search method
fzero Scalar nonlinear zero finding
lsqnonneg Linear least squares with nonnegativity constraints

1 Functions – By Category

1-18

optimset Create or alter optimization options structure
optimget Get optimization parameters from options structure

Numerical Integration (Quadrature)
quad Numerically evaluate integral, adaptive Simpson quadrature

(low order)
quadl Numerically evaluate integral, adaptive Lobatto quadrature

(high order)
dblquad Numerically evaluate double integral
triplequad Numerically evaluate triple integral

Specialized Math
airy Airy functions
besselh Bessel functions of third kind (Hankel functions)
besseli Modified Bessel function of first kind
besselj Bessel function of first kind
besselk Modified Bessel function of second kind
bessely Bessel function of second kind
beta Beta function
betainc Incomplete beta function
betaln Logarithm of beta function
ellipj Jacobi elliptic functions
ellipke Complete elliptic integrals of first and second kind
erf Error function
erfc Complementary error function
erfcinv Inverse complementary error function
erfcx Scaled complementary error function
erfinv Inverse error function
expint Exponential integral
gamma Gamma function
gammainc Incomplete gamma function
gammaln Logarithm of gamma function
legendre Associated Legendre functions
psi Psi (polygamma) function

Sparse Matrices
• “Elementary Sparse Matrices”

• “Full to Sparse Conversion”

• “Working with Sparse Matrices”

Mathematics

1-19

• “Reordering Algorithms”

• “Linear Algebra”

• “Linear Equations (Iterative Methods)”

• “Tree Operations”

Elementary Sparse Matrices
spdiags Sparse matrix formed from diagonals
speye Sparse identity matrix
sprand Sparse uniformly distributed random matrix
sprandn Sparse normally distributed random matrix
sprandsym Sparse random symmetric matrix

Full to Sparse Conversion
find Find indices of nonzero elements
full Convert sparse matrix to full matrix
sparse Create sparse matrix
spconvert Import from sparse matrix external format

Working with Sparse Matrices
issparse True for sparse matrix
nnz Number of nonzero matrix elements
nonzeros Nonzero matrix elements
nzmax Amount of storage allocated for nonzero matrix elements
spalloc Allocate space for sparse matrix
spfun Apply function to nonzero matrix elements
spones Replace nonzero sparse matrix elements with ones
spparms Set parameters for sparse matrix routines
spy Visualize sparsity pattern

Reordering Algorithms
colamd Column approximate minimum degree permutation
colmmd Column minimum degree permutation
colperm Column permutation
dmperm Dulmage-Mendelsohn permutation
randperm Random permutation
symamd Symmetric approximate minimum degree permutation
symmmd Symmetric minimum degree permutation
symrcm Symmetric reverse Cuthill-McKee permutation

1 Functions – By Category

1-20

Linear Algebra
cholinc Incomplete Cholesky factorization
condest 1-norm condition number estimate
eigs Eigenvalues and eigenvectors of sparse matrix
luinc Incomplete LU factorization
normest Estimate matrix 2-norm
sprank Structural rank
svds Singular values and vectors of sparse matrix

Linear Equations (Iterative Methods)
bicg BiConjugate Gradients method
bicgstab BiConjugate Gradients Stabilized method
cgs Conjugate Gradients Squared method
gmres Generalized Minimum Residual method
lsqr LSQR implementation of Conjugate Gradients on Normal

Equations
minres Minimum Residual method
pcg Preconditioned Conjugate Gradients method
qmr Quasi-Minimal Residual method
spaugment Form least squares augmented system
symmlq Symmetric LQ method

Tree Operations
etree Elimination tree
etreeplot Plot elimination tree
gplot Plot graph, as in “graph theory”
symbfact Symbolic factorization analysis
treelayout Lay out tree or forest
treeplot Plot picture of tree

Math Constants
eps Floating-point relative accuracy
i Imaginary unit
Inf Infinity, ∞
j Imaginary unit
NaN Not-a-Number
pi Ratio of a circle’s circumference to its diameter, π
realmax Largest positive floating-point number
realmin Smallest positive floating-point number

Programming and Data Types

1-21

Programming and Data Types
Functions to store and operate on data at either the MATLAB command line or
in programs and scripts. Functions to write, manage, and execute MATLAB
programs.

Data Types
• “Numeric”

• “Characters and Strings”

• “Structures”

• “Cell Arrays”

• “Data Type Conversion”

• “Determine Data Type”

Numeric
[] Array constructor
cat Concatenate arrays
class Return object’s class name (e.g., numeric)
find Find indices and values of nonzero array elements
ipermute Inverse permute dimensions of multidimensional array
isa Detect object of given class (e.g., numeric)
isequal Determine if arrays are numerically equal
isequalwithequalnansTest for equality, treating NaNs as equal
isnumeric Determine if item is numeric array
isreal Determine if all array elements are real numbers
permute Rearrange dimensions of multidimensional array

“Data Types” Numeric, character, structures, cell arrays,
and data type conversion

“Arrays” Basic array operations and manipulation

“Operators and Operations” Special characters and arithmetic, bit-wise,
relational, logical, set, date and time
operations

“Programming in MATLAB” M-files, function/expression evaluation,
program control, function handles, object
oriented programming, error handling

1 Functions – By Category

1-22

reshape Reshape array
squeeze Remove singleton dimensions from array
zeros Create array of all zeros

Characters and Strings

Description of Strings in MATLAB

strings Describes MATLAB string handling

Creating and Manipulating Strings

blanks Create string of blanks
char Create character array (string)
cellstr Create cell array of strings from character array
datestr Convert to date string format
deblank Strip trailing blanks from the end of string
lower Convert string to lower case
sprintf Write formatted data to string
sscanf Read string under format control
strcat String concatenation
strjust Justify character array
strread Read formatted data from string
strrep String search and replace
strvcat Vertical concatenation of strings
upper Convert string to upper case

Comparing and Searching Strings

class Return object’s class name (e.g., char)
findstr Find string within another, longer string
isa Detect object of given class (e.g., char)
iscellstr Determine if item is cell array of strings
ischar Determine if item is character array
isletter Detect array elements that are letters of the alphabet
isspace Detect elements that are ASCII white spaces
regexp Match regular expression
regexpi Match regular expression, ignoring case
regexprep Replace string using regular expression
strcmp Compare strings
strcmpi Compare strings, ignoring case
strfind Find one string within another
strmatch Find possible matches for string
strncmp Compare first n characters of strings

Programming and Data Types

1-23

strncmpi Compare first n characters of strings, ignoring case
strtok First token in string

Evaluating String Expressions

eval Execute string containing MATLAB expression
evalc Evaluate MATLAB expression with capture
evalin Execute string containing MATLAB expression in workspace

Structures
cell2struct Cell array to structure array conversion
class Return object’s class name (e.g., struct)
deal Deal inputs to outputs
fieldnames Field names of structure
isa Detect object of given class (e.g., struct)
isequal Determine if arrays are numerically equal
isfield Determine if item is structure array field
isstruct Determine if item is structure array
orderfields Order fields of a structure array
rmfield Remove structure fields
struct Create structure array
struct2cell Structure to cell array conversion

Cell Arrays
{ } Construct cell array
cell Construct cell array
cellfun Apply function to each element in cell array
cellstr Create cell array of strings from character array
cell2mat Convert cell array of matrices into single matrix
cell2struct Cell array to structure array conversion
celldisp Display cell array contents
cellplot Graphically display structure of cell arrays
class Return object’s class name (e.g., cell)
deal Deal inputs to outputs
isa Detect object of given class (e.g., cell)
iscell Determine if item is cell array
iscellstr Determine if item is cell array of strings
isequal Determine if arrays are numerically equal
mat2cell Divide matrix up into cell array of matrices
num2cell Convert numeric array into cell array
struct2cell Structure to cell array conversion

1 Functions – By Category

1-24

Data Type Conversion

Numeric

double Convert to double-precision
int8 Convert to signed 8-bit integer
int16 Convert to signed 16-bit integer
int32 Convert to signed 32-bit integer
int64 Convert to signed 64-bit integer
single Convert to single-precision
uint8 Convert to unsigned 8-bit integer
uint16 Convert to unsigned 16-bit integer
uint32 Convert to unsigned 32-bit integer
uint64 Convert to unsigned 64-bit integer

String to Numeric

base2dec Convert base N number string to decimal number
bin2dec Convert binary number string to decimal number
hex2dec Convert hexadecimal number string to decimal number
hex2num Convert hexadecimal number string to double number
str2double Convert string to double-precision number
str2num Convert string to number

Numeric to String

char Convert to character array (string)
dec2base Convert decimal to base N number in string
dec2bin Convert decimal to binary number in string
dec2hex Convert decimal to hexadecimal number in string
int2str Convert integer to string
mat2str Convert a matrix to string
num2str Convert number to string

Other Conversions

cell2mat Convert cell array of matrices into single matrix
cell2struct Convert cell array to structure array
datestr Convert serial date number to string
func2str Convert function handle to function name string
logical Convert numeric to logical array
mat2cell Divide matrix up into cell array of matrices
num2cell Convert a numeric array to cell array
str2func Convert function name string to function handle
struct2cell Convert structure to cell array

Programming and Data Types

1-25

Determine Data Type
is* Detect state
isa Detect object of given MATLAB class or Java class
iscell Determine if item is cell array
iscellstr Determine if item is cell array of strings
ischar Determine if item is character array
isfield Determine if item is character array
isjava Determine if item is Java object
islogical Determine if item is logical array
isnumeric Determine if item is numeric array
isobject Determine if item is MATLAB OOPs object
isstruct Determine if item is MATLAB structure array

Arrays
• “Array Operations”

• “Basic Array Information”

• “Array Manipulation”

• “Elementary Arrays”

Array Operations
[] Array constructor
, Array row element separator
; Array column element separator
: Specify range of array elements
end Indicate last index of array
+ Addition or unary plus
- Subtraction or unary minus
.* Array multiplication
./ Array right division
.\ Array left division
.^ Array power
.' Array (nonconjugated) transpose

Basic Array Information
disp Display text or array
display Overloaded method to display text or array
isempty Determine if array is empty
isequal Determine if arrays are numerically equal
isequalwithequalnansTest for equality, treating NaNs as equal

1 Functions – By Category

1-26

isnumeric Determine if item is numeric array
islogical Determine if item is logical array
length Length of vector
ndims Number of array dimensions
numel Number of elements in matrix or cell array
size Array dimensions

Array Manipulation
: Specify range of array elements
blkdiag Construct block diagonal matrix from input arguments
cat Concatenate arrays
circshift Shift array circularly
find Find indices and values of nonzero elements
fliplr Flip matrices left-right
flipud Flip matrices up-down
flipdim Flip array along specified dimension
horzcat Horizontal concatenation
ind2sub Subscripts from linear index
ipermute Inverse permute dimensions of multidimensional array
permute Rearrange dimensions of multidimensional array
repmat Replicate and tile array
reshape Reshape array
rot90 Rotate matrix 90 degrees
shiftdim Shift dimensions
sort Sort elements in ascending order
sortrows Sort rows in ascending order
squeeze Remove singleton dimensions
sub2ind Single index from subscripts
vertcat Horizontal concatenation

Elementary Arrays
: Regularly spaced vector
blkdiag Construct block diagonal matrix from input arguments
eye Identity matrix
linspace Generate linearly spaced vectors
logspace Generate logarithmically spaced vectors
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Generate arrays for multidimensional functions and

interpolation
ones Create array of all ones
rand Uniformly distributed random numbers and arrays
randn Normally distributed random numbers and arrays
zeros Create array of all zeros

Programming and Data Types

1-27

Operators and Operations
• “Special Characters”

• “Arithmetic Operations”

• “Bit-wise Operations”

• “Relational Operations”

• “Logical Operations”

• “Set Operations”

• “Date and Time Operations”

Special Characters
: Specify range of array elements
() Pass function arguments, or prioritize operations
[] Construct array
{ } Construct cell array
. Decimal point, or structure field separator
... Continue statement to next line
, Array row element separator
; Array column element separator
% Insert comment line into code
! Command to operating system
= Assignment

Arithmetic Operations
+ Plus
- Minus
. Decimal point
= Assignment
* Matrix multiplication
/ Matrix right division
\ Matrix left division
^ Matrix power
' Matrix transpose
.* Array multiplication (element-wise)
./ Array right division (element-wise)
.\ Array left division (element-wise)
.^ Array power (element-wise)
.' Array transpose

1 Functions – By Category

1-28

Bit-wise Operations
bitand Bit-wise AND
bitcmp Bit-wise complement
bitor Bit-wise OR
bitmax Maximum floating-point integer
bitset Set bit at specified position
bitshift Bit-wise shift
bitget Get bit at specified position
bitxor Bit-wise XOR

Relational Operations
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equal to
~= Not equal to

Logical Operations
&& Logical AND
|| Logical OR
& Logical AND for arrays
| Logical OR for arrays
~ Logical NOT
all Test to determine if all elements are nonzero
any Test for any nonzero elements
false False array
find Find indices and values of nonzero elements
is* Detect state
isa Detect object of given class
iskeyword Determine if string is MATLAB keyword
isvarname Determine if string is valid variable name
logical Convert numeric values to logical
true True array
xor Logical EXCLUSIVE OR

Set Operations
intersect Set intersection of two vectors
ismember Detect members of set
setdiff Return set difference of two vectors
issorted Determine if set elements are in sorted order

Programming and Data Types

1-29

setxor Set exclusive or of two vectors
union Set union of two vectors
unique Unique elements of vector

Date and Time Operations
calendar Calendar for specified month
clock Current time as date vector
cputime Elapsed CPU time
date Current date string
datenum Serial date number
datestr Convert serial date number to string
datevec Date components
eomday End of month
etime Elapsed time
now Current date and time
tic, toc Stopwatch timer
weekday Day of the week

Programming in MATLAB
• “M-File Functions and Scripts”

• “Evaluation of Expressions and Functions”

• “Timer Functions”

• “Variables and Functions in Memory”

• “Control Flow”

• “Function Handles”

• “Object-Oriented Programming”

• “Error Handling”

• “MEX Programming”

M-File Functions and Scripts
() Pass function arguments
% Insert comment line into code
... Continue statement to next line
depfun List dependent functions of M-file or P-file
depdir List dependent directories of M-file or P-file
function Function M-files
input Request user input

1 Functions – By Category

1-30

inputname Input argument name
mfilename Name of currently running M-file
namelengthmaxReturn maximum identifier length
nargin Number of function input arguments
nargout Number of function output arguments
nargchk Check number of input arguments
nargoutchk Validate number of output arguments
pcode Create preparsed pseudocode file (P-file)
script Describes script M-file
varargin Accept variable number of arguments
varargout Return variable number of arguments

Evaluation of Expressions and Functions
builtin Execute builtin function from overloaded method
cellfun Apply function to each element in cell array
eval Interpret strings containing MATLAB expressions
evalc Evaluate MATLAB expression with capture
evalin Evaluate expression in workspace
feval Evaluate function
iskeyword Determine if item is MATLAB keyword
isvarname Determine if item is valid variable name
pause Halt execution temporarily
run Run script that is not on current path
script Describes script M-file
symvar Determine symbolic variables in expression
tic, toc Stopwatch timer

Timer Functions
delete Delete timer object from memory
disp Display information about timer object
get Retrieve information about timer object properties
isvalid Determine if timer object is valid
set Display or set timer object properties
start Start a timer
startat Start a timer at a specific timer
stop Stop a timer
timer Create a timer object
timerfind Return an array of all timer object in memory
wait Block command line until timer completes

Variables and Functions in Memory
assignin Assign value to workspace variable

Programming and Data Types

1-31

global Define global variables
inmem Return names of functions in memory
isglobal Determine if item is global variable
mislocked True if M-file cannot be cleared
mlock Prevent clearing M-file from memory
munlock Allow clearing M-file from memory
namelengthmaxReturn maximum identifier length
pack Consolidate workspace memory
persistent Define persistent variable
rehash Refresh function and file system caches

Control Flow
break Terminate execution of for loop or while loop
case Case switch
catch Begin catch block
continue Pass control to next iteration of for or while loop
else Conditionally execute statements
elseif Conditionally execute statements
end Terminate conditional statements, or indicate last index
error Display error messages
for Repeat statements specific number of times
if Conditionally execute statements
otherwise Default part of switch statement
return Return to invoking function
switch Switch among several cases based on expression
try Begin try block
while Repeat statements indefinite number of times

Function Handles
class Return object’s class name (e.g. function_handle)
feval Evaluate function
function_handle

Describes function handle data type
functions Return information about function handle
func2str Constructs function name string from function handle
isa Detect object of given class (e.g. function_handle)
isequal Determine if function handles are equal
str2func Constructs function handle from function name string

1 Functions – By Category

1-32

Object-Oriented Programming

MATLAB Classes and Objects

class Create object or return class of object
fieldnames List public fields belonging to object,
inferiorto Establish inferior class relationship
isa Detect object of given class
isobject Determine if item is MATLAB OOPs object
loadobj User-defined extension of load function for user objects
methods Display method names
methodsview Displays information on all methods implemented by class
saveobj User-defined extension of save function for user objects
subsasgn Overloaded method for A(I)=B, A{I}=B, and A.field=B
subsindex Overloaded method for X(A)
subsref Overloaded method for A(I), A{I} and A.field
substruct Create structure argument for subsasgn or subsref
superiorto Establish superior class relationship

Java Classes and Objects

cell Convert Java array object to cell array
class Return class name of Java object
clear Clear Java packages import list
depfun List Java classes used by M-file
exist Detect if item is Java class
fieldnames List public fields belonging to object
im2java Convert image to instance of Java image object
import Add package or class to current Java import list
inmem List names of Java classes loaded into memory
isa Detect object of given class
isjava Determine whether object is Java object
javaArray Constructs Java array
javaMethod Invokes Java method
javaObject Constructs Java object
methods Display methods belonging to class
methodsview Display information on all methods implemented by class
which Display package and class name for method

Error Handling
catch Begin catch block of try/catch statement
error Display error message
ferror Query MATLAB about errors in file input or output

Programming and Data Types

1-33

lasterr Return last error message generated by MATLAB
lasterror Last error message and related information
lastwarn Return last warning message issued by MATLAB
rethrow Reissue error
try Begin try block of try/catch statement
warning Display warning message

MEX Programming
dbmex Enable MEX-file debugging
inmem Return names of currently loaded MEX-files
mex Compile MEX-function from C or Fortran source code
mexext Return MEX-filename extension

1 Functions – By Category

1-34

File I/O
Functions to read and write data to files of different format types.

To see a listing of file formats that are readable from MATLAB, go to file
formats.

Filename Construction
fileparts Return parts of filename
filesep Return directory separator for this platform
fullfile Build full filename from parts
tempdir Return name of system's temporary directory
tempname Return unique string for use as temporary filename

Opening, Loading, Saving Files
importdata Load data from various types of files
load Load all or specific data from MAT or ASCII file
open Open files of various types using appropriate editor or program
save Save all or specific data to MAT or ASCII file
winopen Open file in appropriate application (Windows only)

“Filename Construction” Get path, directory, filename
information; construct filenames

“Opening, Loading, Saving Files” Open files; transfer data between files
and MATLAB workspace

“Low-Level File I/O” Low-level operations that use a file
identifier (e.g., fopen, fseek, fread)

“Text Files” Delimited or formatted I/O to text files

“XML Documents” Documents written in Extensible
Markup Language

“Spreadsheets” Excel and Lotus 123 files

“Scientific Data” CDF, FITS, HDF formats

“Audio and Audio/Video” General audio functions; SparcStation,
Wave, AVI files

“Images” Graphics files

File I/O

1-35

Low-Level File I/O
fclose Close one or more open files
feof Test for end-of-file
ferror Query MATLAB about errors in file input or output
fgetl Return next line of file as string without line terminator(s)
fgets Return next line of file as string with line terminator(s)
fopen Open file or obtain information about open files
fprintf Write formatted data to file
fread Read binary data from file
frewind Rewind open file
fscanf Read formatted data from file
fseek Set file position indicator
ftell Get file position indicator
fwrite Write binary data to file

Text Files
csvread Read numeric data from text file, using comma delimiter
csvwrite Write numeric data to text file, using comma delimiter
dlmread Read numeric data from text file, specifying your own delimiter
dlmwrite Write numeric data to text file, specifying your own delimiter
textread Read data from text file, specifying format for each value

XML Documents
xmlread Parse XML document
xmlwrite Serialize XML Document Object Model node
xslt Transform XML document using XSLT engine

Spreadsheets

Microsoft Excel Functions
xlsfinfo Determine if file contains Microsoft Excel (.xls) spreadsheet
xlsread Read Microsoft Excel spreadsheet file (.xls)

Lotus123 Functions
wk1read Read Lotus123 WK1 spreadsheet file into matrix
wk1write Write matrix to Lotus123 WK1 spreadsheet file

1 Functions – By Category

1-36

Scientific Data

Common Data Format (CDF)
cdfinfo Return information about CDF file
cdfread Read CDF file

Flexible Image Transport System
fitsinfo Return information about FITS file
fitsread Read FITS file

Hierarchical Data Format (HDF)
hdf Interface to HDF files
hdfinfo Return information about HDF or HDF-EOS file
hdfread Read HDF file

Audio and Audio/Video

General
audioplayer Create audio player object
audiorecorderPerform real-time audio capture
beep Produce beep sound
lin2mu Convert linear audio signal to mu-law
mu2lin Convert mu-law audio signal to linear
sound Convert vector into sound
soundsc Scale data and play as sound

SPARCstation-Specific Sound Functions
auread Read NeXT/SUN (.au) sound file
auwrite Write NeXT/SUN (.au) sound file

Microsoft WAVE Sound Functions
wavplay Play sound on PC-based audio output device
wavread Read Microsoft WAVE (.wav) sound file
wavrecord Record sound using PC-based audio input device
wavwrite Write Microsoft WAVE (.wav) sound file

File I/O

1-37

Audio Video Interleaved (AVI) Functions
addframe Add frame to AVI file
avifile Create new AVI file
aviinfo Return information about AVI file
aviread Read AVI file
close Close AVI file
movie2avi Create AVI movie from MATLAB movie

Images
im2java Convert image to instance of Java image object
imfinfo Return information about graphics file
imread Read image from graphics file
imwrite Write image to graphics file

1 Functions – By Category

1-38

Graphics
2-D graphs, specialized plots (e.g., pie charts, histograms, and contour plots),
function plotters, and Handle Graphics functions.

Basic Plots and Graphs
box Axis box for 2-D and 3-D plots
errorbar Plot graph with error bars
hold Hold current graph
LineSpec Line specification syntax
loglog Plot using log-log scales
polar Polar coordinate plot
plot Plot vectors or matrices.
plot3 Plot lines and points in 3-D space
plotyy Plot graphs with Y tick labels on the left and right
semilogx Semi-log scale plot
semilogy Semi-log scale plot
subplot Create axes in tiled positions

Annotating Plots
clabel Add contour labels to contour plot
datetick Date formatted tick labels
gtext Place text on 2-D graph using mouse
legend Graph legend for lines and patches
texlabel Produce the TeX format from character string

Basic Plots and Graphs Linear line plots, log and semilog plots

Annotating Plots Titles, axes labels, legends, mathematical
symbols

Specialized Plotting Bar graphs, histograms, pie charts, contour plots,
function plotters

Bit-Mapped Images Display image object, read and write graphics file,
convert to movie frames

Printing Printing and exporting figures to standard
formats

Handle Graphics Creating graphics objects, setting properties,
finding handles

Graphics

1-39

title Titles for 2-D and 3-D plots
xlabel X-axis labels for 2-D and 3-D plots
ylabel Y-axis labels for 2-D and 3-D plots
zlabel Z-axis labels for 3-D plots

Specialized Plotting
• “Area, Bar, and Pie Plots”

• “Contour Plots”

• “Direction and Velocity Plots”

• “Discrete Data Plots”

• “Function Plots”

• “Histograms”

• “Polygons and Surfaces”

• “Scatter Plots”

• “Animation”

Area, Bar, and Pie Plots
area Area plot
bar Vertical bar chart
barh Horizontal bar chart
bar3 Vertical 3-D bar chart
bar3h Horizontal 3-D bar chart
pareto Pareto char
pie Pie plot
pie3 3-D pie plot

Contour Plots
contour Contour (level curves) plot
contour3 3-D contour plot
contourc Contour computation
contourf Filled contour plot
ezcontour Easy to use contour plotter
ezcontourf Easy to use filled contour plotter

Direction and Velocity Plots
comet Comet plot
comet3 3-D comet plot

1 Functions – By Category

1-40

compass Compass plot
feather Feather plot
quiver Quiver (or velocity) plot
quiver3 3-D quiver (or velocity) plot

Discrete Data Plots
stem Plot discrete sequence data
stem3 Plot discrete surface data
stairs Stairstep graph

Function Plots
ezcontour Easy to use contour plotter
ezcontourf Easy to use filled contour plotter
ezmesh Easy to use 3-D mesh plotter
ezmeshc Easy to use combination mesh/contour plotter
ezplot Easy to use function plotter
ezplot3 Easy to use 3-D parametric curve plotter
ezpolar Easy to use polar coordinate plotter
ezsurf Easy to use 3-D colored surface plotter
ezsurfc Easy to use combination surface/contour plotter
fplot Plot a function

Histograms
hist Plot histograms
histc Histogram count
rose Plot rose or angle histogram

Polygons and Surfaces
convhull Convex hull
cylinder Generate cylinder
delaunay Delaunay triangulation
dsearch Search Delaunay triangulation for nearest point
ellipsoid Generate ellipsoid
fill Draw filled 2-D polygons
fill3 Draw filled 3-D polygons in 3-space
inpolygon True for points inside a polygonal region
pcolor Pseudocolor (checkerboard) plot
polyarea Area of polygon
ribbon Ribbon plot
slice Volumetric slice plot
sphere Generate sphere

Graphics

1-41

tsearch Search for enclosing Delaunay triangle
voronoi Voronoi diagram
waterfall Waterfall plot

Scatter Plots
plotmatrix Scatter plot matrix
scatter Scatter plot
scatter3 3-D scatter plot

Animation
frame2im Convert movie frame to indexed image
getframe Capture movie frame
im2frame Convert image to movie frame
movie Play recorded movie frames
noanimate Change EraseMode of all objects to normal

Bit-Mapped Images
frame2im Convert movie frame to indexed image
image Display image object
imagesc Scale data and display image object
imfinfo Information about graphics file
imformats Manage file format registry
im2frame Convert image to movie frame
im2java Convert image to instance of Java image object
imread Read image from graphics file
imwrite Write image to graphics file
ind2rgb Convert indexed image to RGB image

Printing
frameedit Edit print frame for Simulink and Stateflow diagram
orient Hardcopy paper orientation
pagesetupdlg Page position dialog box
print Print graph or save graph to file
printdlg Print dialog box
printopt Configure local printer defaults
printpreview Preview figure to be printed
saveas Save figure to graphic file

1 Functions – By Category

1-42

Handle Graphics
• Finding and Identifying Graphics Objects

• Object Creation Functions

• Figure Windows

• Axes Operations

Finding and Identifying Graphics Objects
allchild Find all children of specified objects
copyobj Make copy of graphics object and its children
delete Delete files or graphics objects
findall Find all graphics objects (including hidden handles)
figflag Test if figure is on screen
findfigs Display off-screen visible figure windows
findobj Find objects with specified property values
gca Get current Axes handle
gcbo Return object whose callback is currently executing
gcbf Return handle of figure containing callback object
gco Return handle of current object
get Get object properties
ishandle True if value is valid object handle
set Set object properties

Object Creation Functions
axes Create axes object
figure Create figure (graph) windows
image Create image (2-D matrix)
light Create light object (illuminates Patch and Surface)
line Create line object (3-D polylines)
patch Create patch object (polygons)
rectangle Create rectangle object (2-D rectangle)
rootobject List of root properties
surface Create surface (quadrilaterals)
text Create text object (character strings)
uicontextmenuCreate context menu (popup associated with object)

Figure Windows
capture Screen capture of the current figure
clc Clear figure window
clf Clear figure

Graphics

1-43

close Close specified window
closereq Default close request function
drawnow Complete any pending drawing
figflag Test if figure is on screen
gcf Get current figure handle
hgload Load graphics object hierarchy from a FIG-file
hgsave Save graphics object hierarchy to a FIG-file
newplot Graphics M-file preamble for NextPlot property
opengl Change automatic selection mode of OpenGL rendering
refresh Refresh figure
saveas Save figure or model to desired output format

Axes Operations
axis Plot axis scaling and appearance
box Display axes border
cla Clear Axes
gca Get current Axes handle
grid Grid lines for 2-D and 3-D plots
ishold Get the current hold state

1 Functions – By Category

1-44

3-D Visualization
Create and manipulate graphics that display 2-D matrix and 3-D volume data,
controlling the view, lighting and transparency.

Surface and Mesh Plots
• Creating Surfaces and Meshes

• Domain Generation

• Color Operations

• Colormaps

Creating Surfaces and Meshes
hidden Mesh hidden line removal mode
meshc Combination mesh/contourplot
mesh 3-D mesh with reference plane
peaks A sample function of two variables
surf 3-D shaded surface graph
surface Create surface low-level objects
surfc Combination surf/contourplot
surfl 3-D shaded surface with lighting
tetramesh Tetrahedron mesh plot
trimesh Triangular mesh plot
triplot 2-D triangular plot
trisurf Triangular surface plot

Domain Generation
griddata Data gridding and surface fitting
meshgrid Generation of X and Y arrays for 3-D plots

Surface and Mesh Plots Plot matrices, visualize functions of two variables,
specify colormap

View Control Control the camera viewpoint, zooming, rotation,
aspect ratio, set axis limits

Lighting Add and control scene lighting

Transparency Specify and control object transparency

Volume Visualization Visualize gridded volume data

3-D Visualization

1-45

Color Operations
brighten Brighten or darken color map
caxis Pseudocolor axis scaling
colormapeditorStart colormap editor
colorbar Display color bar (color scale)
colordef Set up color defaults
colormap Set the color look-up table (list of colormaps)
ColorSpec Ways to specify color
graymon Graphics figure defaults set for grayscale monitor
hsv2rgb Hue-saturation-value to red-green-blue conversion
rgb2hsv RGB to HSVconversion
rgbplot Plot color map
shading Color shading mode
spinmap Spin the colormap
surfnorm 3-D surface normals
whitebg Change axes background color for plots

Colormaps
autumn Shades of red and yellow color map
bone Gray-scale with a tinge of blue color map
contrast Gray color map to enhance image contrast
cool Shades of cyan and magenta color map
copper Linear copper-tone color map
flag Alternating red, white, blue, and black color map
gray Linear gray-scale color map
hot Black-red-yellow-white color map
hsv Hue-saturation-value (HSV) color map
jet Variant of HSV
lines Line color colormap
prism Colormap of prism colors
spring Shades of magenta and yellow color map
summer Shades of green and yellow colormap
winter Shades of blue and green color map

View Control
• Controlling the Camera Viewpoint

• Setting the Aspect Ratio and Axis Limits

• Object Manipulation

• Selecting Region of Interest

1 Functions – By Category

1-46

Controlling the Camera Viewpoint
camdolly Move camera position and target
camlookat View specific objects
camorbit Orbit about camera target
campan Rotate camera target about camera position
campos Set or get camera position
camproj Set or get projection type
camroll Rotate camera about viewing axis
camtarget Set or get camera target
camup Set or get camera up-vector
camva Set or get camera view angle
camzoom Zoom camera in or out
view 3-D graph viewpoint specification.
viewmtx Generate view transformation matrices

Setting the Aspect Ratio and Axis Limits
daspect Set or get data aspect ratio
pbaspect Set or get plot box aspect ratio
xlim Set or get the current x-axis limits
ylim Set or get the current y-axis limits
zlim Set or get the current z-axis limits

Object Manipulation
reset Reset axis or figure
rotate Rotate objects about specified origin and direction
rotate3d Interactively rotate the view of a 3-D plot
selectmoveresizeInteractively select, move, or resize objects
zoom Zoom in and out on a 2-D plot

Selecting Region of Interest
dragrect Drag XOR rectangles with mouse
rbbox Rubberband box

Lighting
camlight Cerate or position Light
light Light object creation function
lightangle Position light in sphereical coordinates
lighting Lighting mode
material Material reflectance mode

3-D Visualization

1-47

Transparency
alpha Set or query transparency properties for objects in current axes
alphamap Specify the figure alphamap
alim Set or query the axes alpha limits

Volume Visualization
coneplot Plot velocity vectors as cones in 3-D vector field
contourslice Draw contours in volume slice plane
curl Compute curl and angular velocity of vector field
divergence Compute divergence of vector field
flow Generate scalar volume data
interpstreamspeedInterpolate streamline vertices from vector-field

magnitudes
isocaps Compute isosurface end-cap geometry
isocolors Compute colors of isosurface vertices
isonormals Compute normals of isosurface vertices
isosurface Extract isosurface data from volume data
reducepatch Reduce number of patch faces
reducevolume Reduce number of elements in volume data set
shrinkfaces Reduce size of patch faces
slice Draw slice planes in volume
smooth3 Smooth 3-D data
stream2 Compute 2-D stream line data
stream3 Compute 3-D stream line data
streamline Draw stream lines from 2- or 3-D vector data
streamparticlesDraws stream particles from vector volume data
streamribbon Draws stream ribbons from vector volume data
streamslice Draws well-spaced stream lines from vector volume data
streamtube Draws stream tubes from vector volume data
surf2patch Convert surface data to patch data
subvolume Extract subset of volume data set
volumebounds Return coordinate and color limits for volume (scalar and

vector)

1 Functions – By Category

1-48

Creating Graphical User Interfaces
Predefined dialog boxes and functions to control GUI programs.

Predefined Dialog Boxes
dialog Create dialog box
errordlg Create error dialog box
helpdlg Display help dialog box
inputdlg Create input dialog box
listdlg Create list selection dialog box
msgbox Create message dialog box
pagedlg Display page layout dialog box
printdlg Display print dialog box
questdlg Create question dialog box
uigetdir Display dialog box to retrieve name of directory
uigetfile Display dialog box to retrieve name of file for reading
uiputfile Display dialog box to retrieve name of file for writing
uisetcolor Set ColorSpec using dialog box
uisetfont Set font using dialog box
waitbar Display wait bar
warndlg Create warning dialog box

Predefined Dialog Boxes Dialog boxes for error, user input, waiting, etc.

Deploying User
Interfaces

Launching GUIs, creating the handles structure

Developing User
Interfaces

Starting GUIDE, managing application data,
getting user input

User Interface Objects Creating GUI components

Finding Objects from
Callbacks

Finding object handles from within callbacks
functions

GUI Utility Functions Moving objects, text wrapping

Controlling Program
Execution

Wait and resume based on user input

Creating Graphical User Interfaces

1-49

Deploying User Interfaces
guidata Store or retrieve application data
guihandles Create a structure of handles
movegui Move GUI figure onscreen
openfig Open or raise GUI figure

Developing User Interfaces
guide Open GUI Layout Editor
inspect Display Property Inspector

Working with Application Data
getappdata Get value of application data
isappdata True if application data exists
rmappdata Remove application data
setappdata Specify application data

Interactive User Input
ginput Graphical input from a mouse or cursor
waitfor Wait for conditions before resuming execution
waitforbuttonpressWait for key/buttonpress over figure

User Interface Objects
menu Generate menu of choices for user input
uicontextmenuCreate context menu
uicontrol Create user interface control
uimenu Create user interface menu

Finding Objects from Callbacks
findall Find all graphics objects
findfigs Display off-screen visible figure windows
findobj Find specific graphics object
gcbf Return handle of figure containing callback object
gcbo Return handle of object whose callback is executing

GUI Utility Functions
selectmoveresizeSelect, move, resize, or copy axes and uicontrol graphics

objects
textwrap Return wrapped string matrix for given uicontrol

1 Functions – By Category

1-50

Controlling Program Execution
uiresume Resumes program execution halted with uiwait
uiwait Halts program execution, restart with uiresume

2

Functions – Alphabetical
List

2 Functions – Alphabetical List

2-2

Arithmetic Operators + - * / \ ^ ' . 2-11
Relational Operators < > <= >= == ~= 2-19
Logical Operators, Element-wise & | ~ 2-20
Logical Operators, Short-circuit && || 2-22
Special Characters [] () {} = ' , ; % ! 2-24
Colon : . 2-27
abs . 2-29
acos . 2-30
acosh . 2-32
acot . 2-34
acoth . 2-36
acsc . 2-38
acsch . 2-40
actxcontrol . 2-42
actxserver . 2-46
addframe . 2-48
addpath . 2-50
addproperty (COM) . 2-52
airy . 2-53
alim . 2-55
all . 2-56
allchild . 2-58
alpha . 2-59
alphamap . 2-62
angle . 2-64
ans . 2-65
any . 2-66
area . 2-68
asec . 2-70
asech . 2-72
asin . 2-74
asinh . 2-76
assignin . 2-78
atan . 2-80
atan2 . 2-82
atanh . 2-84
audiodevinfo . 2-86

2-3

audioplayer . 2-88
audiorecorder . 2-92
auread . 2-97
auwrite . 2-98
avifile . 2-99
aviinfo . 2-102
aviread . 2-104
axes . 2-105
Axes Properties . 2-117
axis . 2-138
balance . 2-144
bar, barh . 2-147
bar3, bar3h . 2-151
base2dec . 2-155
beep . 2-156
besselh . 2-157
besseli . 2-161
besselk . 2-164
besselj . 2-167
bessely . 2-170
beta . 2-173
betainc . 2-175
betaln . 2-176
bicg . 2-177
bicgstab . 2-184
bin2dec . 2-189
bitand . 2-190
bitcmp . 2-191
bitget . 2-192
bitmax . 2-193
bitor . 2-194
bitset . 2-195
bitshift . 2-196
bitxor . 2-197
blanks . 2-198
blkdiag . 2-199
box . 2-200

2 Functions – Alphabetical List

2-4

break . 2-201
brighten . 2-202
builtin . 2-204
bvp4c . 2-205
bvpget . 2-212
bvpinit . 2-213
bvpset . 2-215
bvpval . 2-218
calendar . 2-219
camdolly . 2-220
camlight . 2-222
camlookat . 2-224
camorbit . 2-226
campan . 2-228
campos . 2-229
camproj . 2-231
camroll . 2-232
camtarget . 2-233
camup . 2-235
camva . 2-237
camzoom . 2-239
capture . 2-240
cart2pol . 2-241
cart2sph . 2-242
case . 2-243
cat . 2-244
catch . 2-245
caxis . 2-246
cd . 2-250
cdf2rdf . 2-251
cdfepoch . 2-253
cdfinfo . 2-254
cdfread . 2-258
cdfwrite . 2-260
ceil . 2-263
cell . 2-264
cell2mat . 2-266

2-5

cell2struct . 2-268
celldisp . 2-269
cellfun . 2-270
cellplot . 2-272
cellstr . 2-273
cgs . 2-274
char . 2-278
checkin . 2-280
checkout . 2-282
chol . 2-285
cholinc . 2-287
cholupdate . 2-294
circshift . 2-297
cla . 2-298
clabel . 2-299
class . 2-301
clc . 2-303
clear . 2-304
clear (serial) . 2-308
clf . 2-309
clipboard . 2-310
clock . 2-311
close . 2-312
close . 2-314
closereq . 2-315
cmopts . 2-316
colamd . 2-317
colmmd . 2-319
colorbar . 2-322
colordef . 2-324
colormap . 2-326
colormapeditor . 2-330
ColorSpec . 2-346
colperm . 2-348
comet . 2-349
comet3 . 2-350
compan . 2-351

2 Functions – Alphabetical List

2-6

compass . 2-352
complex . 2-354
computer . 2-356
cond . 2-357
condeig . 2-358
condest . 2-359
coneplot . 2-360
conj . 2-365
continue . 2-366
contour . 2-367
contour3 . 2-371
contourc . 2-373
contourf . 2-375
contourslice . 2-377
contrast . 2-380
conv . 2-381
conv2 . 2-382
convhull . 2-386
convhulln . 2-388
convn . 2-390
copyfile . 2-391
copyobj . 2-393
corrcoef . 2-395
cos . 2-398
cosh . 2-400
cot . 2-402
 coth . 2-404
cov . 2-406
cplxpair . 2-407
cputime . 2-408
cross . 2-409
csc . 2-410
 csch . 2-412
csvread . 2-414
csvwrite . 2-416
cumprod . 2-417
cumsum . 2-418

2-7

cumtrapz . 2-419
curl . 2-421
customverctrl . 2-424
cylinder . 2-425
daspect . 2-428
date . 2-431
datenum . 2-432
datestr . 2-434
datetick . 2-437
datevec . 2-440
dbclear . 2-442
dbcont . 2-444
dbdown . 2-445
dblquad . 2-446
dbmex . 2-448
dbquit . 2-449
dbstack . 2-450
dbstatus . 2-451
dbstep . 2-452
dbstop . 2-453
dbtype . 2-457
dbup . 2-458
dde23 . 2-459
ddeadv . 2-463
ddeexec . 2-465
ddeget . 2-466
ddeinit . 2-467
ddepoke . 2-468
ddereq . 2-470
ddeset . 2-472
ddeterm . 2-475
ddeunadv . 2-476
deal . 2-477
deblank . 2-479
dec2base . 2-480
dec2bin . 2-481
dec2hex . 2-482

2 Functions – Alphabetical List

2-8

deconv . 2-483
del2 . 2-484
delaunay . 2-487
delaunay3 . 2-492
delaunayn . 2-495
delete . 2-498
delete (COM) . 2-499
delete (serial) . 2-501
delete (timer) . 2-502
deleteproperty (COM) . 2-503
demo . 2-504
depdir . 2-507
depfun . 2-508
det . 2-512
detrend . 2-513
deval . 2-515
diag . 2-517
dialog . 2-519
diary . 2-520
diff . 2-521
dir . 2-523
disp . 2-525
disp (serial) . 2-526
disp (timer) . 2-527
display . 2-529
divergence . 2-531
dlmread . 2-533
dlmwrite . 2-534
dmperm . 2-535
doc . 2-536
docopt . 2-537
docroot . 2-538
dos . 2-539
dot . 2-541
double . 2-542
dragrect . 2-543
drawnow . 2-544

2-9

dsearch . 2-545
dsearchn . 2-546
echo . 2-547
edit . 2-548
eig . 2-550
eigs . 2-554
ellipj . 2-562
ellipke . 2-564
ellipsoid . 2-566
else . 2-567
elseif . 2-568
end . 2-570
eomday . 2-572
eps . 2-573
erf, erfc, erfcx, erfinv, erfcinv . 2-574
error . 2-576
errorbar . 2-578
errordlg . 2-580
etime . 2-582
etree . 2-583
etreeplot . 2-584
eval . 2-585
evalc . 2-587
evalin . 2-588
eventlisteners (COM) . 2-590
events (COM) . 2-592
exist . 2-594
exit . 2-596
exp . 2-597
expint . 2-598
expm . 2-599
eye . 2-601
ezcontour . 2-602
ezcontourf . 2-605
ezmesh . 2-608
ezmeshc . 2-610
ezplot . 2-612

2 Functions – Alphabetical List

2-10

ezplot3 . 2-614
ezpolar . 2-616
ezsurf . 2-618
ezsurfc . 2-621

Arithmetic Operators + - * / \ ^ '

2-11

2Arithmetic Operators + - * / \ ^ 'Purpose Matrix and array arithmetic

Syntax A+B
A-B
A∗ B A.∗ B
A/B A./B
A\B A.\B
A^B A.^B
A' A.'

Description MATLAB has two different types of arithmetic operations. Matrix arithmetic
operations are defined by the rules of linear algebra. Array arithmetic
operations are carried out element-by-element, and can be used with
multidimensional arrays. The period character (.) distinguishes the array
operations from the matrix operations. However, since the matrix and array
operations are the same for addition and subtraction, the character pairs .+
and .- are not used.

+ Addition or unary plus. A+B adds A and B. A and B must have the same
size, unless one is a scalar. A scalar can be added to a matrix of any size.

- Subtraction or unary minus. A-B subtracts B from A. A and B must have
the same size, unless one is a scalar. A scalar can be subtracted from a
matrix of any size.

* Matrix multiplication. C = A∗ B is the linear algebraic product of the
matrices A and B. More precisely,

For nonscalar A and B, the number of columns of A must equal the
number of rows of B. A scalar can multiply a matrix of any size.

.∗ Array multiplication. A.∗ B is the element-by-element product of the
arrays A and B. A and B must have the same size, unless one of them is a
scalar.

/ Slash or matrix right division. B/A is roughly the same as B∗ inv(A).
More precisely, B/A = (A'\B')'. See \.

C i j,() A i k,()B k j,()
k 1=

n

∑=

Arithmetic Operators + - * / \ ^ '

2-12

./ Array right division. A./B is the matrix with elements A(i,j)/B(i,j).
A and B must have the same size, unless one of them is a scalar.

\ Backslash or matrix left division. If A is a square matrix, A\B is roughly
the same as inv(A)∗ B, except it is computed in a different way. If A is
an n-by-n matrix and B is a column vector with n components, or a
matrix with several such columns, then X = A\B is the solution to the
equation AX = B computed by Gaussian elimination (see “Algorithm” on
page 2-15 for details). A warning message prints if A is badly scaled or
nearly singular.

If A is an m-by-n matrix with m ~= n and B is a column vector with m
components, or a matrix with several such columns, then X = A\B is the
solution in the least squares sense to the under- or overdetermined
system of equations AX = B. The effective rank, k, of A, is determined
from the QR decomposition with pivoting (see “Algorithm” for details).
A solution X is computed which has at most k nonzero components per
column. If k < n, this is usually not the same solution as pinv(A)∗ B,
which is the least squares solution with the smallest norm, .

.\ Array left division. A.\B is the matrix with elements B(i,j)/A(i,j). A
and B must have the same size, unless one of them is a scalar.

^ Matrix power. X^p is X to the power p, if p is a scalar. If p is an integer,
the power is computed by repeated squaring. If the integer is negative,
X is inverted first. For other values of p, the calculation involves
eigenvalues and eigenvectors, such that if [V,D] = eig(X), then
X^p = V∗ D.^p/V.

If x is a scalar and P is a matrix, x^P is x raised to the matrix power P
using eigenvalues and eigenvectors. X^P, where X and P are both
matrices, is an error.

.^ Array power. A.^B is the matrix with elements A(i,j) to the B(i,j)
power. A and B must have the same size, unless one of them is a scalar.

' Matrix transpose. A' is the linear algebraic transpose of A. For complex
matrices, this is the complex conjugate transpose.

.' Array transpose. A.' is the array transpose of A. For complex matrices,
this does not involve conjugation.

X

Arithmetic Operators + - * / \ ^ '

2-13

Remarks The arithmetic operators have M-file function equivalents, as shown:

Examples Here are two vectors, and the results of various matrix and array operations on
them, printed with format rat.

Binary addition A+B plus(A,B)

Unary plus +A uplus(A)

Binary subtraction A-B minus(A,B)

Unary minus -A uminus(A)

Matrix multiplication A*B mtimes(A,B)

Array-wise multiplication A.*B times(A,B)

Matrix right division A/B mrdivide(A,B)

Array-wise right division A./B rdivide(A,B)

Matrix left division A\B mldivide(A,B)

Array-wise left division A.\B ldivide(A,B)

Matrix power A^B mpower(A,B)

Array-wise power A.^B power(A,B)

Complex transpose A' ctranspose(A)

Matrix transpose A.' transpose(A)

Matrix Operations Array Operations

x 1
2
3

y 4
5
6

x' 1 2 3 y' 4 5 6

x+y 5
7
9

x-y -3
-3
-3

Arithmetic Operators + - * / \ ^ '

2-14

x + 2 3
4
5

x-2 -1
0
1

x ∗ y Error x.∗ y 4
10
18

x'∗ y 32 x'.∗ y Error

x∗ y' 4 5 6
8 10 12
12 15 18

x.∗ y' Error

x∗ 2 2
4
6

x.∗ 2 2
4
6

x\y 16/7 x.\y 4
5/2
2

2\x 1/2
1
3/2

2./x 2
1
2/3

x/y 0 0 1/6
0 0 1/3
0 0 1/2

x./y 1/4
2/5
1/2

x/2 1/2
1
3/2

x./2 1/2
1
3/2

x^y Error x.^y 1
32
729

x^2 Error x.^2 1
4
9

Matrix Operations Array Operations

Arithmetic Operators + - * / \ ^ '

2-15

Algorithm The specific algorithm used for solving the simultaneous linear equations
denoted by X = A\B and X = B/A depends upon the structure of the coefficient
matrix A. To determine the structure of A and select the appropriate algorithm,
MATLAB follows this precedence:

1 If A is sparse, square, and banded, then banded solvers are used. Band
density is (# nonzeros in the band)/(# nonzeros in a full band).
Band density = 1.0 if there are no zeros on any of the three diagonals.

- If A is real and tridiagonal, i.e., band density = 1.0, and B is real with only
one column, X is computed quickly using Gaussian elimination without
pivoting.

- If the tridiagonal solver detects a need for pivoting, or if A or B is not real,
or if B has more than one column, but A is banded with band density
greater than the spparms parameter 'bandden' (default = 0.5), then X is
computed using LAPACK.

2 If A is an upper or lower triangular matrix, then X is computed quickly
with a backsubstitution algorithm for upper triangular matrices, or a
forward substitution algorithm for lower triangular martrices. The check for
triangularity is done for full matrices by testing for zero elements and for
sparse matrices by accessing the sparse data structure.

3 If A is a permutation of a triangular matrix, then X is computed with a
permuted backsubstitution algorithm.

4 If A is symmetric, or Hermitian, and has positive diagonal elements,
then a Cholesky factorization is attempted (see chol). If A is found to be
positive definite, the Cholesky factorization attempt is successful and
requires less than half the time of a general factorization. Nonpositive
definite matrices are usually detected almost immediately, so this check
also requires little time. If successful, the Cholesky factorization is

2^x Error 2.^x 2
4
8

(x+i∗ y)' 1 - 4i 2 - 5i 3 - 6i

(x+i∗ y).' 1 + 4i 2 + 5i 3 + 6i

Matrix Operations Array Operations

Arithmetic Operators + - * / \ ^ '

2-16

A = R'∗ R

where R is upper triangular. The solution X is computed by solving two
triangular systems,
X = R\(R'\B)

If A is sparse, a symmetric minimum degree preordering is applied (see
symmmd and spparms). The algorithm is:
perm = symmmd(A); % Symmetric minimum degree reordering
R = chol(A(perm,perm)); % Cholesky factorization
Y = R'\B(perm); % Lower triangular solve
X(perm,:) = R\Y; % Upper triangular solve

5 If A is Hessenberg, but not sparse, it is reduced to an upper triangular
matrix and that system is solved via substitution.

6 If A is square, and does not satisfy criteria 1 through 5, then a general
triangular factorization is computed by Gaussian elimination with partial
pivoting (see lu). This results in
A = L∗ U

where L is a permutation of a lower triangular matrix and U is an upper
triangular matrix. Then X is computed by solving two permuted triangular
systems.
X = U\(L\B)

If A is sparse, then UMFPACK is used to compute X. The computations
result in
P*A*Q = L*U

where P is a row permutaion matrix and Q is a column reordering matrix.
Then X = Q*(U\L\(P*B)).

7 If A is not square, then Householder reflections are used to compute an
orthogonal-triangular factorization.
A∗ P = Q∗ R

where P is a permutation, Q is orthogonal and R is upper triangular (see qr).
The least squares solution X is computed with

Arithmetic Operators + - * / \ ^ '

2-17

X = P∗ (R\(Q'∗ B))

If A is sparse, then MATLAB computes a least squares solution using the
sparse qr factorization of A.

Note For sparse matrices, to see information about choice of algorithm and
storage allocation, set the spparms parameter 'spumoni' = 1.

Note Backslash is not implemented for sparse matrices A that are complex
but not square.

MATLAB uses LAPACK routines to compute these matrix factorizations:

Diagnostics • From matrix division, if a square A is singular:
Warning: Matrix is singular to working precision.

• From element-wise division, if the divisor has zero elements:

Matrix Real Complex

Sparse square banded with band
density > 'bandden'.

DGBTRF, DGBTRS ZGBTRF,
ZGBTRS

Full square, symmetric (Hermitian)
positive definite

DLANGE, DPOTRF,
DPOTRS, DPOCON

ZLANGE, ZPOTRF,
ZPOTRS ZPOCON

Full square, general case DLANGE, DGESV,
DGECON

ZLANGE, ZGESV,
ZGECON

Full non-square DGEQP3, DORMQR,
DTRTRS

ZGEQP3, ZORMQR,
ZTRTRS

For other cases (sparse, triangular and Hessenberg) MATLAB does not use
LAPACK.

Arithmetic Operators + - * / \ ^ '

2-18

Warning: Divide by zero.

Matrix division and element-wise division may produce NaNs or Infs where
appropriate.

• If the inverse was found, but is not reliable:
Warning: Matrix is close to singular or badly scaled.
 Results may be inaccurate. RCOND = xxx

• From matrix division, if a nonsquare A is rank deficient:
Warning: Rank deficient, rank = xxx tol = xxx

See Also chol, det, inv, lu, orth, permute, ipermute, qr, rref

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

[2] Davis, T.A., UMFPACK Version 4.0 User Guide
(http://www.cise.ufl.edu/research/sparse/umfpack/v4.0/UserGuide.pdf),
Dept. of Computer and Information Science and Engineering, Univ. of Florida,
Gainesville, FL, 2002.

Relational Operators < > <= >= == ~=

2-19

2Relational Operators < > <= >= == ~=Purpose Relational operations

Syntax A < B
A > B
A <= B
A >= B
A == B
A ~= B

Description The relational operators are <, >, <=, >=, ==, and ~=. Relational operators
perform element-by-element comparisons between two arrays. They return a
logical array of the same size, with elements set to true (1) where the relation
is true, and elements set to false (0) where it is not.

The operators <, >, <=, and >= use only the real part of their operands for the
comparison. The operators == and ~= test real and imaginary parts.

To test if two strings are equivalent, use strcmp, which allows vectors of
dissimilar length to be compared.

Examples If one of the operands is a scalar and the other a matrix, the scalar expands to
the size of the matrix. For example, the two pairs of statements:

X = 5; X >= [1 2 3; 4 5 6; 7 8 10]
X = 5∗ ones(3,3); X >= [1 2 3; 4 5 6; 7 8 10]

produce the same result:

ans =

1 1 1
1 1 0
0 0 0

See Also all, any, find, strcmp

The logical operators &, |, ~

Logical Operators, Element-wise & | ~

2-20

2Logical Operators, Element-wise & | ~Purpose Element-wise logical operations on arrays

Syntax A & B
A | B
~A

Description The symbols &, |, and ~ are the logical array operators AND, OR, and NOT. They
work element-by-element on arrays, with 0 representing logical false (F), and
anything nonzero representing logical true (T). The logical operators return a
logical array with elements set to true (1) or false (0), as appropriate.

The & operator does a logical AND, the | operator does a logical OR, and ~A
complements the elements of A. The function xor(A,B) implements the
exclusive OR operation. The truth table for these operators and functions is
shown below.

The precedence for the logical operators with respect to each other is

 Inputs and or not xor
A B A & B A | B ~A xor(A,B)

0 0 0 0 1 0

0 1 0 1 1 1

1 0 0 1 0 1

1 1 1 1 0 0

Operator Operation Priority

~ NOT Highest

& Element-wise AND

| Element-wise OR

&& Short-circuit AND

|| Short-circuit OR Lowest

Logical Operators, Element-wise & | ~

2-21

Remarks MATLAB always gives the & operator precedence over the | operator. Although
MATLAB typically evaluates expressions from left to right, the expression
a|b&c is evaluated as a|(b&c). It is a good idea to use parentheses to explicitly
specify the intended precedence of statements containing combinations of &
and |.

These logical operators have M-file function equivalents, as shown.

Examples This example shows the logical OR of the elements in the vector u with the
corresponding elements in the vector v:

u = [0 0 1 1 0 1];
v = [0 1 1 0 0 1];
u | v

ans =
 0 1 1 1 0 1

See Also all, any, find, logical, xor, true, false

Logical Operators, Short-circuit: &&, ||

Relational Operators: <, <=, >, >=, ==, ~=

Logical Operation Equivalent Function

A & B and(A,B)

A | B or(A,B)

~A not(A)

Logical Operators, Short-circuit && ||

2-22

2Logical Operators, Short-circuit && ||Purpose Logical operations, with short-circuiting capability

Syntax A && B
A || B

Description The symbols && and || are the logical AND and OR operators used to evaluate
logical expressions. Use && and || in the evaluation of compound expressions
of the form

expression_1 && expression_2

where expression_1 and expression_2 each evaluate to a scalar, logical
result.

The && and || operators support short-circuiting. This means that the second
operand is evaluated only when the result is not fully determined by the first
operand. See “Short-circuit Operators” in the MATLAB documentation for a
discussion on short-circuiting with && and ||.

Note Always use the && and || operators when short-circuiting is required.
Using the element-wise operators (& and |) for short-circuiting may yield
unexpected results.

Examples In the following statement, it doesn’t make sense to evaluate the relation on
the right if the divisor, b, is zero. The test on the left is put in to avoid
generating a warning under these circumstances:

x = (b ~= 0) && (a/b > 18.5)

By definition, if any operands of an AND expression are false, the entire
expression must be false. So, if (b ~= 0) evaluates to false, MATLAB
assumes the entire expression to be false and terminates its evaluation of the
expression early. This avoids the warning that would be generated if MATLAB
were to evaluate the operand on the right.

Logical Operators, Short-circuit && ||

2-23

See Also all, any, find, logical, xor, true, false

Logical operators, Element-wise: &, |, ~

Relational Operators: <, <=, >, >=, ==, ~=

Special Characters [] () {} = ' , ; % !

2-24

2Special Characters [] () {} = ' , ; % !Purpose Special characters

Syntax [] () {} = ' , ; % !

Description
[] Brackets are used to form vectors and matrices. [6.9 9.64 sqrt(-1)]

is a vector with three elements separated by blanks. [6.9, 9.64, i]
is the same thing. [1+j 2-j 3] and [1 +j 2 -j 3] are not the same.
The first has three elements, the second has five.
[11 12 13; 21 22 23] is a 2-by-3 matrix. The semicolon ends the
first row.
Vectors and matrices can be used inside [] brackets. [A B;C] is
allowed if the number of rows of A equals the number of rows of B and
the number of columns of A plus the number of columns of B equals the
number of columns of C. This rule generalizes in a hopefully obvious
way to allow fairly complicated constructions.
A = [] stores an empty matrix in A. A(m,:) = [] deletes row m of A.
A(:,n) = [] deletes column n of A. A(n) = [] reshapes A into a
column vector and deletes the third element.
[A1,A2,A3...] = function assigns function output to multiple
variables.
For the use of [and] on the left of an “=” in multiple assignment
statements, see lu, eig, svd, and so on.

{ } Curly braces are used in cell array assignment statements. For
example,
A(2,1) = {[1 2 3; 4 5 6]}, or A{2,2} = ('str'). See help paren
for more information about { }.

Special Characters [] () {} = ' , ; % !

2-25

() Parentheses are used to indicate precedence in arithmetic expressions
in the usual way. They are used to enclose arguments of functions in
the usual way. They are also used to enclose subscripts of vectors and
matrices in a manner somewhat more general than usual. If X and V
are vectors, then X(V) is [X(V(1)), X(V(2)), ..., X(V(n))]. The
components of V must be integers to be used as subscripts. An error
occurs if any such subscript is less than 1 or greater than the size of X.
Some examples are

• X(3) is the third element of X.

• X([1 2 3]) is the first three elements of X.

See help paren for more information about ().

If X has n components, X(n:–1:1) reverses them. The same indirect
subscripting works in matrices. If V has m components and W has n
components, then A(V,W) is the m-by-n matrix formed from the
elements of A whose subscripts are the elements of V and W. For
example, A([1,5],:) = A([5,1],:) interchanges rows 1 and 5 of A.

= Used in assignment statements. B = A stores the elements of A in B.
== is the relational equals operator. See the Relational Operators
page.

' Matrix transpose. X' is the complex conjugate transpose of X. X.' is
the nonconjugate transpose.

Quotation mark. 'any text' is a vector whose components are the
ASCII codes for the characters. A quotation mark within the text is
indicated by two quotation marks.

. Decimal point. 314/100, 3.14 and .314e1 are all the same.
Element-by-element operations. These are obtained using .∗ , .^ , ./,
or .\. See the Arithmetic Operators page.

. Field access. A.(field) and A(i).field, when A is a structure, access
the contents of field.

.. Parent directory. See cd.

... Continuation. Three or more points at the end of a line indicate
continuation.

Special Characters [] () {} = ' , ; % !

2-26

Remarks Some uses of special characters have M-file function equivalents, as shown:

See Also The arithmetic operators +, –, *, /, \, ^, '

The relational operators <, <=, >, >=, ==, ~=

The logical operators &, |, ~

, Comma. Used to separate matrix subscripts and function arguments.
Used to separate statements in multistatement lines. For
multi-statement lines, the comma can be replaced by a semicolon to
suppress printing.

; Semicolon. Used inside brackets to end rows. Used after an expression
or statement to suppress printing or to separate statements.

% Percent. The percent symbol denotes a comment; it indicates a logical
end of line. Any following text is ignored. MATLAB displays the first
contiguous comment lines in a M-file in response to a help command.

! Exclamation point. Indicates that the rest of the input line is issued
as a command to the operating system. On the PC, adding & to the end
of the ! command line, as in !dir &, causes the output to appear in a
separate window.

Horizontal concatenation [A,B,C...] horzcat(A,B,C...)

Vertical concatenation [A;B;C...] vertcat(A,B,C...)

Subscript reference A(i,j,k...) subsref(A,S). See help
subsref.

Subscript assignment A(i,j,k...)= B subsasgn(A,S,B). See help
subsasgn.

Colon :

2-27

2Colon :Purpose Create vectors, array subscripting, and for loop iterations

Description The colon is one of the most useful operators in MATLAB. It can create vectors,
subscript arrays, and specify for iterations.

The colon operator uses the following rules to create regularly spaced vectors:

where i,j, and k are all scalars.

Below are the definitions that govern the use of the colon to pick out selected
rows, columns, and elements of vectors, matrices, and higher-dimensional
arrays:

j:k is the same as [j,j+1,...,k]

j:k is empty if j > k

j:i:k is the same as [j,j+i,j+2i, ...,k]

j:i:k is empty if i > 0 and j > k or if i < 0 and j < k

A(:,j) is the j-th column of A

A(i,:) is the i-th row of A

A(:,:) is the equivalent two-dimensional array. For matrices this is
the same as A.

A(j:k) is A(j), A(j+1),...,A(k)

A(:,j:k) is A(:,j), A(:,j+1),...,A(:,k)

A(:,:,k) is the kth page of three-dimensional array A.

A(i,j,k,:) is a vector in four-dimensional array A. The vector includes
A(i,j,k,1), A(i,j,k,2), A(i,j,k,3), and so on.

A(:) is all the elements of A, regarded as a single column. On the
left side of an assignment statement, A(:) fills A, preserving
its shape from before. In this case, the right side must contain
the same number of elements as A.

Colon :

2-28

Examples Using the colon with integers,

D = 1:4

results in

D =
 1 2 3 4

Using two colons to create a vector with arbitrary real increments between the
elements,

E = 0:.1:.5

results in

E =
 0 0.1000 0.2000 0.3000 0.4000 0.5000

The command

A(:,:,2) = pascal(3)

generates a three-dimensional array whose first page is all zeros.

A(:,:,1) =
 0 0 0
 0 0 0
 0 0 0

A(:,:,2) =
 1 1 1
 1 2 3
 1 3 6

See Also for, linspace, logspace, reshape

abs

2-29

2absPurpose Absolute value and complex magnitude

Syntax Y = abs(X)

Description abs(X) returns an array Y such that each element of Y is the absolute value of
the corresponding element of X.

If X is complex, abs(X) returns the complex modulus (magnitude), which is the
same as

sqrt(real(X).^2 + imag(X).^2)

Examples abs(-5)

ans =
 5

abs(3+4i)

ans =
 5

See Also angle, sign, unwrap

acos

2-30

2acosPurpose Inverse cosine

Syntax Y = acos(X)

Description Y = acos(X) returns the inverse cosine (arccosine) for each element of X. For
real elements of X in the domain , acos(X) is real and in the range

. For real elements of X outside the domain , acos(X) is complex.

The acos function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse cosine function over the domain .

x = -1:.05:1;
plot(x,acos(x)), grid on

Definition The inverse cosine can be defined as

1 1,–[]
0 π,[] 1 1,–[]

1– x 1≤ ≤

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

cos 1– z() i– log z i 1 z2
–()

1
2

+=

acos

2-31

Algorithm acos uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also acosh, cos

acosh

2-32

2acoshPurpose Inverse hyperbolic cosine

Syntax Y = acosh(X)

Description Y = acosh(X) returns the inverse hyperbolic cosine for each element of X.

The acosh function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic cosine function over the domain .

x = 1:pi/40:pi;
plot(x,acosh(x)), grid on

Definition The hyperbolic inverse cosine can be defined as

Algorithm acosh uses FDLIBM, which was developed at SunSoft, a Sun Microsystems,
Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

1 x π≤ ≤

1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

cosh 1– z() log z z2 1–()

1
2

+=

acosh

2-33

See Also acos, cosh

acot

2-34

2acotPurpose Inverse cotangent

Syntax Y = acot(X)

Description Y = acot(X) returns the inverse cotangent (arccotangent) for each element of X.

The acot function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse cotangent over the domains and .

x1 = -2*pi:pi/30:-0.1;
x2 = 0.1:pi/30:2*pi;
plot(x1,acot(x1),x2,acot(x2)), grid on

Definition The inverse cotangent can be defined as

Algorithm acot uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

2π– x 0<≤ 0 x 2π≤<

−8 −6 −4 −2 0 2 4 6 8
−1.5

−1

−0.5

0

0.5

1

1.5

z()cot 1– 1
z

 tan 1–=

acot

2-35

See Also cot, acoth

acoth

2-36

2acothPurpose Inverse hyperbolic cotangent

Syntax Y = acoth(X)

Description Y = acoth(X) returns the inverse hyperbolic cotangent for each element of X.

The acoth function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic cotangent over the domains and
.

x1 = -30:0.1:-1.1;
x2 = 1.1:0.1:30;
plot(x1,acoth(x1),x2,acoth(x2)), grid on

Definition The hyperbolic inverse cotangent can be defined as

30– x 1–<≤
1 x 30≤<

−30 −20 −10 0 10 20 30
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

z()coth 1– 1
z

 tanh 1–=

acoth

2-37

Algorithm acoth uses FDLIBM, which was developed at SunSoft, a Sun Microsystems,
Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also acot, coth

acsc

2-38

2acscPurpose Inverse cosecant

Syntax Y = acsc(X)

Description Y = acsc(X) returns the inverse cosecant (arccosecant) for each element of X.

The acsc function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse cosecant over the domains and .

x1 = -10:0.01:-1.01;
x2 = 1.01:0.01:10;
plot(x1,acsc(x1),x2,acsc(x2)), grid on

Definition The inverse cosecant can be defined as

Algorithm acsc uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

10– x 1–<≤ 1 x 10≤<

−10 −5 0 5 10
−1.5

−1

−0.5

0

0.5

1

1.5

z()csc 1– 1
z

 sin 1–=

acsc

2-39

See Also csc, acsch

acsch

2-40

2acschPurpose Inverse cosecant and inverse hyperbolic cosecant

Syntax Y = acsch(X)

Description Y = acsch(X) returns the inverse hyperbolic cosecant for each element of X.

The acsch function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic cosecant over the domains and
.

x1 = -20:0.01:-1;
x2 = 1:0.01:20;
plot(x1,acsch(x1),x2,acsch(x2)), grid on

Definition The hyperbolic inverse cosecant can be defined as

20– x 1–≤ ≤
1 x 20≤ ≤

−20 −15 −10 −5 0 5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

z()csch 1– 1
z

 sinh 1–=

acsch

2-41

Algorithm acsc uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also acsc, csch

actxcontrol

2-42

2actxcontrolPurpose Create a COM control in a figure window

Syntax h = actxcontrol (progid [, position [, fig_handle ...
[, callback | {event1 eventhandler1; event2 eventhandler2; ...}
[, filename]]]])

Arguments progid
String that is the name of the control to create. The control vendor provides this
string.

position
Position vector containing the x and y location and the xsize and ysize of the
control, expressed in pixel units as [x y xsize ysize]. Defaults to [20 20 60
60].

fig_handle
Handle Graphics handle of the figure window in which the control is to be
created. If the control should be invisible, use the handle of an invisible figure
window. Defaults to gcf.

callback
Name of an M-function that accepts a variable number of arguments. This
function will be called whenever the control triggers an event. Each argument
is converted to a MATLAB string. See the section, “Writing Event Handlers” in
the External Interfaces documentation for more information on handling
control events.

event
Triggered event specified by either number or name.

eventhandler
Name of an M-function that accepts a variable number of arguments. This
function will be called whenever the control triggers the event associated with
it. See “Writing Event Handlers” in the External Interfaces documentation for
more information on handling control events.

filename
The name of a file to which a previously created control has been saved. When
you specify filename, MATLAB creates a new control using the position,
handle, and event/eventhandler arguments, and then initializes the control
from the specified file. The progid argument in actxcontrol must match the
progid of the saved control.

actxcontrol

2-43

Description Create a COM control at a particular location within a figure window. If the
parent figure window is invisible, the control will be invisible. The returned
COM object represents the default interface for the control. This interface must
be released through a call to release when it is no longer needed to free the
memory and resources used by the interface. Note that releasing the interface
does not delete the control itself (use the delete command to delete the
control.)

The strings specified in the callback, event, and eventhandler arguments are
not case sensitive.

Note There are two ways to handle events. You can create a single handler
(callback) for all events, or you can specify a cell array that contains pairs of
events and event handlers. In the cell array format, specify events by name in
a quoted string. There is no limit to the number of pairs that can be specified
in the cell array. Although using the single callback method may be easier in
some cases, using the cell array technique creates more efficient code that
results in better performance.

For an example callback event handler, see the file sampev.m in the
toolbox\matlab\winfun\comcli directory.

Examples Basic Control Methods
Create a control that runs Microsoft’s Calendar application:

f = figure('pos',[300 300 500 500]);
cal = actxcontrol('mscal.calendar', [0 0 500 500], f)
cal =
 COM.mscal.calendar

Call the get method on cal to list all properties of the Calendar:

get(cal)
 BackColor: 2.1475e+009
 Day: 23
 DayFont: [1x1 Interface.mscal.calendar.DayFont]
 Value: '8/20/2001'
 .

actxcontrol

2-44

 .

Read just one property to record today’s date:

date = get(cal, 'Value')
date =
 8/23/2001

Set the Day property to a new value:

set(cal, 'Day', 5);
date = get(cal, 'Value')
date =
 8/5/2001

Calling invoke with no arguments lists all available methods:

meth = invoke(cal)
meth =
 NextDay: 'HRESULT NextDay(handle)'
 NextMonth: 'HRESULT NextMonth(handle)'
 NextWeek: 'HRESULT NextWeek(handle)'
 NextYear: 'HRESULT NextYear(handle)'
 .
 .

Invoke the NextWeek method to advance the current date by one week:

NextWeek(cal);
date = get(cal, 'Value')
date =
 8/12/2001

Call events to list all Calendar events that can be triggered:

events(cal)
ans =
 Click = void Click()
 DblClick = void DblClick()
 KeyDown = void KeyDown(int16 KeyCode, int16 Shift)
 KeyPress = void KeyPress(int16 KeyAscii)
 KeyUp = void KeyUp(int16 KeyCode, int16 Shift)
 BeforeUpdate = void BeforeUpdate(int16 Cancel)
 AfterUpdate = void AfterUpdate()

actxcontrol

2-45

 NewMonth = void NewMonth()
 NewYear = void NewYear()

Set Up Event Handling
See the section, Sample Event Handlers in the External Interfaces
documentation for examples of event handler functions and how to register
them with MATLAB.

See Also actxserver, release, delete, save, load

actxserver

2-46

2actxserverPurpose Create a COM Automation server and return a COM object for the server’s
default interface

Syntax h = actxserver (progid [, machinename])

Arguments progid
This is a string that is the name of the control to instantiate. This string is
provided by the control or server vendor and should be obtained from the
vendor’s documentation. For example, the progid for MATLAB is
matlab.application.

machinename
This is the name of a remote machine on which the server is to be run. This
argument is optional and is used only in environments that support
Distributed Component Object Model (DCOM) — see “Using MATLAB As a
DCOM Server Client” in the External Interfaces documentation. This can be
an IP address or a DNS name.

Description Create a COM Automation server and return a COM object that represents the
server’s default interface. Local/Remote servers differ from controls in that
they are run in a separate address space (and possibly on a separate machine)
and are not part of the MATLAB process. Additionally, any user interface that
they display will be in a separate window and will not be attached to the
MATLAB process. Examples of local servers are Microsoft Excel and Microsoft
Word. There is currently no support for events generated from automation
servers.

Examples Launch Microsoft Excel and make the main frame window visible:

e = actxserver ('Excel.Application')
e =
 COM.excel.application
set(e, 'Visible', 1);

actxserver

2-47

Call the get method on the excel object to list all properties of the application:

get(e)
ans =

Application: [1x1 Interface.excel.application.Application]
 Creator: 'xlCreatorCode'
 Parent: [1x1 Interface.Excel.Application.Parent]

Workbooks: [1x1 Interface.excel.application.Workbooks]
 UsableHeight: 666.7500
 .
 .

Create an interface:

eWorkbooks = get(e, 'Workbooks')
eWorkbooks =
 Interface.excel.application.Workbooks

List all methods for that interface by calling invoke with just the handle
argument:

invoke(eWorkbooks)
ans =
 Add: 'handle Add(handle, [Optional]Variant)'
 Close: 'void Close(handle)'
 Item: 'handle Item(handle, Variant)'
 Open: 'handle Open(handle, string, [Optional]Variant)'

OpenText: 'void OpenText(handle, string, [Optional]Variant)'

Invoke the Add method on workbooks to add a new workbook, also creating a
new interface:

w = Add(eWorkbooks)
w =
 Interface.Excel.Application.Workbooks.Add

Quit the application and delete the object:

Quit(e);
delete(e);

See Also actxcontrol, release, delete, save, load

addframe

2-48

2addframePurpose Add a frame to an Audio Video Interleaved (AVI) file.

Syntax aviobj = addframe(aviobj,frame)
aviobj = addframe(aviobj,frame1,frame2,frame3,...)
aviobj = addframe(aviobj,mov)
aviobj = addframe(aviobj,h)

Description aviobj = addframe(aviobj,frame) appends the data in frame to the AVI file
identified by aviobj, which was created by a previous call to avifile. frame
can be either an indexed image (m-by-n) or a truecolor image (m-by-n-by-3) of
double or uint8 precision. If frame is not the first frame added to the AVI file,
it must be consistent with the dimensions of the previous frames.

addframe returns a handle to the updated AVI file object, aviobj. For example,
addframe updates the TotalFrames property of the AVI file object each time it
adds a frame to the AVI file.

aviobj = addframe(aviobj,frame1,frame2,frame3,...) adds multiple
frames to an AVI file.

aviobj = addframe(aviobj,mov) appends the frame(s) contained in the
MATLAB movie, mov, to the AVI file, aviobj. MATLAB movies that store
frames as indexed images use the colormap in the first frame as the colormap
for the AVI file, unless the colormap has been previously set.

aviobj = addframe(aviobj,h) captures a frame from the figure or axis handle
h, and appends this frame to the AVI file. addframe renders the figure into an
offscreen array before appending it to the AVI file. This ensures that the figure
is written correctly to the AVI file even if the figure is obscured on the screen
by another window or screen saver.

Note If an animation uses XOR graphics, you must use getframe to capture
the graphics into a frame of a MATLAB movie. You can then add the frame to
an AVI movie using the addframe syntax, aviobj = addframe(aviobj,mov).
See the example for an illustration.

Example This example calls addframe to add frames to the AVI file object, aviobj.

addframe

2-49

fig=figure;
set(fig,'DoubleBuffer','on');
set(gca,'xlim',[-80 80],'ylim',[-80 80],...

'nextplot','replace','Visible','off')

aviobj = avifile('example.avi')

x = -pi:.1:pi;
radius = 0:length(x);
for i=1:length(x)

h = patch(sin(x)*radius(i),cos(x)*radius(i),...
[abs(cos(x(i))) 0 0]);

set(h,'EraseMode','xor');
frame = getframe(gca);
aviobj = addframe(aviobj,frame);

end

aviobj = close(aviobj);

 See Also avifile, close, movie2avi

addpath

2-50

2addpathPurpose Add directories to MATLAB search path

Graphical
Interface

As an alternative to the addpath function, use the Set Path dialog box. To open
it, select Set Path from the File menu in the MATLAB desktop.

Syntax addpath('directory')
addpath('dir','dir2','dir3' ...)
addpath('dir','dir2','dir3' ...'-flag')
addpath dir1 dir2 dir3 ... -flag

Description addpath('directory') prepends the specified directory to the current
MATLAB search path, that is, it adds them to the top of the path. Use the full
pathname for directory.

addpath('dir','dir2','dir3' ...) prepends all the specified directories to
the path. Use the full pathname for each dir.

addpath('dir','dir2','dir3' ...'-flag') either prepends or appends the
specified directories to the path depending on the value of flag.

addpath dir1 dir2 dir3 ... -flag is the unquoted form of the syntax.

Examples For the current path, viewed by typing path,

MATLABPATH
c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

you can add c:/matlab/mymfiles to the front of the path by typing

addpath('c:/matlab/mymfiles')

flag Argument Result

0 or begin Prepend specified directories

1 or end Append specified directories (add to bottom/end)

addpath

2-51

Verify that the files were added to the path by typing

path

and MATLAB returns

MATLABPATH
c:\matlab\mymfiles
c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

See Also path, pathtool, genpath, rehash, rmpath

addproperty (COM)

2-52

2addproperty (COM)Purpose Add custom property to COM object

Syntax addproperty(h, 'propertyname')

Arguments h
Handle for a COM object previously returned from actxcontrol, actxserver,
get, or invoke.

propertyname
A string specifying the name of the custom property to add to the object or
interface.

Description Add a custom property, propertyname, to the object or interface, h. You can
assign a value to that property using set.

Examples Create an mwsamp control and add a new property named Position to it. Assign
an array value to the property:

f = figure('pos', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
get(h)
 Label: 'Label'
 Radius: 20

addproperty(h, 'Position');
set(h, 'Position', [200 120]);
get(h)
 Label: 'Label'
 Radius: 20
 Position: [200 120]

get(h, 'Position')
ans =
 200 120

See Also deleteproperty, get, set, inspect

airy

2-53

2airyPurpose Airy functions

Syntax W = airy(Z)
W = airy(k,Z)
[W,ierr] = airy(k,Z)

Definition The Airy functions form a pair of linearly independent solutions to

The relationship between the Airy and modified Bessel functions is

where

Description W = airy(Z) returns the Airy function, , for each element of the complex
array Z.

W = airy(k,Z) returns different results depending on the value of k.

Z2

2

d

d W ZW– 0=

Ai Z() 1
π
--- Z 3⁄ K1 3⁄ ζ()=

Bi Z() Z 3⁄ I 1 3⁄– ζ() I1 3⁄ ζ()+[]=

ζ 2
3
---Z3 2⁄

=

k Returns

0 The same result as airy(Z)

1 The derivative,

2 The Airy function of the second kind,

3 The derivative,

Ai Z()

Ai ′ Z()

Bi Z()

Bi ′ Z()

airy

2-54

[W,ierr] = airy(k,Z) also returns completion flags in an array the same size
as W.

See Also besseli, besselj, besselk, bessely

References [1] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[2] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

ierr Description

0 airy succesfully computed the Airy function for this element.

1 Illegal arguments

2 Overflow. Returns Inf

3 Some loss of accuracy in argument reduction

4 Unacceptable loss of accuracy, Z too large

5 No convergence. Returns NaN

alim

2-55

2alimPurpose Set or query the axes alpha limits

Syntax alpha_limits = alim
alim([amin amax])
alim_mode = alim('mode')
alim('alim_mode')
alim(axes_handle,...)

Description alpha_limits = alim returns the alpha limits (the axes ALim property) of the
current axes.

alim([amin amax]) sets the alpha limits to the specified values. amin is the
value of the data mapped to the first alpha value in the alphamap, and amax is
the value of the data mapped to the last alpha value in the alphamap. Data
values in between are linearly interpolated across the alphamap, while data
values outside are clamped to either the first or last alphamap value,
whichever is closest.

alim_mode = alim('mode') returns the alpha limits mode (the axes ALimMode
property) of the current axes.

alim('alim_mode') sets the alpha limits mode on the current axes. alim_mode
can be:

• auto – MATLAB automatically sets the alpha limits based on the alpha data
of the objects in the axes.

• manual – MATLAB does not change the alpha limits.

alim(axes_handle,...) operates on the specified axes.

See Also alpha, alphamap, caxis

Axes ALim and ALimMode properties

Patch FaceVertexAlphaData property

Image and surface AlphaData properties

Transparency for related functions

Transparency in 3-D Visualization for examples

all

2-56

2allPurpose Test to determine if all elements are nonzero

Syntax B = all(A)
B = all(A,dim)

Description B = all(A) tests whether all the elements along various dimensions of an
array are nonzero or logical true (1).

If A is a vector, all(A) returns logical true (1) if all of the elements are nonzero,
and returns logical false (0) if one or more elements are zero.

If A is a matrix, all(A) treats the columns of A as vectors, returning a row
vector of 1s and 0s.

If A is a multidimensional array, all(A) treats the values along the first
non-singleton dimension as vectors, returning a logical condition for each
vector.

B = all(A,dim) tests along the dimension of A specified by scalar dim.

Examples Given,

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

then B = (A < 0.5) returns logical true (1) only where A is less than one half:

0 0 1 1 1 1 0

The all function reduces such a vector of logical conditions to a single
condition. In this case, all(B) yields 0.

This makes all particularly useful in if statements,

if all(A < 0.5)
do something

end

1 1 1
1 1 0

A

1 1 0

all(A,1)

1
0

all(A,2)

all

2-57

where code is executed depending on a single condition, not a vector of possibly
conflicting conditions.

Applying the all function twice to a matrix, as in all(all(A)), always reduces
it to a scalar condition.

all(all(eye(3)))
ans =
 0

See Also any, logical operators, relational operators, colon

Other functions that collapse an array’s dimensions include:

max, mean, median, min, prod, std, sum, trapz

allchild

2-58

2allchildPurpose Find all children of specified objects

Syntax child_handles = allchild(handle_list)

Description child_handles = allchild(handle_list) returns the list of all children
(including ones with hidden handles) for each handle. If handle_list is a
single element, allchild returns the output in a vector. Otherwise, the output is
a cell array.

Examples Compare the results returned by these two statements.

get(gca,'Children')
allchild(gca)

See Also findall, findobj

alpha

2-59

2alphaPurpose Set transparency properties for objects in current axes

Syntax alpha(face_alpha)
alpha(alpha_data)
alpha(alpha_data_mapping)
alpha(object_handle,...)

Description alpha sets one of three transparency properties, depending on what arguments
you specify with the call to this function.

FaceAlpha

alpha(face_alpha) set the FaceAlpha property of all image, patch, and
surface objects in the current axes. You can set face_alpha to:

• a scalar – set the FaceAlpha property to the specified value (for images, set
the AlphaData property to the specified value)

• 'flat' – set the FaceAlpha property to flat

• 'interp' – set the FaceAlpha property to interp

• 'texture' – set the FaceAlpha property to texture

• 'opaque' – set the FaceAlpha property to 1

• 'clear' – set the FaceAlpha property to 0

See Specifying a Single Transparency Value for more information.

AlphaData (Surface Objects)

alpha(alpha_data) sets the AlphaData property of all surface objects in the
current axes. You can set alpha_data to:

• a matrix the same size as CData – sets the AlphaData property to the
specified values

• 'x' – set the AlphaData property to be the same as XData

• 'y' – set the AlphaData property to be the same as YData

• 'z' – set the AlphaData property to be the same as ZData

• 'color' – set the AlphaData property to be the same as CData

alpha

2-60

• 'rand' – set the AlphaData property to a matrix of random values equal in
size to CData

AlphaData (Image Objects)

alpha(alpha_data) sets the AlphaData property of all image objects in the
current axes. You can set alpha_data to:

• a matrix the same size as CData – sets the AlphaData property to the
specified value

• 'x' – ignored

• 'y' – ignored

• 'z' – ignored

• 'color' – set the AlphaData property to be the same as CData

• 'rand' – set the AlphaData property to a matrix of random values equal in
size to CData

FaceVertexAlphaData (Patch Objects)

alpha(alpha_data) sets the FaceVertexAlphaData property of all patch
objects in the current axes. You can set alpha_data to:

• a matrix the same size as FaceVertexCData – sets the FaceVertexAlphaData
property to the specified value

• 'x' – set the FaceVertexAlphaData property to be the same as
Vertices(:,1)

• 'y' – set the FaceVertexAlphaData property to be the same as
Vertices(:,2)

• 'z' – set the FaceVertexAlphaData property to be the same as
Vertices(:,3)

• 'color' – set the FaceVertexAlphaData property to be the same as
FaceVertexCData

• 'rand' – set the FaceVertexAlphaData property to random values

See Mapping Data to Transparency for more information.

alpha

2-61

AlphaDataMapping

alpha(alpha_data_mapping) sets the AlphaDataMapping property of all
image, patch, and surface objects in the current axes. You can set
alpha_data_mapping to:

• 'scaled' – set the AlphaDataMapping property to scaled

• 'direct' – set the AlphaDataMapping property to direct

• 'none' – set the AlphaDataMapping property to none

alpha(object_handle,value) set the transparency property only on the
object identified by object_handle

See Also alim, alphamap

Image: AlphaData, AlphaDataMapping

Patch: FaceAlpha, FaceVertexAlphaData, AlphaDataMapping

Surface: FaceAlpha, AlphaData, AlphaDataMapping

Transparency for related functions

Transparency in 3-D Visualization for examples

alphamap

2-62

2alphamapPurpose Specify the figure alphamap (transparency)

Syntax alphamap(alpha_map)
alphamap('parameter')
alphamap('parameter',length)
alphamap('parameter’,delta)
alphamap(figure_handle,...)
alpha_map = alphamap
alpha_map = alphamap(figure_handle)
alpha_map = alphamap(’parameter’)

Description alphamap enables you to set or modify a figure’s Alphamap property. Unless you
specify a figure handle as the first argument, alphamap operates on the current
figure.

alphamap(alpha_map) set the AlphaMap of the current figure to the specified
m-by-1 array of alpha values.

alphamap('parameter') create a new or modify the current alphamap. You
can specify the following parameters:

• default – set the AlphaMap property to the figure’s default alphamap

• rampup – create a linear alphamap with increasing opacity (default length
equals the current alphamap length)

• rampdown – create a linear alphamap with decreasing opacity (default length
equals the current alphamap length)

• vup – create an alphamap that is opaque in the center and becomes more
transparent linearly towards the beginning and end (default length equals
the current alphamap length)

• vdown – create an alphamap that is transparent in the center and becomes
more opaque linearly towards the beginning and end (default length equals
the current alphamap length)

• increase – modify the alphamap making it more opaque (default delta is .1,
which is added to the current values)

• decrease – modify the alphamap making it more transparent (default delta
is .1, which is subtracted from the current values)

alphamap

2-63

• spin – rotate the current alphamap (default delta is 1; note that delta must
be an integer)

alphamap('parameter',length) creates a new alphamap with the length
specified by length (used with parameters: rampup, rampdown, vup, vdown)

alphamap('parameter',delta) modifies the existing alphamap using the
value specified by delta (used with parameters: increase, decrease, spin).

alphamap(figure_handle,...) performs the operation on the alphamap of the
figure identified by figure_handle.

alpha_map = alphamap return the current alphamap.

alpha_map = alphamap(figure_handle) returns the current alphamap from
the figure identified by figure_handle.

alpha_map = alphamap(’parameter’) retruns the alphamap modified by the
parameter, but does not set the AlphaMap property.

See Also alim, alpha

Image: AlphaData, AlphaDataMapping

Patch: FaceAlpha, AlphaData, AlphaDataMapping

Surface: FaceAlpha, AlphaData, AlphaDataMapping

Transparency for related functions

Transparency in 3-D Visualization for examples

angle

2-64

2anglePurpose Phase angle

Syntax P = angle(Z)

Description P = angle(Z) returns the phase angles, in radians, for each element of
complex array Z. The angles lie between .

For complex Z, the magnitude R and phase angle theta are given by

R = abs(Z)
theta = angle(Z)

and the statement

Z = R.*exp(i*theta)

converts back to the original complex Z.

Examples Z = [1 - 1i 2 + 1i 3 - 1i 4 + 1i
 1 + 2i 2 - 2i 3 + 2i 4 - 2i
 1 - 3i 2 + 3i 3 - 3i 4 + 3i
 1 + 4i 2 - 4i 3 + 4i 4 - 4i]

P = angle(Z)

P =
 -0.7854 0.4636 -0.3218 0.2450
 1.1071 -0.7854 0.5880 -0.4636
 -1.2490 0.9828 -0.7854 0.6435
 1.3258 -1.1071 0.9273 -0.7854

Algorithm The angle function can be expressed as angle(z) = imag(log(z)) =
atan2(imag(z),real(z)).

See Also abs, atan2, unwrap

π±

ans

2-65

2ansPurpose The most recent answer

Syntax ans

Description MATLAB creates the ans variable automatically when you specify no output
argument.

Examples The statement

2+2

is the same as

ans = 2+2

See Also display

any

2-66

2anyPurpose Test for any nonzeros

Syntax B = any(A)
B = any(A,dim)

Description B = any(A) tests whether any of the elements along various dimensions of an
array are nonzero or logical true (1).

If A is a vector, any(A) returns logical true (1) if any of the elements of A are
nonzero, and returns logical false (0) if all the elements are zero.

If A is a matrix, any(A) treats the columns of A as vectors, returning a row
vector of 1s and 0s.

If A is a multidimensional array, any(A) treats the values along the first
non-singleton dimension as vectors, returning a logical condition for each
vector.

B = any(A,dim) tests along the dimension of A specified by scalar dim.

Examples Given,

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

then B = (A < 0.5) returns logical true (1) only where A is less than one half:

0 0 1 1 1 1 0

The any function reduces such a vector of logical conditions to a single
condition. In this case, any(B) yields 1.

This makes any particularly useful in if statements,

if any(A < 0.5)
do something

end

1 0 1
0 0 0

A

1 0 1

any(A,1)

1
0

any(A,2)

any

2-67

where code is executed depending on a single condition, not a vector of possibly
conflicting conditions.

Applying the any function twice to a matrix, as in any(any(A)), always reduces
it to a scalar condition.

any(any(eye(3)))
ans =
 1

See Also all, logical operators, relational operators, colon

Other functions that collapse an array’s dimensions include:

max, mean, median, min, prod, std, sum, trapz

area

2-68

2areaPurpose Area fill of a two-dimensional plot

Syntax area(Y)
area(X,Y)
area(...,ymin)
area(...,'PropertyName',PropertyValue,...)
h = area(...)

Description An area plot displays elements in Y as one or more curves and fills the area
beneath each curve. When Y is a matrix, the curves are stacked showing the
relative contribution of each row element to the total height of the curve at each
x interval.

area(Y) plots the vector Y or the sum of each column in matrix Y. The x-axis
automatically scales depending on length(Y) when Y is a vector and on
size(Y,1)when Y is a matrix.

area(X,Y) plots Y at the corresponding values of X. If X is a vector, length(X)
must equal length(Y) and X must be monotonic. If X is a matrix, size(X) must
equal size(Y) and each column in X must be monotonic. To make a vector or
matrix monotonic, use sort.

area(...,ymin) specifies the lower limit in the y direction for the area fill. The
default ymin is 0.

area(...,'PropertyName',PropertyValue,...) specifies property name and
property value pairs for the patch graphics object created by area.

h = area(...) returns handles of patch graphics objects. area creates one
patch object per column in Y.

Remarks area creates one curve from all elements in a vector or one curve per column in
a matrix. The colors of the curves are selected from equally spaced intervals
throughout the entire range of the colormap.

Examples Plot the values in Y as a stacked area plot.

Y = [1, 5, 3;
3, 2, 7;

area

2-69

1, 5, 3;
2, 6, 1];

area(Y)
grid on
colormap summer
set(gca,'Layer','top')
title 'Stacked Area Plot'

See Also plot

“Area, Bar, and Pie Plots” for related functions

Area Graphs for more examples

Stacked Area Plot

1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

asec

2-70

2asecPurpose Inverse secant

Syntax Y = asec(X)

Description Y = asec(X) returns the inverse secant (arcsecant) for each element of X.

The asec function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse secant over the domains and .

x1 = -5:0.01:-1;
x2 = 1:0.01:5;
plot(x1,asec(x1),x2,asec(x2)), grid on

Definition The inverse secant can be defined as

Algorithm asec uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

1 x 5≤ ≤ 5– x 1–≤ ≤

−5 0 5
0

0.5

1

1.5

2

2.5

3

3.5

z()sec 1– 1
z

 cos 1–=

asec

2-71

See Also asech, sec

asech

2-72

2asechPurpose Inverse hyperbolic secant

Syntax Y = asech(X)

Description Y = asech(X) returns the inverse hyperbolic secant for each element of X.

The asech function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic secant over the domain .

x = 0.01:0.001:1;
plot(x,asech(x)), grid on

Definition The hyperbolic inverse secant can be defined as

Algorithm asech uses FDLIBM, which was developed at SunSoft, a Sun Microsystems,
Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

0.01 x 1≤ ≤

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

z()sech 1– 1
z

 cosh 1–=

asech

2-73

See Also asec, sech

asin

2-74

2asinPurpose Inverse sine

Syntax Y = asin(X)

Description Y = asin(X) returns the inverse sine (arcsine) for each element of X. For real
elements of X in the domain , asin(X) is in the range . For
real elements of x outside the range , asin(X) is complex.

The asin function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse sine function over the domain .

x = -1:.01:1;
plot(x,asin(x)), grid on

Definition The inverse sine can be defined as

1 1,–[] π– 2⁄ π 2⁄,[]
1 1,–[]

1– x 1≤ ≤

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

sin 1– z() i– log iz 1 z2
–()

1
2

+=

asin

2-75

Algorithm asin uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also sin, asinh

asinh

2-76

2asinhPurpose Inverse hyperbolic sine

Syntax Y = asinh(X)

Description Y = asinh(X) returns the inverse hyperbolic sine for each element of X.

The asinh function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic sine function over the domain .

x = -5:.01:5;
plot(x,asinh(x)), grid on

Definition The hyperbolic inverse sine can be defined as

5– x 5≤ ≤

−5 0 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

sinh 1– z() log z z2 1+()

1
2

+=

asinh

2-77

Algorithm asinh uses FDLIBM, which was developed at SunSoft, a Sun Microsystems,
Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also asin, sinh

assignin

2-78

2assigninPurpose Assign a value to a workspace variable

Syntax assignin(ws,'var',val)

Description assignin(ws,'var',val) assigns the value val to the variable var in the
workspace ws. var is created if it doesn’t exist. ws can have a value of 'base' or
'caller' to denote the MATLAB base workspace or the workspace of the caller
function.

The assignin function is particularly useful for these tasks:

• Exporting data from a function to the MATLAB workspace

• Within a function, changing the value of a variable that is defined in the
workspace of the caller function (such as a variable in the function argument
list)

Remarks The MATLAB base workspace is the workspace that is seen from the MATLAB
command line (when not in the debugger). The caller workspace is the
workspace of the function that called the M-file. Note the base and caller
workspaces are equivalent in the context of an M-file that is invoked from the
MATLAB command line.

Examples This example creates a dialog box for the image display function, prompting a
user for an image name and a colormap name. The assignin function is used
to export the user–entered values to the MATLAB workspace variables imfile
and cmap.

prompt = {'Enter image name:','Enter colormap name:'};
title = 'Image display - assignin example';
lines = 1;
def = {'my_image','hsv'};
answer = inputdlg(prompt,title,lines,def);
assignin('base','imfile',answer{1});
assignin('base','cmap',answer{2});

assignin

2-79

See Also evalin

atan

2-80

2atanPurpose Inverse tangent

Syntax Y = atan(X)

Description Y = atan(X) returns the inverse tangent (arctangent) for each element of X.
For real elements of X, atan(X) is in the range .

The atan function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Examples Graph the inverse tangent function over the domain .

x = -20:0.01:20;
plot(x,atan(x)), grid on

Definition The inverse tangent can be defined as

Algorithm atan uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

π– 2⁄ π 2⁄,[]

20– x 20≤ ≤

−20 −15 −10 −5 0 5 10 15 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

z()tan 1– i
2
---- i z+

i z–

 log=

atan

2-81

See Also atan2, tan, atanh

atan2

2-82

2atan2Purpose Four-quadrant inverse tangent

Syntax P = atan2(Y,X)

Description P = atan2(Y,X) returns an array P the same size as X and Y containing the
element-by-element, four-quadrant inverse tangent (arctangent) of the real
parts of Y and X. Any imaginary parts are ignored.

Elements of P lie in the closed interval [-pi,pi], where pi is the MATLAB
floating-point representation of . atan uses sign(Y) and sign(X) to
determine the specific quadrant.

atan2(Y,X) contrasts with atan(Y/X), whose results are limited to the interval
, or the right side of this diagram.

Examples Any complex number is converted to polar coordinates with

r = abs(z)
theta = atan2(imag(z),real(z))

For example,

z = 4 + 3i;
r = abs(z)
theta = atan2(imag(z),real(z))

r =
 5

π

π/2

π
–π 0

x

y

–π/2

π– 2⁄ π 2⁄,[]

z x iy+=

atan2

2-83

theta =
 0.6435

This is a common operation, so MATLAB provides a function, angle(z), that
computes theta = atan2(imag(z),real(z)).

To convert back to the original complex number

z = r *exp(i *theta)
z =

 4.0000 + 3.0000i

Algorithm atan2 uses FDLIBM, which was developed at SunSoft, a Sun Microsystems,
Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also angle, atan, atanh

atanh

2-84

2atanhPurpose Inverse hyperbolic tangent

Syntax Y = atanh(X)

Description The atanh function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Y = atanh(X) returns the inverse hyperbolic tangent for each element of X.

Examples Graph the inverse hyperbolic tangent function over the domain .

x = -0.99:0.01:0.99;
plot(x,atanh(x)), grid on

Definition The hyperbolic inverse tangent can be defined as

Algorithm atanh uses FDLIBM, which was developed at SunSoft, a Sun Microsystems,
Inc. business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

1– x 1< <

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

z()tanh 1– 1
2
---=

1 z+
1 z–

 log

atanh

2-85

See Also atan2, atan, tanh

audiodevinfo

2-86

2audiodevinfoPurpose Obtain information on installed audio devices

Syntax d = audiodevinfo
audiodevinfo(io)
audiodevinfo(io,ID)
audiodevinfo(io,ID,'DriverVersion')
audiodevinfo(io,name)
audiodevinfo(io,rate,bits,chans)
audiodevinfo(io,ID,rate,bits,chans)

Description Note This function is for use only with 32-bit, Windows-based machines.

d = audiodevinfo returns a structure, d with an input field and an output
field. Each field is an array of structures that contains information about the
system’s audio input and output devices. Each array contains these fields: a
string with the name of the device, a string with the version of the installed
driver (DriverVersion), and the device’s numeric ID.

audiodevinfo(io) returns the number of input (io=1) or output (io=0) audio
devices on the system.

audiodevinfo(io,ID) returns the name of the audio device specified by its ID.

audiodevinfo(io,ID,'DriverVersion') returns a string containing the
driver version of the specified audio device.

audiodevinfo(io,name) returns the device ID specified by name. You can enter
a partial name, but the case must match. If no device with the specified name is
found, -1 is returned.

audiodevinfo(io,rate,bits,chans) returns the device ID of the first audio
device that supports the specified sample rate, number of bits, and number of
channels, chans. If no matching device is found, -1 is returned.

audiodevinfo(io,ID,rate,bits,chans) returns 1 if the device, specified by
its ID, supports the specified sample rate, number of bits, and number of
channels, chans. If the device does not support the specified parameters, 0 is
returned.

audiodevinfo

2-87

See Also audioplayer, audiorecorder

audioplayer

2-88

2audioplayerPurpose Create an audio player object

Syntax y = audioplayer(x,Fs)
y = audioplayer(x,Fs,nbits)
y = audioplayer(r)
y = audioplayer(r,id)

Description Note audioplayer is available only on Windows-based machines. On 32-bit,
Windows-based machines with an installed 24-bit audio device, audioplayer
supports 24-bit playback.

To use all of the audioplayer features, your system needs a properly installed
and configured sound card with 8- and 16-bit I/O, two channels, and support
for sampling rates of up to 48 kHz.

y = audioplayer(x,Fs) returns a handle to an audio player object y using
input audio signal x. The input signal x can be a vector or two-dimensional
array containing single, double, int8, uint8, or int16 MATLAB data types.
The input sample values for single and double data must be between -1 and
1. For int8, uint8, and int16 data, the ranges of sample values are -128 to 127,
0 to 255, and -32768 to 32767, respectively.

Fs is the sampling rate in Hz to use for playback. Valid values for Fs depend on
the specific audio hardware installed. Typical values supported by most sound
cards are 8000, 11025, 22050, and 44100 Hz.

y = audioplayer(x,Fs,nbits) returns a handle to an audio player object
where nbits is the bit quantization to use for single or double data types. This
is an optional parameter with a default value of 16. Valid values for nbits are
8 and 16 (and 24, if a 24-bit device is installed). You do not need to specify nbits
for int8, uint8 or int16 data because the quantization is set automatically to
8 or 16, respectively.

y = audioplayer(r) returns a handle to an audio player object from an
audiorecorder object r.

y = audioplayer(r,id) returns a handle to an audio player object from an
audiorecorder object r, using the specified audio device id for output.

audioplayer

2-89

After you create an audio player object, you can use the methods listed below
on that object. y represents the name of the returned audio player.

Audio player objects have the properties listed below. To set a user-settable
property use this syntax:

set(y, 'property1', value,'property2',value,...)

To view a read-only property

get(y,’property’) % Displays ‘property’ setting.

Method Description

play(y)
play(y,start)
play(y,[start stop])
play(y,range)

Starts playback from the beginning
and plays to the end, or from start
sample to the end, or from start
sample to stop sample. The values of
start and stop can be specified in a
two-element vector range.

playblocking(y)
playblocking(y,start)
playblocking(y,[start stop])
playblocking(y,range)

Same as play, but does not return
control until playback completes.

stop(y) Stops playback.

pause(y) Pauses playback.

resume(y) Restarts playback from where
playback was paused.

isplaying(y) Indicates whether playback is in
progress. If 0, playback is not in
progress. If 1, playback is in progress.

display(y)
disp(y)
get(y)

Displays all property information
about audio player y.

audioplayer

2-90

Property Description Type

Type Name of the object’s class read-only

SampleRate Sampling frequency in Hz user-settable

BitsPerSample Number of bits per sample read-only

NumberOfChannels Number of channels read-only

TotalSamples Total length, in samples, of the
audio data

read-only

Running Status of the audio player ('on' or
'off')

read-only

CurrentSample Current sample being played by
the audio output device (If it is
not playing, currentsample is
the next sample to be played with
play or resume.)

read-only

UserData User data of any type user-settable

Tag User-specified object label string user-settable

For information on using the following four properties, see Creating Timer
Callback Functions in the MATLAB documentation. Note that for audio
object callbacks, eventStruct (event) is currently empty ([]).

TimerFcn Name of, or handle to,
user-specified function to be
called during playback

user-settable

TimerPeriod Time, in seconds, between
TimerFcn callbacks

user-settable

audioplayer

2-91

Example Load a sample audio file, create an audio player object, and play the audio at a
higher sampling rate. x contains the audio samples and Fs is the sampling rate.
You can use any of the audioplayer functions listed above on the player.

load handel;
player=audioplayer(y,Fs);
play(player,[1 (get(player,'SampleRate')*3)]);

To stop the playback, use this command:

stop(player); % Equivalent to player.stop

See Also audiorecorder, sound, wavplay, wavwrite, wavread, get, set, methods

StartFcn Name of, or handle to, the
function to be called once when
playback starts

user-settable

StopFcn Name of or handle to the function
to be called once when playback
stops

user-settable

Property Description Type

audiorecorder

2-92

2audiorecorderPurpose Create an audio recorder object

Syntax y = audiorecorder
y = audiorecorder(Fs,nbits,channels)
y = audiorecorder(Fs,nbits,channels,id)

Description Note To use all of the audio recorder object features, your system must have
a properly installed and configured sound card with 8- and 16-bit I/O and
support for sampling rates of up to 48 kHz.

On 32-bit, Windows-based machines with an installed 24-bit audio device,
audiorecorder supports 24-bit recording.

y = audiorecorder returns a handle to an 8-kHz, 8-bit, mono audio recorder
object.

y = audiorecorder(Fs,nbits,channels) returns a handle to an audio
recorder object using the sampling rate, Fs (in Hz), the sample size of nbits,
and the number of channels. Fs can be any sampling rate supported by the
audio hardware. Common sampling rates are 8000, 11025, 22050, and 44000.
The value of nbits must be 8 or 16 (or 24, if a 24-bit device is installed). For
mono or stereo, channels must be 1 or 2, respectively.

y = audiorecorder(Fs,nbits,channels,id) returns a handle to an audio
recorder object using the audio device specified by its id for input.

After you create an audio recorder object, you can use the methods listed below
on that object. y represents the name of the returned audio recorder.

Method Description

record(y)
record(y,length)

Starts recording.
Records for length number of seconds.

recordblocking(y,length) Same as record, but does not return
control until recording completes.

stop(y) Stops recording.

audiorecorder

2-93

pause(y) Pauses recording.

resume(y) Restarts recording from where
recording was paused.

isrecording(y) Indicates the status of recording. If 0,
recording is not in progress. If 1,
recording is in progress.

play(y) Creates an audioplayer, plays the
recorded audio data, and returns a
handle to the created audioplayer.

getplayer(y) Creates an audioplayer and returns a
handle to the created audioplayer.

getaudiodata(y)
getaudiodata(y,'type')

Returns the recorded audio data to the
MATLAB workspace. type is a string
containing the desired data type.
Supported data types are double,
single, int16, int8, or uint8. If type
is omitted, it defaults to 'double'.
For double and single, the array
contains values between -1 and 1. For
int8, values are between -128 to 127.
For uint8, values are from 0 to 255.
For int16, values are from -32768 to
32767. If the recording is in mono, the
returned array has one column. If it is
in stereo, the array has two columns—
one for each channel.

display(y)
disp(y)
get(y)

Displays all property information
about audio recorder y.

Method Description

audiorecorder

2-94

Audio recorder objects have the properties listed below. To set a user-settable
property use this syntax:

set(y, 'property1', value,'property2',value,...)

To view a read-only property

get(y,’property’) %displays ‘property’ setting.

Property Description Type

Type Name of the object’s class read-only

SampleRate Sampling frequency in Hz read-only

BitsPerSample Number of bits per recorded
sample

read-only

NumberOfChannels Number of channels of recorded
audio

read-only

TotalSamples Total length, in samples, of the
recording

read-only

Running Status of the audio recorder ('on'
or 'off')

read-only

CurrentSample Current sample being recorded
by the audio output device (If it is
not recording, currentsample is
the next sample to be recorded
with record or resume.)

read-only

UserData User data of any type user-settable

audiorecorder

2-95

Examples Example 1
Using a microphone, record 3.5 seconds of 44.1-kHz, 16-bit, stereo data, and
then return the data to the MATLAB workspace as a double array.

recorder = audiorecorder(44100,16,2);
recordblocking(recorder,3.5);
audioarray = getaudiodata(recorder);

For information on using the following four properties, see Creating Timer
Callback Functions in the MATLAB documentation. Note that for audio
object callbacks, eventStruct (event) is currently empty ([]).

TimerFcn Name of or handle to
user-specified function to be
called during recording

user-settable

TimerPeriod Time, in seconds, between
TimerFcn callbacks

user-settable

StartFcn Name of or handle to the function
to be called a single time when
recording starts

user-settable

StopFcn Name of or handle to the function
to be called a single time when
recording stops

user-settable

NumberOfBuffers Number of buffers used for
recording (You should adjust this
only if you have skips, dropouts,
etc. in your recording.)

user-settable

BufferLength Length in seconds of buffer (You
should adjust this only if you
have skips, dropouts, etc. in your
recording.)

user-settable

Tag User-specified object label string user-settable

Property Description Type

audiorecorder

2-96

Example 2
Using a microphone, record 8-bit, 22-kHz mono data, play it back, record again
and return the data to the MATLAB workspace as a uint8 array.

micrecorder = audiorecorder(22050,8,1);
record(micrecorder);
% Now, speak into microphone

stop(micrecorder);
speechplayer = play(micrecorder);
% Now, listen to the recording

stop(speechplayer);
speechdata = getaudiodata(micrecorder, 'uint8');

Remarks The current implementation of AudioRecorder is not intended for long, high
sample rate recording because it uses system memory for storage and does not
use disk buffering. When large recordings are attempted, MATLAB
performance may degrade.

See Also audioplayer, wavread, wavrecord, wavwrite, get, set, methods

auread

2-97

2aureadPurpose Read NeXT/SUN (.au) sound file

Graphical
Interface

As an alternative to auread, use the Import Wizard. To activate the Import
Wizard, select Import data from the File menu.

Syntax y = auread('aufile')
[y,Fs,bits] = auread('aufile')
[...] = auread('aufile',N)
[...] = auread('aufile',[N1,N2])
siz = auread('aufile','size')

Description y = auread('aufile') loads a sound file specified by the string aufile,
returning the sampled data in y. The .au extension is appended if no extension
is given. Amplitude values are in the range [–1,+1]. auread supports
multi-channel data in the following formats:

• 8-bit mu-law

• 8-, 16-, and 32-bit linear

• floating-point

[y,Fs,bits] = auread('aufile') returns the sample rate (Fs) in Hertz and
the number of bits per sample (bits) used to encode the data in the file.

[...] = auread('aufile',N) returns only the first N samples from each
channel in the file.

[...] = auread('aufile',[N1 N2]) returns only samples N1 through N2
from each channel in the file.

siz = auread('aufile','size') returns the size of the audio data contained
in the file in place of the actual audio data, returning the vector siz =
[samples channels].

See Also auwrite, wavread

auwrite

2-98

2auwritePurpose Write NeXT/SUN (.au) sound file

Syntax auwrite(y,'aufile')
auwrite(y,Fs,'aufile')
auwrite(y,Fs,N,'aufile')
auwrite(y,Fs,N,'method','aufile')

Description auwrite(y,'aufile') writes a sound file specified by the string aufile. The
data should be arranged with one channel per column. Amplitude values
outside the range [–1,+1] are clipped prior to writing. auwrite supports
multi-channel data for 8-bit mu-law, and 8- and 16-bit linear formats.

auwrite(y,Fs,'aufile') specifies the sample rate of the data in Hertz.

auwrite(y,Fs,N,'aufile') selects the number of bits in the encoder.
Allowable settings are N = 8 and N = 16.

auwrite(y,Fs,N,'method','aufile') allows selection of the encoding
method, which can be either mu or linear. Note that mu-law files must be 8-bit.
By default, method = 'mu'.

See Also auread, wavwrite

avifile

2-99

2avifilePurpose Create a new Audio Video Interleaved (AVI) file

Syntax aviobj = avifile(filename)
aviobj =

avifile(filename,'PropertyName',value,'PropertyName',value,...)

Description aviobj = avifile(filename) creates an AVI file, giving it the name specified
in filename, using default values for all AVI file object properties. If filename
does not include an extension, avifile appends .avi to the filename. AVI is a
file format for storing audio and video data.

avifile returns a handle to an AVI file object, aviobj. You use this object to
refer to the AVI file in other functions. An AVI file object supports properties
and methods that control aspects of the AVI file created.

aviobj = avifile(filename,'Param',Value,'Param',Value,...) creates
an AVI file with the specified parameter settings. This table lists available
parameters.

Parameter Value Default

'colormap' An m-by-3 matrix defining the colormap
to be used for indexed AVI movies,
where m must be no greater than 256
(236 if using Indeo compression). You
must set this parameter before calling
addframe, unless you are using
addframe with the MATLAB movie
syntax.

There is no
default
colormap.

'compression' A text string specifying which
compression codec to use.

On Windows:
'Indeo3'
'Indeo5'
'Cinepak'
'MSVC'
'None'

On Unix:
'None'

'Indeo3',
on
Windows.
'None' on
Unix.

avifile

2-100

You can also use structure syntax to set AVI file object properties. For
example, to set the quality property to 100 use the following syntax:

 aviobj = avifile(filename);
 aviobj.Quality = 100;

Example This example shows how to use the avifile function to create the AVI file
example.avi.

fig=figure;
set(fig,'DoubleBuffer','on');

To use a custom compression codec,
specify the four-character code that
identifies the codec (typically included
in the codec documentation). The
addframe function reports an error if it
can not find the specified custom
compressor.

'fps' A scalar value specifying the speed of
the AVI movie in frames per second
(fps).

15 fps

'keyframe' For compressors that support temporal
compression, this is the number of key
frames per second.

2 key
frames per
second.

'name' A descriptive name for the video
stream. This parameter must be no
greater than 64 characters long.

The default
is the
filename.

'quality' A number between 0 and 100. This
parameter has no effect on
uncompressed movies. Higher quality
numbers result in higher video quality
and larger file sizes. Lower quality
numbers result in lower video quality
and smaller file sizes.

75

Parameter Value Default

avifile

2-101

set(gca,'xlim',[-80 80],'ylim',[-80 80],...
 'NextPlot','replace','Visible','off')

mov = avifile('example.avi')
x = -pi:.1:pi;
radius = 0:length(x);
for k=1:length(x)

h = patch(sin(x)*radius(k),cos(x)*radius(k),...
[abs(cos(x(k))) 0 0]);

set(h,'EraseMode','xor');
F = getframe(gca);
mov = addframe(mov,F);

end
mov = close(mov);

See Also addframe, close, movie2avi

aviinfo

2-102

2aviinfoPurpose Return information about an Audio Video Interleaved (AVI) file

Syntax fileinfo = aviinfo(filename)

Description fileinfo = aviinfo(filename) returns a structure whose fields contain
information about the AVI file specified in the string, filename. If filename
does not include an extension, then .avi is used. The file must be in the current
working directory or in a directory on the MATLAB path.

The set of fields in the fileinfo structure are shown below.

Field Name Description

AudioFormat A string containing the name of the format used
to store the audio data, if audio data is present

AudioRate An integer indicating the sample rate in Hertz of
the audio stream, if audio data is present

Filename A string specifying the name of the file

FileModDate A string containing the modification date of the
file

FileSize An integer indicating the size of the file in bytes

FramesPerSecond An integer indicating the desired frames per
second

Height An integer indicating the height of the AVI movie
in pixels

ImageType A string indicating the type of image. Either
'truecolor' for a truecolor (RGB) image, or
'indexed' for an indexed image.

NumAudioChannels An integer indicating the number of channels in
the audio stream, if audio data is present

NumFrames An integer indicating the total number of frames
in the movie

aviinfo

2-103

See also avifile, aviread

NumColormapEntries An integer specifying the number of colormap
entries

Quality A number between 0 and 100 indicating the video
quality in the AVI file. Higher quality numbers
indicate higher video quality; lower quality
numbers indicate lower video quality. This value
is not always set in AVI files and therefore may be
inaccurate.

VideoCompression A string containing the compressor used to
compress the AVI file. If the compressor is not
Microsoft Video 1, Run Length Encoding (RLE),
Cinepak, or Intel Indeo, aviinfo returns a
four-character code.

Width An integer indicating the width of the AVI movie
in pixels

Field Name Description

aviread

2-104

2avireadPurpose Read an Audio Video Interleaved (AVI) file.

Syntax mov = aviread(filename)
mov = aviread(filename,index)

Description mov = aviread(filename) reads the AVI movie filename into the MATLAB
movie structure mov. If filename does not include an extension, then .avi is
used. Use the movie function to view the movie, mov. On UNIX, filename must
be an uncompressed AVI file.

mov has two fields, cdata and colormap. The content of these fields varies
depending on the type of image.

mov = aviread(filename,index) reads only the frame(s) specified by index.
index can be a single index or an array of indices into the video stream. In AVI
files, the first frame has the index value 1, the second frame has the index
value 2, and so on.

See also aviinfo, avifile, movie

Image Type mov.cdata Field mov.colormap Field

Truecolor height-by-width-by-3
array

Empty

Indexed height-by-width array m-by-3 array

axes

2-105

2axesPurpose Create axes graphics object

Syntax axes
axes('PropertyName',PropertyValue,...)
axes(h)
h = axes(...)

Description axes is the low-level function for creating axes graphics objects.

axes creates an axes graphics object in the current figure using default
property values.

axes('PropertyName',PropertyValue,...) creates an axes object having the
specified property values. MATLAB uses default values for any properties that
you do not explicitly define as arguments.

axes(h) makes existing axes h the current axes. It also makes h the first axes
listed in the figure’s Children property and sets the figure’s CurrentAxes
property to h. The current axes is the target for functions that draw image, line,
patch, surface, and text graphics objects.

h = axes(...) returns the handle of the created axes object.

Remarks MATLAB automatically creates an axes, if one does not already exist, when
you issue a command that draws image, light, line, patch, surface, or text
graphics objects.

The axes function accepts property name/property value pairs, structure
arrays, and cell arrays as input arguments (see the set and get commands for
examples of how to specify these data types). These properties, which control
various aspects of the axes object, are described in the “Axes Properties”
section.

Use the set function to modify the properties of an existing axes or the get
function to query the current values of axes properties. Use the gca command
to obtain the handle of the current axes.

The axis (not axes) function provides simplified access to commonly used
properties that control the scaling and appearance of axes.

axes

2-106

While the basic purpose of an axes object is to provide a coordinate system for
plotted data, axes properties provide considerable control over the way
MATLAB displays data.

Stretch-to-Fill
By default, MATLAB stretches the axes to fill the axes position rectangle (the
rectangle defined by the last two elements in the Position property). This
results in graphs that use the available space in the rectangle. However, some
3-D graphs (such as a sphere) appear distorted because of this stretching, and
are better viewed with a specific three-dimensional aspect ratio.

Stretch-to-fill is active when the DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all auto (the
default). However, stretch-to-fill is turned off when the DataAspectRatio,
PlotBoxAspectRatio, or CameraViewAngle is user-specified, or when one or
more of the corresponding modes is set to manual (which happens
automatically when you set the corresponding property value).

This picture shows the same sphere displayed both with and without the
stretch-to-fill. The dotted lines show the axes Position rectangle.

When stretch-to-fill is disabled, MATLAB sets the size of the axes to be as large
as possible within the constraints imposed by the Position rectangle without
introducing distortion. In the picture above, the height of the rectangle
constrains the axes size.

Stretch-to-fill active

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1

8

6

4

2

0

2

4

6

8

1

Stretch-to-fill disabled

axes

2-107

Examples Zooming

Zoom in using aspect ratio and limits:

sphere
set(gca,'DataAspectRatio',[1 1 1],...

'PlotBoxAspectRatio',[1 1 1],'ZLim',[−0.6 0.6])

Zoom in and out using the CameraViewAngle:

sphere
set(gca,'CameraViewAngle',get(gca,'CameraViewAngle')−5)
set(gca,'CameraViewAngle',get(gca,'CameraViewAngle')+5)

Note that both examples disable the MATLAB stretch-to-fill behavior.

Positioning the Axes
The axes Position property enables you to define the location of the axes
within the figure window. For example,

h = axes('Position',position_rectangle)

creates an axes object at the specified position within the current figure and
returns a handle to it. Specify the location and size of the axes with a rectangle
defined by a four-element vector,

position_rectangle = [left, bottom, width, height];

The left and bottom elements of this vector define the distance from the
lower-left corner of the figure to the lower-left corner of the rectangle. The
width and height elements define the dimensions of the rectangle. You specify
these values in units determined by the Units property. By default, MATLAB
uses normalized units where (0,0) is the lower-left corner and (1.0,1.0) is the
upper-right corner of the figure window.

You can define multiple axes in a single figure window:

axes('position',[.1 .1 .8 .6])
mesh(peaks(20));
axes('position',[.1 .7 .8 .2])
pcolor([1:10;1:10]);

axes

2-108

In this example, the first plot occupies the bottom two-thirds of the figure, and
the second occupies the top third.

See Also axis, cla, clf, figure, gca, grid, subplot, title, xlabel, ylabel, zlabel,
view

“Axes Operations” for related functions

Axes Properties for more examples

0
5

10
15

20

0
5

10
15

20
−10

−5

0

5

10

1 2 3 4 5 6 7 8 9 10
1

1.5

2

axes

2-109

Object
Hierarchy

Setting Default Properties
You can set default axes properties on the figure and root levels:

set(0,'DefaultAxesPropertyName',PropertyValue,...)
set(gcf,'DefaultAxesPropertyName',PropertyValue,...)

where PropertyName is the name of the axes property and PropertyValue is
the value you are specifying. Use set and get to access axes properties.

Property List The following table lists all axes properties and provides a brief description of
each. The property name links take you an expanded description of the
properties.

Uimenu

Line

Axes Uicontrol

Image

Figure

Uicontextmenu

Light SurfacePatch Text

Root

Rectangle

Property Name Property Description Property Value

Controlling Style and Appearance

Box Toggle axes plot box on and off Values: on, off
Default: off

Clipping This property has no effect; axes are
always clipped to the figure window

GridLineStyle Line style used to draw axes grid
lines

Values: −, −−, :, -., none
Default: : (dotted line)

axes

2-110

MinorGridLineStyle Line style used to draw axes minor
grid lines

Values: −, −−, :, -., none
Default: : (dotted line)

Layer Draw axes above or below graphs Values: bottom, top
Default: bottom

LineStyleOrder Sequence of line styles used for
multiline plots

Values: LineSpec
Default: − (solid line for)

LineWidth Width of axis lines, in points (1/72"
per point)

Values: number of points
Default: 0.5 points

SelectionHighlight Highlight axes when selected
(Selected property set to on)

Values: on, off Default: on

TickDir Direction of axis tick marks Values: in, out
Default: in (2-D), out (3-D)

TickDirMode Use MATLAB or user-specified tick
mark direction

Values: auto, manual
Default: auto

TickLength Length of tick marks normalized to
axis line length, specified as
two-element vector

Values: [2-D 3-D]
Default: [0.01 0.025}

Visible Make axes visible or invisible Values: on, off
Default: on

XGrid, YGrid, ZGrid Toggle grid lines on and off in
respective axis

Values: on, off
Default: off

General Information About the Axes

Children Handles of the images, lights, lines,
patches, surfaces, and text objects
displayed in the axes

Values: vector of handles

CurrentPoint Location of last mouse button click
defined in the axes data units

Values: a 2-by-3 matrix

Property Name Property Description Property Value

axes

2-111

HitTest Specify whether axes can become
the current object (see figure
CurrentObject property)

Values: on, off
Default: on

Parent Handle of the figure window
containing the axes

Values: scalar figure handle

Position Location and size of axes within the
figure

Values: [left bottom width
height]
Default: [0.1300 0.1100
0.7750 0.8150] in
normalized Units

Selected Indicate whether axes is in a
“selected” state

Values: on, off
Default: on

Tag User-specified label Values: any string
Default: '' (empty string)

Type The type of graphics object (read
only)

Value: the string 'axes'

Units Units used to interpret the
Position property

Values: inches,
centimeters, characters,
normalized, points, pixels
Default: normalized

UserData User-specified data Values: any matrix
Default: [] (empty matrix)

Selecting Fonts and Labels

FontAngle Select italic or normal font Values: normal, italic,
oblique
Default: normal

FontName Font family name (e.g., Helvetica,
Courier)

Values: a font supported by
your system or the string
FixedWidth
Default: Typically Helvetica

Property Name Property Description Property Value

axes

2-112

FontSize Size of the font used for title and
labels

Values: an integer in
FontUnits Default: 10

FontUnits Units used to interpret the
FontSize property

Values: points,
normalized, inches,
centimeters, pixels
Default: points

FontWeight Select bold or normal font Values: normal, bold,
light, demi
Default: normal

Title Handle of the title text object Values: any valid text object
handle

XLabel, YLabel, ZLabel Handles of the respective axis label
text objects

Values: any valid text object
handle

XTickLabel,
YTickLabel,
ZTickLabel

Specify tick mark labels for the
respective axis

Values: matrix of strings
Defaults: numeric values
selected automatically by
MATLAB

XTickLabelMode,
YTickLabelMode,
ZTickLabelMode

Use MATLAB or user-specified tick
mark labels

Values: auto, manual
Default: auto

Controlling Axis Scaling

XAxisLocation Specify the location of the x-axis Values: top, bottom
Default: bottom

YAxisLocation Specify the location of the y-axis Values: right left
Default: left

XDir, YDir, ZDir Specify the direction of increasing
values for the respective axes

Values: normal, reverse
Default: normal

Property Name Property Description Property Value

axes

2-113

XLim, YLim, ZLim Specify the limits to the respective
axes

Values: [min max]
Default: min and max
determined automatically
by MATLAB

XLimMode, YLimMode,
ZLimMode

Use MATLAB or user-specified
values for the respective axis limits

Values: auto, manual
Default: auto

XMinorGrid,YMinorGrid,
ZMinorGrid

Determines whether MATLAB
displays gridlines connecting minor
tick marks in the respective axis.

Values: on, off
Default: off

XMinorTick,YMinorTick,
ZMinorTick

Determines whether MATLAB
displays minor tick marks in the
respective axis.

Values: on, off
Default: off

XScale, YScale, ZScale Select linear or logarithmic scaling
of the respective axis

Values: linear, log
Default: linear (changed
by plotting commands that
create nonlinear plots)

XTick, YTick, ZTick Specify the location of the axis ticks
marks

Values: a vector of data
values locating tick marks
Default: MATLAB
automatically determines
tick mark placement

XTickMode, YTickMode,
ZTickMode

Use MATLAB or user-specified
values for the respective tick mark
locations

Values: auto, manual
Default: auto

Controlling the View

CameraPosition Specify the position of point from
which you view the scene

Values: [x,y,z] axes
coordinates
Default: automatically
determined by MATLAB

Property Name Property Description Property Value

axes

2-114

CameraPositionMode Use MATLAB or user-specified
camera position

Values: auto, manual
Default: auto

CameraTarget Center of view pointed to by camera Values: [x,y,z] axes
coordinates
Default: automatically
determined by MATLAB

CameraTargetMode Use MATLAB or user-specified
camera target

Values: auto, manual
Default: auto

CameraUpVector Direction that is oriented up Values: [x,y,z] axes
coordinates
Default: automatically
determined by MATLAB

CameraUpVectorMode Use MATLAB or user-specified
camera up vector

Values: auto, manual
Default: auto

CameraViewAngle Camera field of view Values: angle in degrees
between 0 and 180
Default: automatically
determined by MATLAB

CameraViewAngleMode Use MATLAB or user-specified
camera view angle

Values: auto, manual
Default: auto

Projection Select type of projection Values: orthographic,
perspective
Default: orthographic

Controlling the Axes Aspect Ratio

DataAspectRatio Relative scaling of data units Values: three relative
values [dx dy dz]
Default: automatically
determined by MATLAB

DataAspectRatioMode Use MATLAB or user-specified data
aspect ratio

Values: auto, manual
Default: auto

Property Name Property Description Property Value

axes

2-115

PlotBoxAspectRatio Relative scaling of axes plot box Values: three relative
values [dx dy dz]
Default: automatically
determined by MATLAB

PlotBoxAspectRatioMode Use MATLAB or user-specified plot
box aspect ratio

Values: auto, manual
Default: auto

Controlling Callback Routine Execution

BusyAction Specify how to handle events that
interrupt execution callback
routines

Values: cancel, queue
Default: queue

ButtonDownFcn Define a callback routine that
executes when a button is pressed
over the axes

Values: string or function
handle
Default: an empty string

CreateFcn Define a callback routine that
executes when an axes is created

Values: string or function
handle
Default: an empty string

DeleteFcn Define a callback routine that
executes when an axes is created

Values: string or function
handle
Default: an empty string

Interruptible Control whether an executing
callback routine can be interrupted

Values: on, off Default: on

UIContextMenu Associate a context menu with the
axes

Values: handle of a
Uicontextmenu

Specifying the Rendering Mode

DrawMode Specify the rendering method to use
with the Painters renderer

Values: normal, fast
Default: normal

Targeting Axes for Graphics Display

HandleVisibility Control access to a specific axes’
handle

Values: on, callback, off
Default: on

Property Name Property Description Property Value

axes

2-116

NextPlot Determine the eligibility of the axes
for displaying graphics

Values: add, replace,
replacechildren
Default: replace

Properties that Specify Transparency

ALim Alpha axis limits Values: [amin amax]

ALimMode Alpha axis limits mode Values: auto | manual
Default: auto

Properties that Specify Color

AmbientLightColor Color of the background light in a
scene

Values: ColorSpec
Default: [1 1 1]

CLim Control how data is mapped to
colormap

Values: [cmin cmax]
Default: automatically
determined by MATLAB

CLimMode Use MATLAB or user-specified
values for CLim

Values: auto, manual
Default: auto

Color Color of the axes background Values: none, ColorSpec
Default: none

ColorOrder Line colors used for multiline plots Values: m-by-3 matrix of
RGB values
Default: depends on color
scheme used

XColor, YColor, ZColor Colors of the axis lines and tick
marks

Values: ColorSpec
Default: depends on current
color scheme

Property Name Property Description Property Value

Axes Properties

2-117

2Axes PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties

To change the default value of properties see Setting Default Property Values.

Axes Property
Descriptions

This section lists property names along with the types of values each accepts.
Curly braces { } enclose default values.

ALim [amin, amax]

Alpha axis limits. A two-element vector that determines how MATLAB maps
the AlphaData values of surface, patch and image objects to the figure's
alphamap. amin is the value of the data mapped to the first alpha value in the
alphamap, and amax is the value of the data mapped to the last alpha value in
the alphamap. Data values in between are linearly interpolated across the
alphamap, while data values outside are clamped to either the first or last
alphamap value, whichever is closest.

When ALimMode is auto (the default), MATLAB assigns amin the minimum
data value and amax the maximum data value in the graphics object's
AlphaData. This maps AlphaData elements with minimum data values to the
first alphamap entry and those with maximum data values to the last
alphamap entry. Data values in between are mapped linearly to the values

If the axes contains multiple graphics objects, MATLAB sets ALim to span the
range of all objects' AlphaData (or FaceVertexAlphaData for patch objects).

ALimMode {auto} | manual

Alpha axis limits mode. In auto mode, MATLAB sets the ALim property to span
the AlphaData limits of the graphics objects displayed in the axes. If ALimMode
is manual, MATLAB does not change the value of ALim when the AlphaData
limits of axes children change. Setting the ALim property sets ALimMode to
manual.

AmbientLightColor ColorSpec

The background light in a scene. Ambient light is a directionless light that
shines uniformly on all objects in the axes. However, if there are no visible light

Axes Properties

2-118

objects in the axes, MATLAB does not use AmbientLightColor. If there are
light objects in the axes, the AmbientLightColor is added to the other light
sources.

AspectRatio (Obsolete)

This property produces a warning message when queried or changed. It has
been superseded by the DataAspectRatio[Mode] and
PlotBoxAspectRatio[Mode] properties.

Box on | {off}

Axes box mode. This property specifies whether to enclose the axes extent in a
box for 2-D views or a cube for 3-D views. The default is to not display the box.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked
callback routines always attempt to interrupt it. If the Interruptible property
of the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

• cancel – discard the event that attempted to execute a second callback
routine.

• queue – queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string or function handle

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is within the axes, but not over another
graphics object displayed in the axes. For 3-D views, the active area is defined
by a rectangle that encloses the axes.

Define this routine as a string that is a valid MATLAB expression or the name
of an M-file. The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Axes Properties

2-119

CameraPosition [x, y, z] axes coordinates

The location of the camera. This property defines the position from which the
camera views the scene. Specify the point in axes coordinates.

If you fix CameraViewAngle, you can zoom in and out on the scene by changing
the CameraPosition, moving the camera closer to the CameraTarget to zoom in
and farther away from the CameraTarget to zoom out. As you change the
CameraPosition, the amount of perspective also changes, if Projection is
perspective. You can also zoom by changing the CameraViewAngle; however,
this does not change the amount of perspective in the scene.

CameraPositionMode {auto} | manual

Auto or manual CameraPosition. When set to auto, MATLAB automatically
calculates the CameraPosition such that the camera lies a fixed distance from
the CameraTarget along the azimuth and elevation specified by view. Setting a
value for CameraPosition sets this property to manual.

CameraTarget [x, y, z] axes coordinates

Camera aiming point. This property specifies the location in the axes that the
camera points to. The CameraTarget and the CameraPosition define the vector
(the view axis) along which the camera looks.

CameraTargetMode {auto} | manual

Auto or manual CameraTarget placement. When this property is auto,
MATLAB automatically positions the CameraTarget at the centroid of the axes
plotbox. Specifying a value for CameraTarget sets this property to manual.

CameraUpVector [x, y, z] axes coordinates

Camera rotation. This property specifies the rotation of the camera around the
viewing axis defined by the CameraTarget and the CameraPosition properties.
Specify CameraUpVector as a three-element array containing the x, y, and z
components of the vector. For example, [0 1 0] specifies the positive y-axis as
the up direction.

The default CameraUpVector is [0 0 1], which defines the positive z-axis as the
up direction.

CameraUpVectorMode auto} | manual

Default or user-specified up vector. When CameraUpVectorMode is auto,
MATLAB uses a value of [0 0 1] (positive z-direction is up) for 3-D views and

Axes Properties

2-120

[0 1 0] (positive y-direction is up) for 2-D views. Setting a value for
CameraUpVector sets this property to manual.

CameraViewAngle scalar greater than 0 and less than or equal to
180 (angle in degrees)

The field of view. This property determines the camera field of view. Changing
this value affects the size of graphics objects displayed in the axes, but does not
affect the degree of perspective distortion. The greater the angle, the larger the
field of view, and the smaller objects appear in the scene.

CameraViewAngleMode{auto} | manual

Auto or manual CameraViewAngle. When in auto mode, MATLAB sets
CameraViewAngle to the minimum angle that captures the entire scene (up to
180˚).

The following table summarizes MATLAB automatic camera behavior.

CameraView
Angle

Camera
Target

Camera
Position

Behavior

auto auto auto CameraTarget is set to plot box centroid,
CameraViewAngle is set to capture entire scene,
CameraPosition is set along the view axis.

auto auto manual CameraTarget is set to plot box centroid,
CameraViewAngle is set to capture entire scene.

auto manual auto CameraViewAngle is set to capture entire scene,
CameraPosition is set along the view axis.

auto manual manual CameraViewAngle is set to capture entire scene.

manual auto auto CameraTarget is set to plot box centroid,
CameraPosition is set along the view axis.

manual auto manual CameraTarget is set to plot box centroid

manual manual auto CameraPosition is set along the view axis.

manual manual manual All Camera properties are user-specified.

Axes Properties

2-121

Children vector of graphics object handles

Children of the axes. A vector containing the handles of all graphics objects
rendered within the axes (whether visible or not). The graphics objects that can
be children of axes are images, lights, lines, patches, surfaces, and text. You
can change the order of the handles and thereby change the stacking of the
objects on the display.

The text objects used to label the x-, y-, and z-axes are also children of axes, but
their HandleVisibility properties are set to callback. This means their
handles do not show up in the axes Children property unless you set the Root
ShowHiddenHandles property to on.

CLim [cmin, cmax]

Color axis limits. A two-element vector that determines how MATLAB maps
the CData values of surface and patch objects to the figure’s colormap. cmin is
the value of the data mapped to the first color in the colormap, and cmax is the
value of the data mapped to the last color in the colormap. Data values in
between are linearly interpolated across the colormap, while data values
outside are clamped to either the first or last colormap color, whichever is
closest.

When CLimMode is auto (the default), MATLAB assigns cmin the minimum
data value and cmax the maximum data value in the graphics object’s CData.
This maps CData elements with minimum data value to the first colormap
entry and with maximum data value to the last colormap entry.

If the axes contains multiple graphics objects, MATLAB sets CLim to span the
range of all objects’ CData.

CLimMode {auto} | manual

Color axis limits mode. In auto mode, MATLAB sets the CLim property to span
the CData limits of the graphics objects displayed in the axes. If CLimMode is
manual, MATLAB does not change the value of CLim when the CData limits of
axes children change. Setting the CLim property sets this property to manual.

Clipping {on} | off

This property has no effect on axes.

Axes Properties

2-122

Color {none} | ColorSpec

Color of the axes back planes. Setting this property to none means the axes is
transparent and the figure color shows through. A ColorSpec is a
three-element RGB vector or one of the MATLAB predefined names. Note that
while the default value is none, the matlabrc.m file may set the axes color to
a specific color.

ColorOrder m-by-3 matrix of RGB values

Colors to use for multiline plots. ColorOrder is an m-by-3 matrix of RGB values
that define the colors used by the plot and plot3 functions to color each line
plotted. If you do not specify a line color with plot and plot3, these functions
cycle through the ColorOrder to obtain the color for each line plotted. To obtain
the current ColorOrder, which may be set during startup, get the property
value:

get(gca,'ColorOrder')

Note that if the axes NextPlot property is set to replace (the default),
high-level functions like plot reset the ColorOrder property before
determining the colors to use. If you want MATLAB to use a ColorOrder that
is different from the default, set NextPlot to replacechildren. You can also
specify your own default ColorOrder.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates an axes object. You must
define this property as a default value for axes. For example, the statement,

set(0,'DefaultAxesCreateFcn','set(gca,''Color'',''b'')')

defines a default value on the Root level that sets the current axes’ background
color to blue whenever you (or MATLAB) create an axes. MATLAB executes
this routine after setting all properties for the axes. Setting this property on an
existing axes object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the Root CallbackObject property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Axes Properties

2-123

CurrentPoint 2-by-3 matrix

Location of last button click, in axes data units. A 2-by-3 matrix containing the
coordinates of two points defined by the location of the pointer. These two
points lie on the line that is perpendicular to the plane of the screen and passes
through the pointer. The 3-D coordinates are the points, in the axes coordinate
system, where this line intersects the front and back surfaces of the axes
volume (which is defined by the axes x, y, and z limits).

The returned matrix is of the form:

MATLAB updates the CurrentPoint property whenever a button-click event
occurs. The pointer does not have to be within the axes, or even the figure
window; MATLAB returns the coordinates with respect to the requested axes
regardless of the pointer location.

DataAspectRatio [dx dy dz]

Relative scaling of data units. A three-element vector controlling the relative
scaling of data units in the x, y, and z directions. For example, setting this
property t o [1 2 1] causes the length of one unit of data in the x direction to
be the same length as two units of data in the y direction and one unit of data
in the z direction.

Note that the DataAspectRatio property interacts with the
PlotBoxAspectRatio, XLimMode, YLimMode, and ZLimMode properties to control
how MATLAB scales the x-, y-, and z-axis. Setting the DataAspectRatio will
disable the stretch-to-fill behavior, if DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all auto. The

xback yback zback
xfront yfront zfront

Axes Properties

2-124

following table describes the interaction between properties when
stretch-to-fill behavior is disabled.

X-, Y-,
Z-Limits

DataAspect
Ratio

PlotBox
AspectRatio

Behavior

auto auto auto Limits chosen to span data range in all
dimensions.

auto auto manual Limits chosen to span data range in all
dimensions. DataAspectRatio is modified to
achieve the requested PlotBoxAspectRatio
within the limits selected by MATLAB.

auto manual auto Limits chosen to span data range in all
dimensions. PlotBoxAspectRatio is modified to
achieve the requested DataAspectRatio within
the limits selected by MATLAB.

auto manual manual Limits chosen to completely fit and center the
plot within the requested PlotBoxAspectRatio
given the requested DataAspectRatio (this may
produce empty space around 2 of the 3
dimensions).

manual auto auto Limits are honored. The DataAspectRatio and
PlotBoxAspectRatio are modified as necessary.

manual auto manual Limits and PlotBoxAspectRatio are honored.
The DataAspectRatio is modified as necessary.

manual manual auto Limits and DataAspectRatio are honored. The
PlotBoxAspectRatio is modified as necessary.

1 manual
2 auto

manual manual The 2 automatic limits are selected to honor the
specified aspect ratios and limit. See “Examples”

2 or 3
manual

manual manual Limits and DataAspectRatio are honored; the
PlotBoxAspectRatio is ignored.

Axes Properties

2-125

DataAspectRatioMode {auto} | manual

User or MATLAB controlled data scaling. This property controls whether the
values of the DataAspectRatio property are user defined or selected
automatically by MATLAB. Setting values for the DataAspectRatio property
automatically sets this property to manual. Changing DataAspectRatioMode to
manual disables the stretch-to-fill behavior, if DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all auto.

DeleteFcn string or function handle

Delete axes callback routine. A callback routine that executes when the axes
object is deleted (e.g., when you issue a delete or a close command). MATLAB
executes the routine before destroying the object’s properties so the callback
routine can query these values.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root CallbackObject property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DrawMode {normal} | fast

Rendering method. This property controls the method MATLAB uses to render
graphics objects displayed in the axes, when the figure Renderer property is
painters.

• normal mode draws objects in back to front ordering based on the current
view in order to handle hidden surface elimination and object intersections.

• fast mode draws objects in the order in which you specify the drawing
commands, without considering the relationships of the objects in three
dimensions. This results in faster rendering because it requires no sorting of
objects according to location in the view, but may produce undesirable
results because it bypasses the hidden surface elimination and object
intersection handling provided by normal DrawMode.

When the figure Renderer is zbuffer, DrawMode is ignored, and hidden surface
elimination and object intersection handling are always provided.

FontAngle {normal} | italic | oblique

Select italic or normal font. This property selects the character slant for axes
text. normal specifies a nonitalic font. italic and oblique specify italic font.

Axes Properties

2-126

FontName A name such as Courier or the string FixedWidth

Font family name. The font family name specifying the font to use for axes
labels. To display and print properly, FontNamemust be a font that your system
supports. Note that the x-, y-, and z-axis labels do not display in a new font until
you manually reset them (by setting the XLabel, YLabel, and ZLabel properties
or by using the xlabel, ylabel, or zlabel command). Tick mark labels change
immediately.

Specifying a Fixed-Width Font
If you want an axes to use a fixed-width font that looks good in any locale, you
should set FontName to the string FixedWidth:

set(axes_handle,'FontName','FixedWidth')

This eliminates the need to hardcode the name of a fixed-width font, which may
not display text properly on systems that do not use ASCII character encoding
(such as in Japan where multibyte character sets are used). A properly written
MATLAB application that needs to use a fixed-width font should set FontName
to FixedWidth (note that this string is case sensitive) and rely on
FixedWidthFontName to be set correctly in the end-user’s environment.

End users can adapt a MATLAB application to different locales or personal
environments by setting the root FixedWidthFontName property to the
appropriate value for that locale from startup.m.

Note that setting the root FixedWidthFontName property causes an immediate
update of the display to use the new font.

FontSize Font size specified in FontUnits

Font size. An integer specifying the font size to use for axes labels and titles, in
units determined by the FontUnits property. The default point size is 12. The
x-, y-, and z-axis text labels do not display in a new font size until you manually
reset them (by setting the XLabel, YLabel, or ZLabel properties or by using the
xlabel, ylabel, or zlabel command). Tick mark labels change immediately.

FontUnits {points} | normalized | inches |
centimeters | pixels

Units used to interpret the FontSize property. When set to normalized,
MATLAB interprets the value of FontSize as a fraction of the height of the
axes. For example, a normalized FontSize of 0.1 sets the text characters to a

Axes Properties

2-127

font whose height is one tenth of the axes’ height. The default units (points),
are equal to 1/72 of an inch.

FontWeight {normal} | bold | light | demi

Select bold or normal font. The character weight for axes text. The x-, y-, and
z-axis text labels do not display in bold until you manually reset them (by
setting the XLabel, YLabel, and ZLabel properties or by using the xlabel,
ylabel, or zlabel commands). Tick mark labels change immediately.

GridLineStyle − | − −| {:} | −. | none

Line style used to draw grid lines. The line style is a string consisting of a
character, in quotes, specifying solid lines (−), dashed lines (−−), dotted lines(:),
or dash-dot lines (−.). The default grid line style is dotted. To turn on grid lines,
use the grid command.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string) and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be
returned by functions that obtain handles by searching the object hierarchy or
querying handle properties. This includes get, findobj, gca, gcf, gco, newplot,
cla, clf, and close.

Axes Properties

2-128

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the Root’s Currentfigure property, objects do not appear in the Root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s Currentaxes property.

You can set the Root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the axes can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the axes. If HitTest is off, clicking on
the axes selects the object below it (which is usually the figure containing it).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether an axes callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn are
affected by the Interruptible property. MATLAB checks for events that can
interrupt a callback routine only when it encounters a drawnow, figure,
getframe, or pause command in the routine. See the BusyAction property for
related information.

Setting Interruptible to on allows any graphics object’s callback routine to
interrupt callback routines originating from an axes property. Note that
MATLAB does not save the state of variables or the display (e.g., the handle
returned by the gca or gcf command) when an interruption occurs.

Layer {bottom} | top

Draw axis lines below or above graphics objects. This property determines if
axis lines and tick marks draw on top or below axes children objects for any 2-D
view (i.e., when you are looking along the x-, y-, or z-axis). This is useful for
placing grid lines and tick marks on top of images.

Axes Properties

2-129

LineStyleOrder LineSpec

Order of line styles and markers used in a plot. This property specifies which
line styles and markers to use and in what order when creating multiple-line
plots. For example,

set(gca,'LineStyleOrder', '−*|:|o')

sets LineStyleOrder to solid line with asterisk marker, dotted line, and hollow
circle marker. The default is (−), which specifies a solid line for all data plotted.
Alternatively, you can create a cell array of character strings to define the line
styles:

set(gca,'LineStyleOrder',{'−*',':','o'})

MATLAB supports four line styles, which you can specify any number of times
in any order. MATLAB cycles through the line styles only after using all colors
defined by the ColorOrder property. For example, the first eight lines plotted
use the different colors defined by ColorOrder with the first line style.
MATLAB then cycles through the colors again, using the second line style
specified, and so on.

You can also specify line style and color directly with the plot and plot3
functions or by altering the properties of the line objects.

Note that, if the axes NextPlot property is set to replace (the default),
high-level functions like plot reset the LineStyleOrder property before
determining the line style to use. If you want MATLAB to use a
LineStyleOrder that is different from the default, set NextPlot to
replacechildren. You can also specify your own default LineStyleOrder.

LineWidth linewidth in points

Width of axis lines. This property specifies the width, in points, of the x-, y-, and
z-axis lines. The default line width is 0.5 points (1 point = 1/72 inch).

MinorGridLineStyle − | − −| {:} | −. | none

Line style used to draw minor grid lines. The line style is a string consisting of
one or more characters, in quotes, specifying solid lines (−), dashed lines (−−),
dotted lines(:), or dash-dot lines (−.). The default minor grid line style is dotted.
To turn on minor grid lines, use the grid minor command.

Axes Properties

2-130

NextPlot add | {replace} | replacechildren

Where to draw the next plot. This property determines how high-level plotting
functions draw into an existing axes.

• add — use the existing axes to draw graphics objects.

• replace — reset all axes properties, except Position, to their defaults and
delete all axes children before displaying graphics (equivalent to cla reset).

• replacechildren— remove all child objects, but do not reset axes properties
(equivalent to cla).

The newplot function simplifies the use of the NextPlot property and is used
by M-file functions that draw graphs using only low-level object creation
routines. See the M-file pcolor.m for an example. Note that figure graphics
objects also have a NextPlot property.

Parent figure handle

Axes parent. The handle of the axes’ parent object. The parent of an axes object
is the figure in which it is displayed. The utility function gcf returns the
handle of the current axes’ Parent. You can reparent axes to other figure
objects.

PlotBoxAspectRatio [px py pz]

Relative scaling of axes plotbox. A three-element vector controlling the relative
scaling of the plot box in the x-, y-, and z-directions. The plot box is a box
enclosing the axes data region as defined by the x-, y-, and z-axis limits.

Note that the PlotBoxAspectRatio property interacts with the
DataAspectRatio, XLimMode, YLimMode, and ZLimMode properties to control the
way graphics objects are displayed in the axes. Setting the
PlotBoxAspectRatio disables stretch-to-fill behavior, if
DataAspectRatioMode, PlotBoxAspectRatioMode, and CameraViewAngleMode
are all auto.

PlotBoxAspectRatioMode {auto} | manual

User or MATLAB controlled axis scaling. This property controls whether the
values of the PlotBoxAspectRatio property are user defined or selected
automatically by MATLAB. Setting values for the PlotBoxAspectRatio
property automatically sets this property to manual. Changing the
PlotBoxAspectRatioMode to manual disables stretch-to-fill behavior, if

Axes Properties

2-131

DataAspectRatioMode, PlotBoxAspectRatioMode, and CameraViewAngleMode
are all auto.

Position four-element vector

Position of axes. A four-element vector specifying a rectangle that locates the
axes within the figure window. The vector is of the form:

[left bottom width height]

where left and bottom define the distance from the lower-left corner of the
figure window to the lower-left corner of the rectangle. width and height are
the dimensions of the rectangle. All measurements are in units specified by the
Units property.

When axes stretch-to-fill behavior is enabled (when DataAspectRatioMode,
PlotBoxAspectRatioMode, CameraViewAngleMode are all auto), the axes are
stretched to fill the Position rectangle. When stretch-to-fill is disabled, the
axes are made as large as possible, while obeying all other properties, without
extending outside the Position rectangle

Projection {orthographic} | perspective

Type of projection. This property selects between two projection types:

• orthographic – This projection maintains the correct relative dimensions of
graphics objects with regard to the distance a given point is from the viewer.
Parallel lines in the data are drawn parallel on the screen.

• perspective – This projection incorporates foreshortening, which allows you
to perceive depth in 2-D representations of 3-D objects. Perspective
projection does not preserve the relative dimensions of objects; a distant line
segment displays smaller than a nearer line segment of the same length.
Parallel lines in the data may not appear parallel on screen.

Selected on | off

Is object selected. When you set this property to on, MATLAB displays selection
“handles” at the corners and midpoints if the SelectionHighlight property is
also on (the default). You can, for example, define the ButtonDownFcn callback
routine to set this property to on, thereby indicating that the axes has been
selected.

Axes Properties

2-132

SelectionHighlight {on} | off

Objects highlight when selected. When the Selected property is on, MATLAB
indicates the selected state by drawing four edge handles and four corner
handles. When SelectionHighlight is off, MATLAB does not draw the
handles.

Tag string (GUIDE sets this property)

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines.

For example, suppose you want to direct all graphics output from an M-file to
a particular axes, regardless of user actions that may have changed the current
axes. To do this, identify the axes with a Tag:

axes('Tag','Special Axes')

Then make that axes the current axes before drawing by searching for the Tag
with findobj:

axes(findobj('Tag','Special Axes'))

TickDir in | out

Direction of tick marks. For 2-D views, the default is to direct tick marks
inward from the axis lines; 3-D views direct tick marks outward from the axis
line.

TickDirMode {auto} | manual

Automatic tick direction control. In auto mode, MATLAB directs tick marks
inward for 2-D views and outward for 3-D views. When you specify a setting for
TickDir, MATLAB sets TickDirMode to manual. In manual mode, MATLAB
does not change the specified tick direction.

TickLength [2DLength 3DLength]

Length of tick marks. A two-element vector specifying the length of axes tick
marks. The first element is the length of tick marks used for 2-D views and the
second element is the length of tick marks used for 3-D views. Specify tick mark
lengths in units normalized relative to the longest of the visible X-, Y-, or Z-axis
annotation lines.

Axes Properties

2-133

Title handle of text object

Axes title. The handle of the text object that is used for the axes title. You can
use this handle to change the properties of the title text or you can set Title to
the handle of an existing text object. For example, the following statement
changes the color of the current title to red:

set(get(gca,'Title'),'Color','r')

To create a new title, set this property to the handle of the text object you want
to use:

set(gca,'Title',text('String','New Title','Color','r'))

However, it is generally simpler to use the title command to create or replace
an axes title:

title('New Title','Color','r')

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of graphics object. For axes objects, Type is always set to 'axes'.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the axes. Assign this property the handle of a
Uicontextmenu object created in the axes’ parent figure. Use the
uicontextmenu function to create the context menu. MATLAB displays the
context menu whenever you right-click over the axes.

Units inches | centimeters | {normalized} |
points | pixels | characters

Position units. The units used to interpret the Position property. All units are
measured from the lower-left corner of the figure window.

• normalized units map the lower-left corner of the figure window to (0,0) and
the upper-right corner to (1.0, 1.0).

• inches, centimeters, and points are absolute units (one point equals 1/72 of
an inch).

• Character units are defined by characters from the default system font; the
width of one character is the width of the letter x, the height of one character
is the distance between the baselines of two lines of text.

Axes Properties

2-134

UserData matrix

User specified data. This property can be any data you want to associate with
the axes object. The axes does not use this property, but you can access it using
the set and get functions.

View Obsolete

The functionality provided by the View property is now controlled by the axes
camera properties – CameraPosition, CameraTarget, CameraUpVector, and
CameraViewAngle. See the view command.

Visible {on} | off

Visibility of axes. By default, axes are visible. Setting this property to off
prevents axis lines, tick marks, and labels from being displayed. The visible
property does not affect children of axes.

XAxisLocation top | {bottom}

Location of x-axis tick marks and labels. This property controls where
MATLAB displays the x-axis tick marks and labels. Setting this property to top
moves the x-axis to the top of the plot from its default position at the bottom.

YAxisLocation right | {left}

Location of y-axis tick marks and labels. This property controls where
MATLAB displays the y-axis tick marks and labels. Setting this property to
right moves the y-axis to the right side of the plot from its default position on
the left side. See the plotyy function for a simple way to use two y-axes.

Properties That Control the X-, Y-, or Z-Axis
XColor, YColor, ZColor ColorSpec

Color of axis lines. A three-element vector specifying an RGB triple, or a
predefined MATLAB color string. This property determines the color of the
axis lines, tick marks, tick mark labels, and the axis grid lines of the respective
x-, y-, and z-axis. The default color axis color is black. See ColorSpec for details
on specifying colors.

XDir, YDir, ZDir {normal} | reverse

Direction of increasing values. A mode controlling the direction of increasing
axis values. axes form a right-hand coordinate system. By default:

Axes Properties

2-135

• x-axis values increase from left to right. To reverse the direction of increasing
x values, set this property to reverse.
set(gca,'XDir','reverse')

• y-axis values increase from bottom to top (2-D view) or front to back (3-D
view). To reverse the direction of increasing y values, set this property to
reverse.
set(gca,'YDir','reverse')

• z-axis values increase pointing out of the screen (2-D view) or from bottom to
top (3-D view). To reverse the direction of increasing z values, set this
property to reverse.

set(gca,'ZDir','reverse')

XGrid, YGrid, ZGrid on | {off}

Axis gridline mode. When you set any of these properties to on, MATLAB draws
grid lines perpendicular to the respective axis (i.e., along lines of constant x, y,
or z values). Use the grid command to set all three properties on or off at once.

set(gca,'XGrid','on')

XLabel, YLabel, ZLabel handle of text object

Axis labels. The handle of the text object used to label the x, y, or z-axis,
respectively. To assign values to any of these properties, you must obtain the
handle to the text string you want to use as a label. This statement defines a
text object and assigns its handle to the XLabel property:

set(get(gca,'XLabel'),'String','axis label')

MATLAB places the string 'axis label' appropriately for an x-axis label. Any
text object whose handle you specify as an XLabel, YLabel, or ZLabel property
is moved to the appropriate location for the respective label.

Alternatively, you can use the xlabel, ylabel, and zlabel functions, which
generally provide a simpler means to label axis lines.

XLim, YLim, ZLim [minimum maximum]

Axis limits. A two-element vector specifying the minimum and maximum
values of the respective axis.

Axes Properties

2-136

Changing these properties affects the scale of the x-, y-, or z-dimension as well
as the placement of labels and tick marks on the axis. The default values for
these properties are [0 1].

XLimMode, YLimMode, ZLimMode{auto} | manual

MATLAB or user-controlled limits. The axis limits mode determines whether
MATLAB calculates axis limits based on the data plotted (i.e., the XData,
YData, or ZData of the axes children) or uses the values explicitly set with the
XLim, YLim, or ZLim property, in which case, the respective limits mode is set to
manual.

XMinorGrid, YMinorGrid, ZMinorGrid on | {off}

Enable or disable minor gridlines. When set to on, MATLAB draws gridlines
aligned with the minor tick marks of the respective axis. Note that you do not
have to enable minor ticks to display minor grids.

XMinorTick, YMinorTick, ZMinorTick on | {off}

Enable or disable minor tick marks. When set to on, MATLAB draws tick
marks between the major tick marks of the respective axis. MATLAB
automaticaly determines the number of minor ticks based on the space
between the major ticks.

XScale, YScale, ZScale {linear} | log

Axis scaling. Linear or logarithmic scaling for the respective axis. See also
loglog, semilogx, and semilogy.

XTick, YTick, ZTick vector of data values locating tick marks

Tick spacing. A vector of x-, y-, or z-data values that determine the location of
tick marks along the respective axis. If you do not want tick marks displayed,
set the respective property to the empty vector, []. These vectors must contain
monotonically increasing values.

XTickLabel, YTickLabel, ZTickLabel string

Tick labels. A matrix of strings to use as labels for tick marks along the
respective axis. These labels replace the numeric labels generated by
MATLAB. If you do not specify enough text labels for all the tick marks,
MATLAB uses all of the labels specified, then reuses the specified labels.

For example, the statement,

set(gca,'XTickLabel',{'One';'Two';'Three';'Four'})

Axes Properties

2-137

labels the first four tick marks on the x-axis and then reuses the labels until all
ticks are labeled.

Labels can be specified as cell arrays of strings, padded string matrices, string
vectors separated by vertical slash characters, or as numeric vectors (where
each number is implicitly converted to the equivalent string using num2str).
All of the following are equivalent:

set(gca,'XTickLabel',{'1';'10';'100'})
set(gca,'XTickLabel','1|10|100')
set(gca,'XTickLabel',[1;10;100])
set(gca,'XTickLabel',['1 ';'10 ';'100'])

Note that tick labels do not interpret TeX character sequences (however, the
Title, XLabel, YLabel, and ZLabel properties do).

XTickMode, YTickMode, ZTickMode {auto} | manual

MATLAB or user controlled tick spacing. The axis tick modes determine
whether MATLAB calculates the tick mark spacing based on the range of data
for the respective axis (auto mode) or uses the values explicitly set for any of
the XTick, YTick, and ZTick properties (manual mode). Setting values for the
XTick, YTick, or ZTick properties sets the respective axis tick mode to manual.

XTickLabelMode, YTickLabelMode, ZTickLabelMode {auto} | manual

MATLAB or user determined tick labels. The axis tick mark labeling mode
determines whether MATLAB uses numeric tick mark labels that span the
range of the plotted data (auto mode) or uses the tick mark labels specified
with the XTickLabel, YTickLabel, or ZTickLabel property (manual mode).
Setting values for the XTickLabel, YTickLabel, or ZTickLabel property sets
the respective axis tick label mode to manual.

axis

2-138

2axisPurpose Axis scaling and appearance

Syntax axis([xmin xmax ymin ymax])
axis([xmin xmax ymin ymax zmin zmax cmin cmax])
v = axis

axis auto
axis manual
axis tight
axis fill

axis ij
axis xy

axis equal
axis image
axis square
axis vis3d
axis normal

axis off
axis on

axis(axes_handles,...)

[mode,visibility,direction] = axis('state')

Description axis manipulates commonly used axes properties. (See Algorithm section.)

axis([xmin xmax ymin ymax]) sets the limits for the x- and y-axis of the
current axes.

axis([xmin xmax ymin ymax zmin zmax cmin cmax]) sets the x-, y-, and
z-axis limits and the color scaling limits (see caxis) of the current axes.

v = axis returns a row vector containing scaling factors for the x-, y-, and
z-axis. v has four or six components depending on whether the current axes is
2-D or 3-D, respectively. The returned values are the current axes’ XLim, Ylim,
and ZLim properties.

axis

2-139

axis auto sets MATLAB to its default behavior of computing the current axes’
limits automatically, based on the minimum and maximum values of x, y, and
z data. You can restrict this automatic behavior to a specific axis. For example,
axis 'auto x' computes only the x-axis limits automatically; axis 'auto yz'
computes the y- and z-axis limits automatically.

axis manual and axis(axis) freezes the scaling at the current limits, so that
if hold is on, subsequent plots use the same limits. This sets the XLimMode,
YLimMode, and ZLimMode properties to manual.

axis tight sets the axis limits to the range of the data.

axis fill sets the axis limits and PlotBoxAspectRatio so that the axes fill
the position rectangle. This option has an effect only if
PlotBoxAspectRatioMode or DataAspectRatioMode are manual.

axis ij places the coordinate system origin in the upper-left corner. The i-axis
is vertical, with values increasing from top to bottom. The j-axis is horizontal
with values increasing from left to right.

axis xy draws the graph in the default Cartesian axes format with the
coordinate system origin in the lower-left corner. The x-axis is horizontal with
values increasing from left to right. The y-axis is vertical with values
increasing from bottom to top.

axis equal sets the aspect ratio so that the data units are the same in every
direction. The aspect ratio of the x-, y-, and z-axis is adjusted automatically
according to the range of data units in the x, y, and z directions.

axis image is the same as axis equal except that the plot box fits tightly
around the data.

axis square makes the current axes region square (or cubed when
three-dimensional). MATLAB adjusts the x-axis, y-axis, and z-axis so that they
have equal lengths and adjusts the increments between data units accordingly.

axis vis3d freezes aspect ratio properties to enable rotation of 3-D objects and
overrides stretch-to-fill.

axis

2-140

axis normal automatically adjusts the aspect ratio of the axes and the relative
scaling of the data units so that the plot fits the figures shape as best as
possible.

axis off turns off all axis lines, tick marks, and labels.

axis on turns on all axis lines, tick marks, and labels.

axis(axes_handles,...) applies the axis command to the specified axes. For
example, the following statements

h1 = subplot(221);
h2 = subplot(222);
axis([h1 h2],'square')

set both axes to square.

[mode,visibility,direction] = axis('state') returns three strings
indicating the current setting of axes properties:

mode is auto if XLimMode, YLimMode, and ZLimMode are all set to auto. If
XLimMode, YLimMode, or ZLimMode is manual, mode is manual.

Examples The statements

x = 0:.025:pi/2;
plot(x,tan(x),'-ro')

Output Argument Strings Returned

mode 'auto' | 'manual'

visibility 'on' | 'off'

direction 'xy' | 'ij'

axis

2-141

use the automatic scaling of the y-axis based on ymax = tan(1.57), which is
well over 1000:

The right figure shows a more satisfactory plot after typing

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

200

400

600

800

1000

1200

1400

axis

2-142

axis([0 pi/2 0 5])

Algorithm When you specify minimum and maximum values for the x-, y-, and z-axes,
axis sets the XLim, Ylim, and ZLim properties for the current axes to the
respective minimum and maximum values in the argument list. Additionally,
the XLimMode, YLimMode, and ZLimMode properties for the current axes are set
to manual.

axis auto sets the current axes’ XLimMode, YLimMode, and ZLimMode properties
to 'auto'.

axis manual sets the current axes’ XLimMode, YLimMode, and ZLimMode
properties to 'manual'.

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

axis

2-143

The following table shows the values of the axes properties set by axis equal,
axis normal, axis square, and axis image.

See Also axes, get, grid, set, subplot

Properties of axes graphics objects

“Axes Operations” for related functions

Axes Property axis equal axis normal axis square axis tightequal

DataAspectRatio [1 1 1] not set not set [1 1 1]

DataAspectRatioMode manual auto auto manual

PlotBoxAspectRatio [3 4 4] not set [1 1 1] auto

PlotBoxAspectRatioMode manual auto manual auto

Stretch-to-fill disabled active disabled disabled

balance

2-144

2balancePurpose Diagonal scaling to improve eigenvalue accuracy

Syntax [T,B] = balance(A)
B = balance(A)

Description [T,B] = balance(A) returns a similarity transformation T such that
B = T\A*T, and B has approximately equal row and column norms. T is a
permutation of a diagonal matrix whose elements are integer powers of two to
prevent the introduction of round-off error. If A is symmetric, then B == A and
T is the identity matrix.

B = balance(A) returns just the balanced matrix B.

Remarks Nonsymmetric matrices can have poorly conditioned eigenvalues. Small
perturbations in the matrix, such as roundoff errors, can lead to large
perturbations in the eigenvalues. The condition number of the eigenvector
matrix,

cond(V) = norm(V)*norm(inv(V))

where

[V,T] = eig(A)

relates the size of the matrix perturbation to the size of the eigenvalue
perturbation. Note that the condition number of A itself is irrelevant to the
eigenvalue problem.

Balancing is an attempt to concentrate any ill conditioning of the eigenvector
matrix into a diagonal scaling. Balancing usually cannot turn a nonsymmetric
matrix into a symmetric matrix; it only attempts to make the norm of each row
equal to the norm of the corresponding column.

Note The MATLAB eigenvalue function, eig(A), automatically balances A
before computing its eigenvalues. Turn off the balancing with
eig(A,'nobalance').

balance

2-145

Examples This example shows the basic idea. The matrix A has large elements in the
upper right and small elements in the lower left. It is far from being symmetric.

A = [1 100 10000; .01 1 100; .0001 .01 1]
A =

1.0e+04 *
0.0001 0.0100 1.0000
0.0000 0.0001 0.0100
0.0000 0.0000 0.0001

Balancing produces a diagonal matrix T with elements that are powers of two
and a balanced matrix B that is closer to symmetric than A.

[T,B] = balance(A)
T =

1.0e+03 *
2.0480 0 0

0 0.0320 0
0 0 0.0003

B =
1.0000 1.5625 1.2207
0.6400 1.0000 0.7813
0.8192 1.2800 1.0000

To see the effect on eigenvectors, first compute the eigenvectors of A, shown
here as the columns of V.

[V,E] = eig(A); V
V =

-1.0000 0.9999 0.9937
0.0050 0.0100 -0.1120
0.0000 0.0001 0.0010

Note that all three vectors have the first component the largest. This indicates
V is badly conditioned; in fact cond(V) is 8.7766e+003. Next, look at the
eigenvectors of B.

[V,E] = eig(B); V
V =

-0.8873 0.6933 0.0898
 0.2839 0.4437 -0.6482
 0.3634 0.5679 -0.7561

balance

2-146

Now the eigenvectors are well behaved and cond(V) is 1.4421. The ill
conditioning is concentrated in the scaling matrix; cond(T) is 8192.

This example is small and not really badly scaled, so the computed eigenvalues
of A and B agree within roundoff error; balancing has little effect on the
computed results.

Algorithm balance uses LAPACK routines DGEBAL (real) and ZGEBAL (complex). If you
request the output T, it also uses the LAPACK routines DGEBAK (real) and
ZGEBAK (complex).

Limitations Balancing can destroy the properties of certain matrices; use it with some care.
If a matrix contains small elements that are due to roundoff error, balancing
may scale them up to make them as significant as the other elements of the
original matrix.

See Also eig

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

bar, barh

2-147

2bar, barhPurpose Bar chart

Syntax bar(Y)
bar(x,Y)
bar(...,width)
bar(...,'style')
bar(...,LineSpec)
h = bar(...)

barh(...)
h = barh(...)

Description A bar chart displays the values in a vector or matrix as horizontal or vertical
bars.

bar(Y) draws one bar for each element in Y. If Y is a matrix, bar groups the
bars produced by the elements in each row. The x-axis scale ranges from 1 to
length(Y) when Y is a vector, and 1 to size(Y,1), which is the number of rows,
when Y is a matrix.

bar(x,Y) draws a bar for each element in Y at locations specified in x, where x
is a monotonically increasing vector defining the x-axis intervals for the
vertical bars. If Y is a matrix, bar clusters the elements in the same row in Y at
locations corresponding to an element in x.

bar(...,width) sets the relative bar width and controls the separation of bars
within a group. The default width is 0.8, so if you do not specify x, the bars
within a group have a slight separation. If width is 1, the bars within a group
touch one another.

bar(...,'style') specifies the style of the bars. 'style' is 'grouped' or
'stacked'. 'group' is the default mode of display.

• 'grouped' displays n groups of m vertical bars, where n is the number of
rows and m is the number of columns in Y. The group contains one bar per
column in Y.

• 'stacked' displays one bar for each row in Y. The bar height is the sum of
the elements in the row. Each bar is multi-colored, with colors corresponding

bar, barh

2-148

to distinct elements and showing the relative contribution each row element
makes to the total sum.

bar(...,LineSpec) displays all bars using the color specified by LineSpec.

h = bar(...) returns a vector of handles to patch graphics objects. bar creates
one patch graphics object per column in Y.

barh(...), and h = barh(...) create horizontal bars. Y determines the bar
length. The vector x is a monotonic vector defining the y-axis intervals for
horizontal bars.

Examples Plot a bell shaped curve:

x = –2.9:0.2:2.9;
bar(x,exp(–x.*x))
colormap hsv

Create four subplots showing the effects of various bar arguments:

Y = round(rand(5,3)*10);
subplot(2,2,1)
bar(Y,'group')
title 'Group'

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bar, barh

2-149

subplot(2,2,2)
bar(Y,'stack')
title 'Stack'

subplot(2,2,3)
barh(Y,'stack')
title 'Stack'

subplot(2,2,4)
bar(Y,1.5)
title 'Width = 1.5'

1 2 3 4 5
0

2

4

6

8

10
Group

1 2 3 4 5
0

5

10

15

20

25
Stack

0 5 10 15 20 25

1

2

3

4

5

Stack

1 2 3 4 5
0

2

4

6

8

10
Width = 1.5

bar, barh

2-150

See Also bar3, ColorSpec, patch, stairs, hist

“Area, Bar, and Pie Plots” for related functions

Bar and Area Graphs for more examples

bar3, bar3h

2-151

2bar3, bar3hPurpose Three-dimensional bar chart

Syntax bar3(Y)
bar3(x,Y)
bar3(...,width)
bar3(...,'style')
bar3(...,LineSpec)
h = bar3(...)

bar3h(...)
h = bar3h(...)

Description bar3 and bar3h draw three-dimensional vertical and horizontal bar charts.

bar3(Y) draws a three-dimensional bar chart, where each element in Y
corresponds to one bar. When Y is a vector, the x-axis scale ranges from 1 to
length(Y). When Y is a matrix, the x-axis scale ranges from 1 to size(Y,2),
which is the number of columns, and the elements in each row are grouped
together.

bar3(x,Y) draws a bar chart of the elements in Y at the locations specified in
x, where x is a monotonic vector defining the y-axis intervals for vertical bars.
If Y is a matrix, bar3 clusters elements from the same row in Y at locations
corresponding to an element in x. Values of elements in each row are grouped
together.

bar3(...,width) sets the width of the bars and controls the separation of bars
within a group. The default width is 0.8, so if you do not specify x, bars within
a group have a slight separation. If width is 1, the bars within a group touch
one another.

bar3(...,'style') specifies the style of the bars. 'style' is 'detached',
'grouped', or 'stacked'. 'detached' is the default mode of display.

• 'detached' displays the elements of each row in Y as separate blocks behind
one another in the x direction.

• 'grouped' displays n groups of m vertical bars, where n is the number of
rows and m is the number of columns in Y. The group contains one bar per
column in Y.

bar3, bar3h

2-152

• 'stacked' displays one bar for each row in Y. The bar height is the sum of
the elements in the row. Each bar is multi-colored, with colors corresponding
to distinct elements and showing the relative contribution each row element
makes to the total sum.

bar3(...,LineSpec) displays all bars using the color specified by LineSpec.

h = bar3(...) returns a vector of handles to patch graphics objects. bar3
creates one patch object per column in Y.

bar3h(...) and h = bar3h(...) create horizontal bars. Y determines the bar
length. The vector x is a monotonic vector defining the y-axis intervals for
horizontal bars.

Examples This example creates six subplots showing the effects of different arguments
for bar3. The data Y is a seven-by-three matrix generated using the cool
colormap:

Y = cool(7);
subplot(3,2,1)
bar3(Y,'detached')
title('Detached')

subplot(3,2,2)
bar3(Y,0.25,'detached')
title('Width = 0.25')

subplot(3,2,3)
bar3(Y,'grouped')
title('Grouped')

subplot(3,2,4)
bar3(Y,0.5,'grouped')
title('Width = 0.5')

bar3, bar3h

2-153

subplot(3,2,5)
bar3(Y,'stacked')
title('Stacked')

subplot(3,2,6)
bar3(Y,0.3,'stacked')
title('Width = 0.3')

colormap([1 0 0;0 1 0;0 0 1])

bar3, bar3h

2-154

See Also bar, LineSpec, patch

“Area, Bar, and Pie Plots” for related functions

Bar and Area Graphs for more examples

1
2

3
4

5
6

7

0

0.5

1

Detached

1
2

3
4

5
6

7

0

0.5

1

Width = 0.25

1
2

3
4

5
6

7

0

0.5

1
Grouped

1
2

3
4

5
6

7

0

0.5

1
Width = 0.5

1
2

3
4

5
6

7

0

0.5

1

1.5

2
Stacked

1
2

3
4

5
6

7

0

0.5

1

1.5

2
Width = 0.3

base2dec

2-155

2base2decPurpose Base to decimal number conversion

Syntax d = base2dec('strn',base)

Description d = base2dec('strn',base) converts the string number strn of the specified
base into its decimal (base 10) equivalent. base must be an integer between 2
and 36. If 'strn' is a character array, each row is interpreted as a string in the
specified base.

Examples The expression base2dec('212',3) converts 2123 to decimal, returning 23.

See Also dec2base

beep

2-156

2beepPurpose Produce a beep sound

Syntax beep
beep on
beep off
s = beep

Description beep produces you computer’s default beep sound

beep on turns the beep on

beep off turn the beep off

s = beep returns the current beep mode (on or off)

besselh

2-157

2besselhPurpose Bessel function of the third kind (Hankel function)

Syntax H = besselh(nu,K,Z)
H = besselh(nu,Z)
H = besselh(nu,K,Z,1)
[H,ierr] = besselh(...)

Definitions The differential equation

where is a nonnegative constant, is called Bessel’s equation, and its solutions
are known as Bessel functions. and form a fundamental set of
solutions of Bessel’s equation for noninteger . is a second solution of
Bessel’s equation – linearly independent of – defined by

The relationship between the Hankel and Bessel functions is

where is besselj, and is bessely.

Description H = besselh(nu,K,Z) computes the Hankel function , where K = 1 or
2, for each element of the complex array Z. If nu and Z are arrays of the same
size, the result is also that size. If either input is a scalar, besselh expands it
to the other input's size. If one input is a row vector and the other is a column
vector, the result is a two-dimensional table of function values.

H = besselh(nu,Z) uses K = 1.

H = besselh(nu,K,Z,1) scales by exp(-i*Z) if K = 1, and by
exp(+i*Z) if K = 2.

z2

z2

2

d

d y z dy
dz
------- z2 ν2

–() y+ + 0=

ν
Jν z() J ν– z()

ν Yν z()
Jν z()

Yν z()
Jν z() νπ()cos J ν– z()–

νπ()sin
---=

Hν
1() z() Jν z() i Yν z()+=

Hν
2() z() Jν z() i Yν z()–=

Jν z() Yν z()

Hν
K() z()

Hν
K() z()

besselh

2-158

[H,ierr] = besselh(...) also returns completion flags in an array the same
size as H.

Examples This example generates the contour plots of the modulus and phase of the
Hankel function shown on page 359 of [1] Abramowitz and Stegun,
Handbook of Mathematical Functions.

It first generates the modulus contour plot

[X,Y] = meshgrid(-4:0.025:2,-1.5:0.025:1.5);
H = besselh(0,1,X+i*Y);
contour(X,Y,abs(H),0:0.2:3.2), hold on

ierr Description

0 besselh successfully computed the Hankel function for this
element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

H0
1() z()

besselh

2-159

then adds the contour plot of the phase of the same function.

contour(X,Y,(180/pi)*angle(H),-180:10:180); hold off

See Also besselj, bessely, besseli, besselk

−4 −3 −2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

−4 −3 −2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

besselh

2-160

References [1] Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965.

besseli

2-161

2besseliPurpose Modified Bessel function of the first kind

Syntax I = besseli(nu,Z)
I = besseli(nu,Z,1)
[I,ierr] = besseli(...)

Definitions The differential equation

where is a real constant, is called the modified Bessel’s equation, and its
solutions are known as modified Bessel functions.

 and form a fundamental set of solutions of the modified Bessel’s
equation for noninteger . is defined by

where is the gamma function.

 is a second solution, independent of . It can be computed using
besselk.

Description I = besseli(nu,Z) computes the modified Bessel function of the first kind,
, for each element of the array Z. The order nu need not be an integer, but

must be real. The argument Z can be complex. The result is real where Z is
positive.

If nu and Z are arrays of the same size, the result is also that size. If either input
is a scalar, it is expanded to the other input's size. If one input is a row vector
and the other is a column vector, the result is a two-dimensional table of
function values.

I = besseli(nu,Z,1) computes besseli(nu,Z).*exp(-abs(real(Z))).

z2
z2

2

d

d y z dy
dz
------- z2 ν2+() y–+ 0=

ν

Iν z() I ν– z()
ν Iν z()

Iν z() z
2

 ν z2

4

k

k! Γ ν k 1+ +()
--k 0=

∞
∑=

Γ a()

Kν z() Iν z()

Iν z()

besseli

2-162

[I,ierr] = besseli(...) also returns completion flags in an array the same
size as I.

Examples Example 1.

format long
z = (0:0.2:1)';

besseli(1,z)

ans =
 0
 0.10050083402813
 0.20402675573357
 0.31370402560492
 0.43286480262064
 0.56515910399249

Example 2. besseli(3:9,(0:.2,10)',1) generates the entire table on
page 423 of [1] Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The besseli functions uses a Fortran MEX-file to call a library developed by
D. E. Amos [3] [4].

See Also airy, besselh, besselj, besselk, bessely

ierr Description

0 besseli succesfully computed the modified Bessel function for
this element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

besseli

2-163

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable: Theory and
Technique, Hod Books, 1983, section 5.5.

[3] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[4] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

besselk

2-164

2besselkPurpose Modified Bessel function of the second kind

Syntax K = besselk(nu,Z)
K = besselk(nu,Z,1)
[K,ierr] = besselk(...)

Definitions The differential equation

where is a real constant, is called the modified Bessel’s equation, and its
solutions are known as modified Bessel functions.

A solution of the second kind can be expressed as

where and form a fundamental set of solutions of the modified
Bessel’s equation for noninteger

and is the gamma function. is independent of .

 can be computed using besseli.

Description K = besselk(nu,Z) computes the modified Bessel function of the second kind,
, for each element of the array Z. The order nu need not be an integer, but

must be real. The argument Z can be complex. The result is real where Z is
positive.

If nu and Z are arrays of the same size, the result is also that size. If either input
is a scalar, it is expanded to the other input's size. If one input is a row vector
and the other is a column vector, the result is a two-dimensional table of
function values.

z2
z2

2

d

d y z dy
dz
------- z2 ν2+() y–+ 0=

ν

Kν z()

Kν z() π
2

 I ν– z() Iν z()–

νπ()sin
------------------------------------=

Iν z() I ν– z()
ν

Iν z() z
2

 ν z2

4

k

k! Γ ν k 1+ +()
--k 0=

∞
∑=

Γ a() Kν z() Iν z()

Iν z()

K ν z()

besselk

2-165

K = besselk(nu,Z,1) computes besselk(nu,Z).*exp(Z).

[K,ierr] = besselk(...) also returns completion flags in an array the same
size as K.

Examples Example 1.

format long
z = (0:0.2:1)';

besselk(1,z)

ans =
 Inf
 4.77597254322047
 2.18435442473269
 1.30283493976350
 0.86178163447218
 0.60190723019723

Example 2. besselk(3:9,(0:.2:10)',1) generates part of the table on
page 424 of [1] Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The besselk function uses a Fortran MEX-file to call a library developed by
D. E. Amos [3] [4].

ierr Description

0 besselk succesfully computed the modified Bessel function for
this element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

besselk

2-166

See Also airy, besselh, besseli, besselj, bessely

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable: Theory and
Technique, Hod Books, 1983, section 5.5.

[3] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[4] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

besselj

2-167

2besseljPurpose Bessel function of the first kind

Syntax J = besselj(nu,Z)
J = besselj(nu,Z,1)
[J,ierr] = besselj(nu,Z)

Definition The differential equation

where is a real constant, is called Bessel’s equation, and its solutions are
known as Bessel functions.

and form a fundamental set of solutions of Bessel’s equation for
noninteger . is defined by

where is the gamma function.

is a second solution of Bessel’s equation that is linearly independent of
. It can be computed using bessely.

Description J = besselj(nu,Z) computes the Bessel function of the first kind, , for
each element of the array Z. The order nu need not be an integer, but must be
real. The argument Z can be complex. The result is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If either input
is a scalar, it is expanded to the other input's size. If one input is a row vector
and the other is a column vector, the result is a two-dimensional table of
function values.

J = besselj(nu,Z,1) computes besselj(nu,Z).*exp(-abs(imag(Z))).

[J,ierr] = besselj(nu,Z) also returns completion flags in an array the
same size as J.

z2

z2

2

d

d y z dy
dz
------- z2 ν2

–() y+ + 0=

ν

Jν z() J ν– z()
ν Jν z()

Jν z() z
2

 ν z2

4
-----–

k

k! Γ ν k 1+ +()
--k 0=

∞
∑=

Γ a()

Yν z()
Jν z()

Jν z()

besselj

2-168

Remarks The Bessel functions are related to the Hankel functions, also called Bessel
functions of the third kind,

where is besselh, is besselj, and is bessely. The
Hankel functions also form a fundamental set of solutions to Bessel’s equation
(see besselh).

Examples Example 1.

format long
z = (0:0.2:1)';

besselj(1,z)

ans =
 0
 0.09950083263924
 0.19602657795532
 0.28670098806392
 0.36884204609417
 0.44005058574493

ierr Description

0 besselj succesfully computed the Bessel function for this
element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

Hν
1() z() Jν z() i Y ν z()+=

Hν
2() z() Jν z() i Yν z()–=

Hν
K() z() Jν z() Yν z()

besselj

2-169

Example 2. besselj(3:9,(0:.2:10)') generates the entire table on page 398
of [1] Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The besselj function uses a Fortran MEX-file to call a library developed by
D. E. Amos [3] [4].

See Also besselh, besseli, besselk, bessely

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable: Theory and
Technique, Hod Books, 1983, section 5.5.

[3] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[4] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

bessely

2-170

2besselyPurpose Bessel functions of the second kind

Syntax Y = bessely(nu,Z)
Y = bessely(nu,Z,1)
[Y,ierr] = bessely(nu,Z)

Definition The differential equation

where is a real constant, is called Bessel’s equation, and its solutions are
known as Bessel functions.

A solution of the second kind can be expressed as

where and form a fundamental set of solutions of Bessel’s
equation for noninteger

and is the gamma function. is linearly independent of

 can be computed using besselj.

Description Y = bessely(nu,Z) computes Bessel functions of the second kind, , for
each element of the array Z. The order nu need not be an integer, but must be
real. The argument Z can be complex. The result is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If either input
is a scalar, it is expanded to the other input's size. If one input is a row vector
and the other is a column vector, the result is a two-dimensional table of
function values.

Y = bessely(nu,Z,1) computes bessely(nu,Z).*exp(-abs(imag(Z))).

z2

z2

2

d

d y z dy
dz
------- z2 ν2

–() y+ + 0=

ν

Yν z()

Yν z()
Jν z() νπ()cos J ν– z()–

νπ()sin
---=

Jν z() J ν– z()
ν

Jν z() z
2

 ν z2

4
-----–

k

k! Γ ν k 1+ +()
--k 0=

∞
∑=

Γ a() Yν z() Jν z()

Jν z()

Yν z()

bessely

2-171

[Y,ierr] = bessely(nu,Z) also returns completion flags in an array the
same size as Y.

Remarks The Bessel functions are related to the Hankel functions, also called Bessel
functions of the third kind,

where is besselh, is besselj, and is bessely. The
Hankel functions also form a fundamental set of solutions to Bessel’s equation
(see besselh).

Examples Example 1.

format long
z = (0:0.2:1)';

bessely(1,z)

ans =
 -Inf
 -3.32382498811185
 -1.78087204427005

ierr Description

0 bessely succesfully computed the Bessel function for this
element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

Hν
1() z() Jν z() i Y ν z()+=

Hν
2() z() Jν z() i Yν z()–=

Hν
K() z() Jν z() Yν z()

bessely

2-172

 -1.26039134717739
 -0.97814417668336
 -0.78121282130029

Example 2. bessely(3:9,(0:.2:10)') generates the entire table on page 399
of [1] Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The bessely function uses a Fortran MEX-file to call a library developed by
D. E Amos [3] [4].

See Also besselh, besseli, besselj, besselk

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sections 9.1.1, 9.1.89 and 9.12, formulas 9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable: Theory and
Technique, Hod Books, 1983, section 5.5.

[3] Amos, D. E., “A Subroutine Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Sandia National Laboratory Report,
SAND85-1018, May, 1985.

[4] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

beta

2-173

2betaPurpose Beta function

Syntax B = beta(Z,W)

Definition The beta function is

where is the gamma function.

Description B = beta(Z,W) computes the beta function for corresponding elements of
arrays Z and W. The arrays must be real and nonnegative. They must be the
same size, or either can be scalar.

Examples In this example, which uses integer arguments,

beta(n,3)
 = (n-1)!*2!/(n+2)!
 = 2/(n*(n+1)*(n+2))

is the ratio of fairly small integers, and the rational format is able to recover
the exact result.

format rat
beta((0:10)',3)

ans =

1/0
1/3
1/12
1/30
1/60
1/105
1/168
1/252
1/360
1/495
1/660

B z w,() t z 1– 1 t–()w 1– td
0

1

∫ Γ z()Γ w()
Γ z w+()
-------------------------= =

Γ z()

beta

2-174

Algorithm beta(z,w) = exp(gammaln(z)+gammaln(w)-gammaln(z+w))

See Also betainc, betaln, gammaln

betainc

2-175

2betaincPurpose Incomplete beta function

Syntax I = betainc(X,Z,W)

Definition The incomplete beta function is

where , the beta function, is defined as

and is the gamma function.

Description I = betainc(X,Z,W) computes the incomplete beta function for corresponding
elements of the arrays X, Z and W. The elements of X must be in the closed
interval . The arrays Z and W must be nonnegative and real. All arrays
must be the same size, or any of them can be scalar.

Examples format long
betainc(.5,(0:10)',3)

ans =
 1.00000000000000
 0.87500000000000
 0.68750000000000
 0.50000000000000
 0.34375000000000
 0.22656250000000
 0.14453125000000
 0.08984375000000
 0.05468750000000
 0.03271484375000
 0.01928710937500

See Also beta, betaln

Ix z w,() 1
B z w,()
-------------------- tz 1– 1 t–()w 1– td

0

x

∫=

B z w,()

B z w,() t z 1– 1 t–()w 1– td
0

1

∫ Γ z()Γ w()
Γ z w+()
-------------------------= =

Γ z()

0 1[,]

betaln

2-176

2betalnPurpose Logarithm of beta function

Syntax L = betaln(Z,W)

Description L = betaln(Z,W) computes the natural logarithm of the beta function
log(beta(Z,W)), for corresponding elements of arrays Z and W, without
computing beta(Z,W). Since the beta function can range over very large or very
small values, its logarithm is sometimes more useful.

Z and W must be real and nonnegative. They must be the same size, or either
can be scalar.

Examples x = 510
betaln(x,x)

ans =
 -708.8616

-708.8616 is slightly less than log(realmin). Computing beta(x,x) directly
would underflow (or be denormal).

Algorithm betaln(z,w) = gammaln(z)+gammaln(w)-gammaln(z+w)

See Also beta, betainc, gammaln

bicg

2-177

2bicgPurpose BiConjugate Gradients method

Syntax x = bicg(A,b)
bicg(A,b,tol)
bicg(A,b,tol,maxit)
bicg(A,b,tol,maxit,M)
bicg(A,b,tol,maxit,M1,M2)
bicg(A,b,tol,maxit,M1,M2,x0)
bicg(afun,b,tol,maxit,mfun1,mfun2,x0,p1,p2,...)
[x,flag] = bicg(A,b,...)
[x,flag,relres] = bicg(A,b,...)
[x,flag,relres,iter] = bicg(A,b,...)
[x,flag,relres,iter,resvec] = bicg(A,b,...)

Description x = bicg(A,b) attempts to solve the system of linear equations A*x = b for x.
The n-by-n coefficient matrix A must be square and should be large and sparse.
The column vector b must have length n. A can be a function afun such that
afun(x) returns A*x and afun(x,'transp') returns A'*x.

If bicg converges, it displays a message to that effect. If bicg fails to converge
after the maximum number of iterations or halts for any reason, it prints a
warning message that includes the relative residual norm(b-A*x)/norm(b)
and the iteration number at which the method stopped or failed.

bicg(A,b,tol) specifies the tolerance of the method. If tol is [], then bicg
uses the default, 1e-6.

bicg(A,b,tol,maxit) specifies the maximum number of iterations. If maxit
is [], then bicg uses the default, min(n,20).

bicg(A,b,tol,maxit,M) and bicg(A,b,tol,maxit,M1,M2) use the
preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If M is [] then bicg applies no preconditioner.
M can be a function mfun such that mfun(x) returns M\x and mfun(x,'transp')
returns M'\x.

bicg(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [], then
bicg uses the default, an all-zero vector.

bicg

2-178

bicg(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes parameters
p1,p2,... to functions afun(x,p1,p2,...) and
afun(x,p1,p2,...,'transp'), and similarly to the preconditioner functions
m1fun and m2fun.

[x,flag] = bicg(A,b,...) also returns a convergence flag.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = bicg(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = bicg(A,b,...) also returns the iteration number
at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = bicg(A,b,...) also returns a vector of the
residual norms at each iteration including norm(b-A*x0).

Examples Example 1.

n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;

Flag Convergence

0 bicg converged to the desired tolerance tol within maxit
iterations.

1 bicg iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 bicg stagnated. (Two consecutive iterates were the same.)

4 One of the scalar quantities calculated during bicg became
too small or too large to continue computing.

bicg

2-179

maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);

x = bicg(A,b,tol,maxit,M1,M2,[]);

displays this message

bicg converged at iteration 9 to a solution with relative
residual 5.3e-009

Alternatively, use this matrix-vector product function

function y = afun(x,n,transp_flag)
if (nargin > 2) & strcmp(transp_flag,'transp')
 y = 4 * x;
 y(1:n-1) = y(1:n-1) - 2 * x(2:n);
 y(2:n) = y(2:n) - x(1:n-1);
else
 y = 4 * x;
 y(2:n) = y(2:n) - 2 * x(1:n-1);
 y(1:n-1) = y(1:n-1) - x(2:n);
end

as input to bicg.

 x1 = bicg(@afun,b,tol,maxit,M1,M2,[],n);

Example 2. This examples demonstrates the use of a preconditioner. Start
with A = west0479, a real 479-by-479 sparse matrix, and define b so that the
true solution is a vector of all ones.

load west0479;
A = west0479;
b = sum(A,2);

You can accurately solve A*x = b using backslash since A is not so large.

x = A \ b;
norm(b-A*x) / norm(b)

ans =
 8.3154e-017

bicg

2-180

Now try to solve A*x = b with bicg.

[x,flag,relres,iter,resvec] = bicg(A,b)

flag =
 1
relres =
 1
iter =
 0

The value of flag indicates that bicg iterated the default 20 times without
converging. The value of iter shows that the method behaved so badly that the
initial all-zero guess was better than all the subsequent iterates. The value of
relres supports this: relres = norm(b-A*x)/norm(b) = norm(b)/norm(b) = 1.
You can confirm that the unpreconditioned method oscillates rather wildly by
plotting the relative residuals at each iteration.

semilogy(0:20,resvec/norm(b),'-o')
xlabel('Iteration Number')
ylabel('Relative Residual')

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

Iteration Number

R
el

at
iv

e
R

es
id

ua
l

bicg

2-181

Now, try an incomplete LU factorization with a drop tolerance of 1e-5 for the
preconditioner.

[L1,U1] = luinc(A,1e-5);
Warning: Incomplete upper triangular factor has 1 zero diagonal.

It cannot be used as a preconditioner for an iterative
 method.

nnz(A), nnz(L1), nnz(U1)

ans =
 1887
ans =
 5562
ans =
 4320

The zero on the main diagonal of the upper triangular U1 indicates that U1 is
singular. If you try to use it as a preconditioner,

[x,flag,relres,iter,resvec] = bicg(A,b,1e-6,20,L1,U1)

flag =
 2
relres =
 1
iter =
 0
resvec =
 7.0557e+005

the method fails in the very first iteration when it tries to solve a system of
equations involving the singular U1 using backslash. bicg is forced to return
the initial estimate since no other iterates were produced.

Try again with a slightly less sparse preconditioner.

[L2,U2] = luinc(A,1e-6);

bicg

2-182

nnz(L2), nnz(U2)

ans =
 6231
ans =
 4559

This time U2 is nonsingular and may be an appropriate preconditioner.

[x,flag,relres,iter,resvec] = bicg(A,b,1e-15,10,L2,U2)

flag =
 0
relres =
 2.8664e-016
iter =
 8

and bicg converges to within the desired tolerance at iteration number 8.
Decreasing the value of the drop tolerance increases the fill-in of the
incomplete factors but also increases the accuracy of the approximation to the
original matrix. Thus, the preconditioned system becomes closer to
inv(U)*inv(L)*L*U*x = inv(U)*inv(L)*b, where L and U are the true LU
factors, and closer to being solved within a single iteration.

The next graph shows the progress of bicg using six different incomplete LU
factors as preconditioners. Each line in the graph is labeled with the drop
tolerance of the preconditioner used in bicg.

bicg

2-183

See Also bicgstab, cgs, gmres, lsqr, luinc, minres, pcg, qmr, symmlq

@ (function handle), \ (backslash)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

0 1 2 3 4 5 6 7 8

10
−15

10
−10

10
−5

10
0

1e−61e−8
1e−10

1e−12

1e−14

iteration number

re
la

tiv
e

re
si

du
al

bicgstab

2-184

2bicgstabPurpose BiConjugate Gradients Stabilized method

Syntax x = bicgstab(A,b)
bicgstab(A,b,tol)
bicgstab(A,b,tol,maxit)
bicgstab(A,b,tol,maxit,M)
bicgstab(A,b,tol,maxit,M1,M2)
bicgstab(A,b,tol,maxit,M1,M2,x0)
bicgstab(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
[x,flag] = bicgstab(A,b,...)
[x,flag,relres] = bicgstab(A,b,...)
[x,flag,relres,iter] = bicgstab(A,b,...)
[x,flag,relres,iter,resvec] = bicgstab(A,b,...)

Description x = bicgstab(A,b) attempts to solve the system of linear equations A*x=b for
x. The n-by-n coefficient matrix A must be square and should be large and
sparse. The column vector b must have length n. A can be a function afun such
that afun(x) returns A*x.

If bicgstab converges, a message to that effect is displayed. If bicgstab fails
to converge after the maximum number of iterations or halts for any reason, a
warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method stopped
or failed.

bicgstab(A,b,tol) specifies the tolerance of the method. If tol is [], then
bicgstab uses the default, 1e-6.

bicgstab(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then bicgstab uses the default, min(n,20).

bicgstab(A,b,tol,maxit,M) and bicgstab(A,b,tol,maxit,M1,M2) use
preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If M is [] then bicgstab applies no
preconditioner. M can be a function that returns M\x.

bicgstab(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [],
then bicgstab uses the default, an all zero vector.

bicgstab

2-185

bicgstab(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes
parameters p1,p2,... to functions afun(x,p1,p2,...), m1fun(x,p1,p2,...),
and m2fun(x,p1,p2,...).

[x,flag] = bicgstab(A,b,...) also returns a convergence flag.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = bicgstab(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = bicgstab(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit. iter can be an
integer + 0.5, indicating convergence half way through an iteration.

[x,flag,relres,iter,resvec] = bicgstab(A,b,...) also returns a vector
of the residual norms at each half iteration, including norm(b-A*x0).

Example Example 1. This example first solves Ax = b by providing A and the
preconditioner M1 directly as arguments. It then solves the same system using
functions that return A and the preconditioner.

A = gallery('wilk',21);
b = sum(A,2);

Flag Convergence

0 bicgstab converged to the desired tolerance tol within
maxit iterations.

1 bicgstab iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 bicgstab stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during bicgstab
became too small or too large to continue computing.

bicgstab

2-186

tol = 1e-12;
maxit = 15;
M1 = diag([10:-1:1 1 1:10]);

x = bicgstab(A,b,tol,maxit,M1,[],[]);

displays this message

bicgstab converged at iteration 12.5 to a solution with relative
residual 2.9e-014

Alternatively, use this matrix-vector product function

function y = afun(x,n)
y = [0;
 x(1:n-1)] + [((n-1)/2:-1:0)';
 (1:(n-1)/2)'] .*x + [x(2:n);
 0];

and this preconditioner backsolve function

function y = mfun(r,n)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

as inputs to bicgstab

x1 = bicgstab(@afun,b,tol,maxit,@mfun,[],[],21);

Note that both afun and mfun must accept bicgstab's extra input n=21.

Example 2. This examples demonstrates the use of a preconditioner. Start
with A = west0479, a real 479-by-479 sparse matrix, and define b so that the
true solution is a vector of all ones.

load west0479;
A = west0479;
b = sum(A,2);
[x,flag] = bicgstab(A,b)

flag is 1 because bicgstab does not converge to the default tolerance 1e-6
within the default 20 iterations.

[L1,U1] = luinc(A,1e-5);
[x1,flag1] = bicgstab(A,b,1e-6,20,L1,U1)

bicgstab

2-187

flag1 is 2 because the upper triangular U1 has a zero on its diagonal. This
causes bicgstab to fail in the first iteration when it tries to solve a system such
as U1*y = r using backslash.

[L2,U2] = luinc(A,1e-6);
[x2,flag2,relres2,iter2,resvec2] = bicgstab(A,b,1e-15,10,L2,U2)

flag2 is 0 because bicgstab converges to the tolerance of 3.1757e-016 (the
value of relres2) at the sixth iteration (the value of iter2) when
preconditioned by the incomplete LU factorization with a drop tolerance of
1e-6. resvec2(1) = norm(b) and resvec2(13) = norm(b-A*x2). You can
follow the progress of bicgstab by plotting the relative residuals at the halfway
point and end of each iteration starting from the initial estimate (iterate
number 0).

semilogy(0:0.5:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')

0 1 2 3 4 5 6
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
la

tiv
e

re
si

du
al

bicgstab

2-188

See Also bicg, cgs, gmres, lsqr, luinc, minres, pcg, qmr, symmlq

@ (function handle), \ (backslash)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] van der Vorst, H. A., “BI-CGSTAB: A fast and smoothly converging variant
of BI-CG for the solution of nonsymmetric linear systems”, SIAM J. Sci. Stat.
Comput., March 1992,Vol. 13, No. 2, pp. 631-644.

bin2dec

2-189

2bin2decPurpose Binary to decimal number conversion

Syntax bin2dec(binarystr)

Description bin2dec(binarystr) interprets the binary string binarystr and returns the
equivalent decimal number.

Examples bin2dec('010111') returns 23.

See Also dec2bin

bitand

2-190

2bitandPurpose Bit-wise AND

Syntax C = bitand(A,B)

Description C = bitand(A,B) returns the bit-wise AND of two nonnegative integer
arguments A and B. To ensure the operands are integers, use the ceil, fix,
floor, and round functions.

Examples The five-bit binary representations of the integers 13 and 27 are 01101 and
11011, respectively. Performing a bit-wise AND on these numbers yields
01001, or 9.

C = bitand(13,27)

C =

 9

See Also bitcmp, bitget, bitmax, bitor, bitset, bitshift, bitxor

bitcmp

2-191

2bitcmpPurpose Complement bits

Syntax C = bitcmp(A,n)

Description C = bitcmp(A,n) returns the bit-wise complement of A as an n-bit
floating-point integer (flint).

Example With eight-bit arithmetic, the ones’ complement of 01100011 (99, decimal) is
10011100 (156, decimal).

C = bitcmp(99,8)

C =

 156

See Also bitand, bitget, bitmax, bitor, bitset, bitshift, bitxor

bitget

2-192

2bitgetPurpose Get bit

Syntax C = bitget(A,bit)

Description C = bitget(A,bit) returns the value of the bit at position bit in A. Operand
A must be a nonnegative integer, and bit must be a number between 1 and the
number of bits in the floating-point integer (flint) representation of A (52 for
IEEE flints). To ensure the operand is an integer, use the ceil, fix, floor, and
round functions.

Example The dec2bin function converts decimal numbers to binary. However, you can
also use the bitget function to show the binary representation of a decimal
number. Just test successive bits from most to least significant:

disp(dec2bin(13))
1101
C = bitget(13,4:-1:1)

C =
 1 1 0 1

See Also bitand, bitcmp, bitmax, bitor, bitset, bitshift, bitxor

bitmax

2-193

2bitmaxPurpose Maximum floating-point integer

Syntax bitmax

Description bitmax returns the maximum unsigned floating-point integer for your
computer. It is the value when all bits are set, namely the value .

See Also bitand, bitcmp, bitget, bitor, bitset, bitshift, bitxor

253 1–

bitor

2-194

2bitorPurpose Bit-wise OR

Syntax C = bitor(A,B)

Description C = bitor(A,B) returns the bit-wise OR of two nonnegative integer
arguments A and B. To ensure the operands are integers, use the ceil, fix,
floor, and round functions.

Examples The five-bit binary representations of the integers 13 and 27 are 01101 and
11011, respectively. Performing a bit-wise OR on these numbers yields 11111,
or 31.

C = bitor(13,27)

C =

 31

See Also bitand, bitcmp, bitget, bitmax, bitset, bitshift, bitxor

bitset

2-195

2bitsetPurpose Set bit

Syntax C = bitset(A,bit)
C = bitset(A,bit,v)

Description C = bitset(A,bit) sets bit position bit in A to 1 (on). A must be a nonnegative
integer and bit must be a number between 1 and the number of bits in the
floating-point integer (flint) representation of A (52 for IEEE flints). To ensure
the operand is an integer, use the ceil, fix, floor, and round functions.

C = bitset(A,bit,v) sets the bit at position bit to the value v, which must be
either 0 or 1.

Examples Setting the fifth bit in the five-bit binary representation of the integer 9 (01001)
yields 11001, or 25.

C = bitset(9,5)

C =

 25

See Also bitand, bitcmp, bitget, bitmax, bitor, bitshift, bitxor

bitshift

2-196

2bitshiftPurpose Bit-wise shift

Syntax C = bitshift(A,k,n)
C = bitshift(A,k)

Description C = bitshift(A,k,n) returns the value of A shifted by k bits. If k>0, this is
same as a multiplication by 2k (left shift). If k<0, this is the same as a division
by 2k (right shift). An equivalent computation for this function is
C = fix(A*2^k).

If the shift causes C to overflow n bits, the overflowing bits are dropped. A must
contain nonnegative integers between 0 and BITMAX, which you can ensure by
using the ceil, fix, floor, and round functions.

C = bitshift(A,k) uses the default value of n = 53.

Examples Shifting 1100 (12, decimal) to the left two bits yields 110000 (48, decimal).

C = bitshift(12,2)

C =

 48

See Also bitand, bitcmp, bitget, bitmax, bitor, bitset, bitxor, fix

bitxor

2-197

2bitxorPurpose Bit-wise XOR

Syntax C = bitxor(A,B)

Description C = bitxor(A,B) returns the bit-wise XOR of the two arguments A and B. Both
A and B must be integers. You can ensure this by using the ceil, fix, floor,
and round functions.

Examples The five-bit binary representations of the integers 13 and 27 are 01101 and
11011, respectively. Performing a bit-wise XOR on these numbers yields 10110,
or 22.

C = bitxor(13,27)

C =
 22

See Also bitand, bitcmp, bitget, bitmax, bitor, bitset, bitshift

blanks

2-198

2blanksPurpose A string of blanks

Syntax blanks(n)

Description blanks(n) is a string of n blanks.

Examples blanks is useful with the display function. For example,

disp(['xxx' blanks(20) 'yyy'])

displays twenty blanks between the strings 'xxx' and 'yyy'.

disp(blanks(n)') moves the cursor down n lines.

See Also clc, format, home

blkdiag

2-199

2blkdiagPurpose Construct a block diagonal matrix from input arguments

Syntax out = blkdiag(a,b,c,d,...)

Description out = blkdiag(a,b,c,d,...) , where a, b, c, d, ... are matrices, outputs a
block diagonal matrix of the form

The input matrices do not have to be square, nor do they have to be of equal
size.

Note blkdiag works not only for matrices, but for any MATLAB objects that
support horzcat and vertcat operations.

See Also diag, horzcat, vertcat

a 0 0 0 0
0 b 0 0 0
0 0 c 0 0
0 0 0 d 0
0 0 0 0 …

box

2-200

2boxPurpose Display axes border

Syntax box on
box off
box
box(axes_handle,...)

Description box on displays the boundary of the current axes.

box off does not display the boundary of the current axes.

box toggles the visible state of the current axes’ boundary.

box(axes_handle,...) uses the axes specified by axes_handle instead of the
current axes.

Algorithm The box function sets the axes Box property to on or off.

See Also axes, grid

“Axes Operations” for related functions

break

2-201

2breakPurpose Terminate execution of a for loop or while loop

Syntax break

Description break terminates the execution of a for or while loop. Statements in the loop
that appear after the break statement, are not executed.

In nested loops, break exits only from the loop in which it occurs. Control
passes to the statement that follows the end of that loop.

Remarks break is not defined outside of a for or while loop. Use return in this context
instead.

Examples The example below shows a while loop that reads the contents of the file fft.m
into a MATLAB character array. A break statement is used to exit the while
loop when the first empty line is encountered. The resulting character array
contains the M-file help for the fft program.

fid = fopen('fft.m','r');
s = '';
while ~feof(fid)
 line = fgetl(fid);
 if isempty(line), break, end
 s = strvcat(s,line);
end
disp(s)

See Also for, while, end, continue, return

brighten

2-202

2brightenPurpose Brighten or darken colormap

Syntax brighten(beta)
brighten(h,beta)
newmap = brighten(beta)
newmap = brighten(cmap,beta)

Description brighten increases or decreases the color intensities in a colormap. The
modified colormap is brighter if 0 < beta < 1 and darker if –1 < beta < 0.

brighten(beta) replaces the current colormap with a brighter or darker
colormap of essentially the same colors. brighten(beta), followed by
brighten(–beta), where beta < 1, restores the original map.

brighten(h,beta) brightens all objects that are children of the figure having
the handle h.

newmap = brighten(beta) returns a brighter or darker version of the current
colormap without changing the display.

newmap = brighten(cmap,beta) returns a brighter or darker version of the
colormap cmap without changing the display.

Examples Brighten and then darken the current colormap:

beta = .5; brighten(beta);
beta = —.5; brighten(beta);

Algorithm The values in the colormap are raised to the power of gamma, where gamma is

brighten has no effect on graphics objects defined with true color.

See Also colormap, rgbplot

“Color Operations” for related functions

γ
1 β, β 0>–

1
1 β+
-------------, β 0≤

=

brighten

2-203

Altering Colormaps for more information

builtin

2-204

2builtinPurpose Execute builtin function from overloaded method

Syntax builtin(function,x1,...,xn)
[y1,..,yn] = builtin(function,x1,...,xn)

Description builtin is used in methods that overload builtin functions to execute the
original builtin function. If function is a string containing the name of a
builtin function, then

builtin(function,x1,...,xn) evaluates that function at the given
arguments.

[y1,..,yn] = builtin(function,x1,...,xn) returns multiple output
arguments.

Remarks builtin(...) is the same as feval(...) except that it calls the original builtin
version of the function even if an overloaded one exists. (For this to work you
must never overload builtin.)

See Also feval

bvp4c

2-205

2bvp4cPurpose Solve two-point boundary value problems (BVPs) for ordinary differential
equations

Syntax sol = bvp4c(odefun,bcfun,solinit)
sol = bvp4c(odefun,bcfun,solinit,options)
sol = bvp4c(odefun,bcfun,solinit,options,p1,p2...)

Arguments odefun A function that evaluates the differential equations . It can
have the form

dydx = odefun(x,y)
dydx = odefun(x,y,p1,p2,...)
dydx = odefun(x,y,parameters)
dydx = odefun(x,y,parameters,p1,p2,...)

where x is a scalar corresponding to , and y is a column vector
corresponding to . parameters is a vector of unknown
parameters, and p1,p2,... are known parameters. The output
dydx is a column vector.

bcfun A function that computes the residual in the boundary conditions
. It can have the form

res = bcfun(ya,yb)
res = bcfun(ya,yb,p1,p2,...)
res = bcfun(ya,yb,parameters)
res = bcfun(ya,yb,parameters,p1,p2,...)

where ya and yb are column vectors corresponding to and
. parameters is a vector of unknown parameters, and

p1,p2,... are known parameters. The output res is a column
vector.

solinit A structure with fields:

x Ordered nodes of the initial mesh. Boundary
conditions are imposed at = solinit.x(1) and

= solinit.x(end).

y Initial guess for the solution such that
solinit.y(:,i) is a guess for the solution at the
node solinit.x(i).

f x y,()

x
y

bc y a() y b(),()

y a()
y b()

a
b

bvp4c

2-206

Description sol = bvp4c(odefun,bcfun,solinit) integrates a system of ordinary
differential equations of the form

on the interval [a,b] subject to general two-point boundary conditions

The bvp4c solver can also find unknown parameters for problems of the form

where corresponds to parameters. You provide bvp4c an initial guess for any
unknown parameters in solinit.parameters. The bvp4c solver returns the
final values of these unknown parameters in sol.parameters.

bvp4c produces a solution that is continuous on [a,b] and has a continuous first
derivative there. Use the function deval and the output sol of bvp4c to
evaluate the solution at specific points xint in the interval [a,b].

sxint = deval(sol,xint)

The structure sol returned by bvp4c has the following fields:

parameters Optional. A vector that provides an initial guess for
unknown parameters.

The structure can have any name, but the fields must be named x,
y, and parameters. You can form solinit with the helper function
bvpinit. See bvpinit for details.

options Optional integration argument. A structure you create using the
bvpset function. See bvpset for details.

p1,p2... Optional. Known parameters that the solver passes to odefun,
bcfun, and all the functions specified in options.

sol.x Mesh selected by bvp4c

sol.y Approximation to at the mesh points of sol.x

sol.yp Approximation to at the mesh points of sol.x

y ′ f x y,()=

bc y a() y b(),() 0=

p

y ′ f x y p, ,()=

bc y a() y b() p, ,() 0=

p

y x()

y ′ x()

bvp4c

2-207

The structure sol can have any name, and bvp4c creates the fields x, y, yp,
parameters, and solver.

sol = bvp4c(odefun,bcfun,solinit,options) solves as above with default
integration properties replaced by the values in options, a structure created
with the bvpset function. See bvpset for details.

sol = bvp4c(odefun,bcfun,solinit,options,p1,p2...) passes constant
known parameters, p1, p2, ..., to odefun, bcfun, and all the functions the user
specifies in options. Use options = [] as a placeholder if no options are set.

Examples Example 1. Boundary value problems can have multiple solutions and one
purpose of the initial guess is to indicate which solution you want. The second
order differential equation

has exactly two solutions that satisfy the boundary conditions

Prior to solving this problem with bvp4c, you must write the differential
equation as a system of two first order ODEs

Here and . This system has the required form

The function and the boundary conditions are coded in MATLAB as
functions twoode and twobc.

sol.parameters Values returned by bvp4c for the unknown parameters,
if any

sol.solver 'bvp4c'

y ′ ′ y+ 0=

y 0() 0=

y 4() 2–=

y1 ′ y2=

y2 ′ y1–=

y1 y= y2 y ′=

y ′ f x y,()=

bc y a() y b(),() 0=

f bc

bvp4c

2-208

function dydx = twoode(x,y)
 dydx = [y(2)
 -abs(y(1))];

function res = twobc(ya,yb)
 res = [ya(1)
 yb(1) + 2];

Form a guess structure consisting of an initial mesh of five equally spaced
points in [0,4] and a guess of constant values and with the
command

solinit = bvpinit(linspace(0,4,5),[1 0]);

Now solve the problem with

sol = bvp4c(@twoode,@twobc,solinit);

Evaluate the numerical solution at 100 equally spaced points and plot
with

x = linspace(0,4);
y = deval(sol,x);
plot(x,y(1,:));

y1 x() 1≡ y2 x() 0≡

y x()

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

bvp4c

2-209

You can obtain the other solution of this problem with the initial guess

solinit = bvpinit(linspace(0,4,5),[-1 0]);

Example 2. This boundary value problem involves an unknown parameter.
The task is to compute the fourth () eigenvalue of Mathieu's equation

Because the unknown parameter is present, this second order differential
equation is subject to three boundary conditions

It is convenient to use subfunctions to place all the functions required by bvp4c
in a single M-file.

function mat4bvp

lambda = 15;
solinit = bvpinit(linspace(0,pi,10),@mat4init,lambda);
sol = bvp4c(@mat4ode,@mat4bc,solinit);

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

q 5= λ

y ′ ′ λ 2– q 2xcos() y+ 0=

λ

y ′ 0() 0=

y ′ π() 0=

y 0() 1=

bvp4c

2-210

fprintf('The fourth eigenvalue is approximately %7.3f.\n',...
 sol.parameters)

xint = linspace(0,pi);
Sxint = deval(sol,xint);
plot(xint,Sxint(1,:))
axis([0 pi -1 1.1])
title('Eigenfunction of Mathieu''s equation.')
xlabel('x')
ylabel('solution y')
% --
function dydx = mat4ode(x,y,lambda)
q = 5;
dydx = [y(2)
 -(lambda - 2*q*cos(2*x))*y(1)];
% --
function res = mat4bc(ya,yb,lambda)
res = [ya(2)
 yb(2)
 ya(1)-1];
% --
function yinit = mat4init(x)
yinit = [cos(4*x)
 -4*sin(4*x)];

The differential equation (converted to a first order system) and the boundary
conditions are coded as subfunctions mat4ode and mat4bc, respectively.
Because unknown parameters are present, these functions must accept three
input arguments, even though some of the arguments are not used.

The guess structure solinit is formed with bvpinit. An initial guess for the
solution is supplied in the form of a function mat4init. We chose
because it satisfies the boundary conditions and has the correct qualitative
behavior (the correct number of sign changes). In the call to bvpinit, the third
argument (lambda = 15) provides an initial guess for the unknown parameter

.

y 4xcos=

λ

bvp4c

2-211

After the problem is solved with bvp4c, the field sol.parameters returns the
value , and the plot shows the eigenfunction associated with this
eigenvalue.

Algorithms bvp4c is a finite difference code that implements the three-stage Lobatto IIIa
formula. This is a collocation formula and the collocation polynomial provides
a C1-continuous solution that is fourth order accurate uniformly in [a,b]. Mesh
selection and error control are based on the residual of the continuous solution.

See Also @ (function_handle), bvpget, bvpinit, bvpset, deval

References [1] Shampine, L.F., M.W. Reichelt, and J. Kierzenka, “Solving Boundary Value
Problems for Ordinary Differential Equations in MATLAB with bvp4c,”
available at ftp://ftp.mathworks.com/pub/doc/papers/bvp/.

λ 17.097=

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Eigenfunction of Mathieu’s equation.

x

so
lu

tio
n

y

bvpget

2-212

2bvpgetPurpose Extract properties from the options structure created with bvpset

Syntax val = bvpget(options,'name')
val = bvpget(options,'name',default)

Description val = bvpget(options,'name') extracts the value of the named property
from the structure options, returning an empty matrix if the property value is
not specified in options. It is sufficient to type only the leading characters that
uniquely identify the property. Case is ignored for property names. [] is a valid
options argument.

val = bvpget(options,'name',default) extracts the named property as
above, but returns val = default if the named property is not specified in
options. For example,

val = bvpget(opts,'RelTol',1e-4);

returns val = 1e-4 if the RelTol is not specified in opts.

See Also bvp4c, bvpinit, bvpset, deval

bvpinit

2-213

2bvpinitPurpose Form the initial guess for bvp4c

Syntax solinit = bvpinit(x,v)
solinit = bvpinit(x,v,parameters)
solinit = bvpinit(sol,[anew bnew])
solinit = bvpinit(sol,[anew bnew],parameters)

Description solinit = bvpinit(x,v) forms the initial guess for bvp4c in common
circumstances.

x is a vector that specifies an initial mesh. If you want to solve the boundary
value problem (BVP) on , then specify x(1) as and x(end) as . The
function bvp4c adapts this mesh to the solution, so often a guess like
x = linspace(a,b,10) suffices. However, in difficult cases, you must place
mesh points where the solution changes rapidly. The entries of x must be
ordered and distinct, so if , then x(1) < x(2) < ... < x(end), and
similarly for .

v is a guess for the solution. It can be either a vector, or a function:

• Vector – For each component of the solution, bvpinit replicates the
corresponding element of the vector as a constant guess across all mesh
points. That is, v(i) is a constant guess for the ith component y(i,:) of the
solution at all the mesh points in x.

• Function – For a given mesh point, the function must return a vector whose
elements are guesses for the corresponding components of the solution. The
function must be of the form

y = guess(x)

where x is a mesh point and y is a vector whose length is the same as the
number of components in the solution. For example, if you use @guess,
bvpinit calls this function for each mesh point y(:,j) = guess(x(j)).

solinit = bvpinit(x,v,parameters) indicates that the BVP involves
unknown parameters. Use the vector parameters to provide a guess for all
unknown parameters.

a b,[] a b

a b<
a b>

bvpinit

2-214

solinit is a structure with the following fields. The structure can have any
name, but the fields must be named x, y, and parameters.

solinit = bvpinit(sol,[anew bnew]) forms an initial guess on the interval
[anew bnew] from a solution sol on an interval . The new interval must
be larger than the previous one, so either anew <= a < b <= bnew or
anew >= a > b >= bnew. The solution sol is extrapolated to the new interval.
If sol contains parameters, they are copied to solinit.

solinit = bvpinit(sol,[anew bnew],parameters) forms solinit as
described above, but uses parameters as a guess for unknown parameters in
solinit.

See Also @ (function_handle), bvp4c, bvpget, bvpset, deval

x Ordered nodes of the initial mesh.

y Initial guess for the solution with solinit.y(:,i) a guess for
the solution at the node solinit.x(i).

parameters Optional. A vector that provides an initial guess for unknown
parameters.

a b,[]

bvpset

2-215

2bvpsetPurpose Create/alter boundary value problem (BVP) options structure

Syntax options = bvpset('name1',value1,'name2',value2,...)
options = bvpset(oldopts'name1',value1,...)
options = bvpset(oldopts,newopts)
bvpset

Description options = bvpset('name1',value1,'name2',value2,...) creates a
structure options in which the named properties have the specified values.
Any unspecified properties have default values. It is sufficient to type only the
leading characters that uniquely identify the property. Case is ignored for
property names.

options = bvpset(oldopts,'name1',value1,...) alters an existing options
structure oldopts.

options = bvpset(oldopts,newopts) combines an existing options structure
oldopts with a new options structure newopts. Any new properties overwrite
corresponding old properties.

bvpset with no input arguments displays all property names and their possible
values.

BVP Properties These properties are available.

Property Value Description

RelTol Positive scalar
{1e-3}

A relative tolerance that applies to all components of the
residual vector. The computed solution is the exact
solution of . On each
subinterval of the mesh, the residual satisfies

AbsTol Positive scalar or
vector {1e-6}

An absolue tolerance that applies to all components of the
residual vector. Elements of a vector of tolerances apply to
corresponding components of the residual vector.

S x()
S ′ x() F x S x(),() res x()+=

res x()
(res(i)/max(abs(F(i)),AbsTol(i)/RelTol)) RelTol≤

bvpset

2-216

Vectorized on | {off} Set on to inform bvp4c that you have coded the ODE
function F so that F([x1 x2 ...],[y1 y2 ...]) returns
[F(x1,y1) F(x2,y2) ...]. That is, your ODE function
can pass to the solver a whole array of column vectors at
once. This allows the solver to reduce the number of
function evaluations, and may significantly reduce
solution time.

SingularTerm Matrix Singular term of singular BVPs.
Set to the constant matrix S for equations of the form

that are posed on the interval where .

FJacobian Function |
matrix | cell
array

Analytic partial derivatives of ODEFUN.
For example, when solving , set this property
to @FJAC if DFDY = FJAC(X,Y) evaluates the Jacobian of
with respect to . If the problem involves unknown
parameters , [DFDY,DFDP] = FJAC(X,Y,P) must also
return the partial derivative of with respect to . For
problems with constant partial derivatives, set this
property to the value of DFDY or to a cell array
{DFDY,DFDP}.

BCJacobian Function |
cell array

Analytic partial derivatives of BCFUN.
For example, for boundary conditions , set
this property to @BCJAC if
[DBCDYA,DBCDYB] = BCJAC(YA,YB) evaluates the partial
derivatives of with respect to and to . If the
problem involves unknown parameters , then
[DBCDYA,DBCDYB,DBCDP] = BCJAC(YA,YB,P) must also
return the partial derivative of with respect to . For
problems with constant partial derivatives, set this
property to a cell array {DBCDYA,DBCDYB} or
{DBCDYA,DBCDYB,DBCDP}.

Property Value Description

y ′ S y
x
--- f x y p, ,()+=

0 b,[] b 0>

y ′ f x y,()=
f

y
p

f p

bc ya yb,() 0=

bc ya yb
p

bc p

bvpset

2-217

See Also @ (function_handle), bvp4c, bvpget, bvpinit, deval

Nmax positive integer
{floor(1000/n)}

Maximum number of mesh points allowed.

Stats on | {off} Display computational cost statistics.

Property Value Description

bvpval

2-218

2bvpvalPurpose Evaluate the numerical solution of a boundary value problem (BVP) using the
output of bvp4c

Note bvpval is obsolete and will be removed in the future. Please use deval
instead.

Syntax sxint = bvpval(sol,xint)

Description sxint = bvpval(sol,xint) uses sol, the output of bvp4c, to evaluate the
solution of a boundary value problem at each element of the vector xint. For
each i, sxint(:,i) is the solution corresponding to xint(i).

See Also bvp4c, bvpinit, bvpget, bvpset

calendar

2-219

2calendarPurpose Calendar

Syntax c = calendar
c = calendar(d)
c = calendar(y,m)

calendar(...)

Description c = calendar returns a 6-by-7 matrix containing a calendar for the current
month. The calendar runs Sunday (first column) to Saturday.

c = calendar(d), where d is a serial date number or a date string, returns a
calendar for the specified month.

c = calendar(y,m), where y and m are integers, returns a calendar for the
specified month of the specified year.

calendar(...) displays the calendar on the screen.

Examples The command:

calendar(1957,10)

reveals that the Space Age began on a Friday (on October 4, 1957, when
Sputnik 1 was launched).

 Oct 1957
 S M Tu W Th F S
 0 0 1 2 3 4 5
 6 7 8 9 10 11 12
 13 14 15 16 17 18 19
 20 21 22 23 24 25 26
 27 28 29 30 31 0 0
 0 0 0 0 0 0 0

See Also datenum

camdolly

2-220

2camdollyPurpose Move the camera position and target

Syntax camdolly(dx,dy,dz)
camdolly(dx,dy,dz,'targetmode')
camdolly(dx,dy,dz,'targetmode','coordsys')
camdolly(axes_handle,...)

Description camdolly moves the camera position and the camera target by the specified
amounts.

camdolly(dx,dy,dz) moves the camera position and the camera target by the
specified amounts (see “Coordinate Systems”).

camdolly(dx,dy,dz,'targetmode') The targetmode argument can take on
two values that determine how MATLAB moves the camera:

• movetarget (default) – move both the camera and the target

• fixtarget – move only the camera

camdolly(dx,dy,dz,'targetmode','coordsys') The coordsys argument can
take on three values that determine how MATLAB interprets dx, dy, and dz:

Coordinate Systems

• camera (default) – move in the camera’s coordinate system. dx moves
left/right, dy moves down/up, and dz moves along the viewing axis. The units
are normalized to the scene.

For example, setting dx to 1 moves the camera to the right, which pushes the
scene to the left edge of the box formed by the axes position rectangle. A
negative value moves the scene in the other direction. Setting dz to 0.5
moves the camera to a position halfway between the camera position and the
camera target

• pixels – interpret dx and dy as pixel offsets. dz is ignored.

• data – interpret dx, dy, and dz as offesets in axes data coordinates.

camdolly(axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, camdolly
operates on the current axes.

camdolly

2-221

Remarks camdolly sets the axes CameraPosition and CameraTarget properties, which
in turn causes the CameraPositionMode and CameraTargetMode properties to
be set to manual.

Examples This example moves the camera along the x- and y-axes in a series of steps.

surf(peaks)
axis vis3d
t = 0:pi/20:2*pi;
dx = sin(t)./40;
dy = cos(t)./40;
for i = 1:length(t);

camdolly(dx(i),dy(i),0)
drawnow

end

See Also axes, campos, camproj, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” for related functions

See Defining Scenes with Camera Graphics for more information on camera
properties.

camlight

2-222

2camlightPurpose Create or move a light object in camera coordinates

Syntax camlight headlight
camlight right
camlight left
camlight
camlight(az,el)
camlight(...‘style’)
camlight(light_handle,...)
light_handle = camlight(...)

Description camlight('headlight') creates a light at the camera position.

camlight('right') creates a light right and up from camera.

camlight('left') creates a light left and up from camera.

camlight with no arguments is the same as camlight('right').

camlight(az,el) creates a light at the specified azimuth (az) and elevation
(el) with respect to the camera position. The camera target is the center of
rotation and az and el are in degrees.

camlight(...,'style') The style argument can take on the two values:

• local (default) – the light is a point source that radiates from the location in
all directions.

• infinite – the light shines in parallel rays.

camlight(light_handle,...) uses the light specified in light_handle.

light_handle = camlight(...) returns the light’s handle.

Remarks camlight sets the light object Position and Style properties. A light created
with camlight will not track the camera. In order for the light to stay in a
constant position relative to the camera, you must call camlight whenever you
move the camera.

camlight

2-223

Examples This example creates a light positioned to the left of the camera and then
repositions the light each time the camera is moved:

surf(peaks)
axis vis3d
h = camlight('left');
for i = 1:20;

camorbit(10,0)
camlight(h,'left')
drawnow;

end

See Also light, lightangle

“Lighting” for related functions

Lighting as a Visualization Tool for more information on using lights

camlookat

2-224

2camlookatPurpose Position the camera to view an object or group of objects

Syntax camlookat(object_handles)
camlookat(axes_handle)
camlookat

Description camlookat(object_handles) views the objects identified in the vector
object_handles. The vector can contain the handles of axes children.

camlookat(axes_handle) views the objects that are children of the axes
identified by axes_handle.

camlookat views the objects that are in the current axes.

Remarks camlookat moves the camera position and camera target while preserving the
relative view direction and camera view angle. The object (or objects) being
viewed roughly fill the axes position rectangle.

camlookat sets the axes CameraPosition and CameraTarget properties.

Examples This example creates three spheres at different locations and then
progressively positions the camera so that each sphere is the object around
which the scene is composed:

[x y z] = sphere;
s1 = surf(x,y,z);
hold on
s2 = surf(x+3,y,z+3);
s3 = surf(x,y,z+6);
daspect([1 1 1])
view(30,10)
camproj perspective
camlookat(gca) % Compose the scene around the current axes
pause(2)
camlookat(s1) % Compose the scene around sphere s1
pause(2)
camlookat(s2) % Compose the scene around sphere s2
pause(2)
camlookat(s3) % Compose the scene around sphere s3
pause(2)
camlookat(gca)

camlookat

2-225

See Also campos, camtarget

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

camorbit

2-226

2camorbitPurpose Rotate the camera position around the camera target

Syntax camorbit(dtheta,dphi)
camorbit(dtheta,dphi,'coordsys')
camorbit(dtheta,dphi,'coordsys','direction')
camorbit(axes_handle,...)

Description camorbit(dtheta,dphi) rotates the camera position around the camera target
by the amounts specified in dtheta and dphi (both in degrees). dtheta is the
horizontal rotation and dphi is the vertical rotation.

camorbit(dtheta,dphi,'coordsys') The coordsys argument determines the
center of rotation. It can take on two values:

• data (default) – rotate the camera around an axis defined by the camera
target and the direction (default is the positive z direction).

• camera – rotate the camera about the point defined by the camera target.

camorbit(dtheta,dphi,'coordsys','direction') The direction
argument, in conjunction with the camera target, defines the axis of rotation
for the data coordinate system. Specify direction as a three-element vector
containing the x, y, and z-components of the direction or one of the characters,
x, y, or z, to indicate [1 0 0], [0 1 0], or [0 0 1] respectively.

camorbit(axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, camorbit
operates on the current axes.

Examples Compare rotation in the two coordinate systems with these for loops. The first
rotates the camera horizontally about a line defined by the camera target point
and a direction that is parallel to the y-axis. Visualize this rotation as a cone
formed with the camera target at the apex and the camera position forming the
base:

surf(peaks)
axis vis3d
for i=1:36

camorbit(10,0,'data',[0 1 0])
drawnow

camorbit

2-227

end

Rotation in the camera coordinate system orbits the camera around the axes
along a circle while keeping the center of a circle at the camera target.

surf(peaks)
axis vis3d
for i=1:36

camorbit(10,0,'camera')
drawnow

end

See Also axes, axis('vis3d'), camdolly, campan, camzoom, camroll

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

campan

2-228

2campanPurpose Rotate the camera target around the camera position

Syntax campan(dtheta,dphi)
campan(dtheta,dphi,'coordsys')
campan(dtheta,dphi,'coordsys','direction')
campan(axes_handle,...)

Description campan(dtheta,dphi) rotates the camera target around the camera position
by the amounts specified in dtheta and dphi (both in degrees). dtheta is the
horizontal rotation and dphi is the vertical rotation.

campan(dtheta,dphi,'coordsys') The coordsys argument determines the
center of rotation. It can take on two values:

• data (default) – rotate the camera target around an axis defined by the
camera position and the direction (default is the positive z direction)

• camera – rotate the camera about the point defined by the camera target.

campan(dtheta,dphi,'coordsys','direction') The direction argument,
in conjunction with the camera position, defines the axis of rotation for the data
coordinate system. Specify direction as a three-element vector containing the
x, y, and z-components of the direction or one of the characters, x, y, or z, to
indicate [1 0 0], [0 1 0], or [0 0 1] respectively.

campan(axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, campan
operates on the current axes.

See Also axes, camdolly, camorbit, camtarget, camzoom, camroll

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

campos

2-229

2camposPurpose Set or query the camera position

Syntax campos
campos([camera_position])
campos('mode')
campos('auto'
campos('manual')
campos(axes_handle,...)

Description campos with no arguments returns the camera position in the current axes.

campos([camera_position]) sets the position of the camera in the current
axes to the specified value. Specify the position as a three-element vector
containing the x-, y-, and z-coordinates of the desired location in the data units
of the axes.

campos('mode') returns the value of the camera position mode, which can be
either auto (the default) or manual.

campos('auto') sets the camera position mode to auto.

campos('manual') sets the camera position mode to manual.

campos(axes_handle,...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
campos operates on the current axes.

Remarks campos sets or queries values of the axes CameraPosition and
CameraPositionMode properties. The camera position is the point in the
Cartesian coordinate system of the axes from which you view the scene.

Examples This example moves the camera along the x-axis in a series of steps:

surf(peaks)
axis vis3d off
for x = −200:5:200

campos([x,5,10])
drawnow

end

campos

2-230

See Also axis, camproj, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

camproj

2-231

2camprojPurpose Set or query the projection type

Syntax camproj
camproj(projection_type)
camproj(axes_handle,...)

Description The projection type determines whether MATLAB uses a perspective or
orthographic projection for 3-D views.

camproj with no arguments returns the projection type setting in the current
axes.

camproj('projection_type') sets the projection type in the current axes to
the specified value. Possible values for projection_type are: orthographic
and perspective.

camproj(axes_handle,...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
camproj operates on the current axes.

Remarks camproj sets or queries values of the axes object Projection property.

See Also campos, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

camroll

2-232

2camrollPurpose Rotate the camera about the view axis

Syntax camroll(dtheta)
camroll(axes_handle,dtheta)

Description camroll(dtheta) rotates the camera around the camera viewing axis by the
amounts specified in dtheta (in degrees). The viewing axis is defined by the
line passing through the camera position and the camera target.

camroll(axes_handle,dtheta) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, camroll
operates on the current axes.

Remarks camroll set the axes CameraUpVector property and thereby also sets the
CameraUpVectorMode property to manual.

See Also axes, axis('vis3d'), camdolly, camorbit, camzoom, campan

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

camtarget

2-233

2camtargetPurpose Set or query the location of the camera target

Syntax camtarget
camtarget([camera_target])
camtarget('mode')
camtarget('auto')
camtarget('manual')
camtarget(axes_handle,...)

Description The camera target is the location in the axes that the camera points to. The
camera remains oriented toward this point regardless of its position.

camtarget with no arguments returns the location of the camera target in the
current axes.

camtarget([camera_target]) sets the camera target in the current axes to
the specified value. Specify the target as a three-element vector containing the
x-, y-, and z-coordinates of the desired location in the data units of the axes.

camtarget('mode') returns the value of the camera target mode, which can be
either auto (the default) or manual.

camtarget('auto') sets the camera target mode to auto.

camtarget('manual') sets the camera target mode to manual.

camtarget(axes_handle,...) performs the set or query on the axes identified
by the first argument, axes_handle. When you do not specify an axes handle,
camtarget operates on the current axes.

Remarks camtarget sets or queries values of the axes object Cameratarget and
CameraTargetMode properties.

When the camera target mode is auto, MATLAB positions the camera target
at the center of the axes plot box.

Examples This example moves the camera position and the camera target along the
x-axis in a series of steps:

surf(peaks);

camtarget

2-234

axis vis3d
xp = linspace(−150,40,50);
xt = linspace(25,50,50);
for i=1:50
 campos([xp(i),25,5]);
 camtarget([xt(i),30,0])
 drawnow
end

See Also axis, camproj, campos, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

camup

2-235

2camupPurpose Set or query the camera up vector

Syntax camup
camup([up_vector])
camup('mode')
camup('auto')
camup('manual')
camup(axes_handle,...)

Description The camera up vector specifies the direction that is oriented up in the scene.

camup with no arguments returns the camera up vector setting in the current
axes.

camup([up_vector]) sets the up vector in the current axes to the specified
value. Specify the up vector as x-, y-, and z-components. See Remarks.

camup('mode') returns the current value of the camera up vector mode, which
can be either auto (the default) or manual.

camup('auto') sets the camera up vector mode to auto. In auto mode,
MATLAB uses a value for the up vector of [0 1 0] for 2-D views. This means
the z-axis points up.

camup('manual') sets the camera up vector mode to manual. In manual mode,
MATLAB does not change the value of the camera up vector.

camup(axes_handle,...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
camup operates on the current axes.

Remarks camup sets or queries values of the axes object CameraUpVector and
CameraUpVectorMode properties.

Specify the camera up vector as the x-, y-, and z-coordinates of a point in the
axes coordinate system that forms the directed line segment PQ, where P is the
point (0,0,0) and Q is the specified x-, y-, and z-coordinates. This line always
points up. The length of the line PQ has no effect on the orientation of the
scene. This means a value of [0 0 1] produces the same results as [0 0 25].

camup

2-236

See Also axis, camproj, campos, camtarget, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

camva

2-237

2camvaPurpose Set or query the camera view angle

Syntax camva
camva(view_angle)
camva('mode')
camva('auto')
camva('manual')
camva(axes_handle,...)

Description The camera view angle determines the field of view of the camera. Larger
angles produce a smaller view of the scene. You can implement zooming by
changing the camera view angle.

camva with no arguments returns the camera view angle setting in the current
axes.

camva(view_angle) sets the view angle in the current axes to the specified
value. Specify the view angle in degrees.

camva('mode') returns the current value of the camera view angle mode,
which can be either auto (the default) or manual. See Remarks.

camva('auto') sets the camera view angle mode to auto.

camva('manual') sets the camera view angle mode to manual. See Remarks.

camva(axes_handle,...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
camva operates on the current axes.

Remarks camva sets or queries values of the axes object CameraViewAngle and
CameraViewAngleMode properties.

When the camera view angle mode is auto, MATLAB adjusts the camera view
angle so that the scene fills the available space in the window. If you move the
camera to a different position, MATLAB changes the camera view angle to
maintain a view of the scene that fills the available area in the window.

camva

2-238

Setting a camera view angle or setting the camera view angle to manual
disables the MATLAB stretch-to-fill feature (stretching of the axes to fit the
window). This means setting the camera view angle to its current value,

camva(camva)

can cause a change in the way the graph looks. See the Remarks section of the
axes reference page for more information.

Examples This example creates two pushbuttons, one that zooms in and another that
zooms out.

uicontrol('Style','pushbutton',...
'String','Zoom In',...
'Position',[20 20 60 20],...
'Callback','if camva <= 1;return;else;camva(camva-1);end');

uicontrol('Style','pushbutton',...
'String','Zoom Out',...
'Position',[100 20 60 20],...
'Callback','if camva >= 179;return;else;camva(camva+1);end');

Now create a graph to zoom in and out on:

surf(peaks);

Note the range checking in the callback statements. This keeps the values for
the camera view angle in the range, greater than zero and less than 180.

See Also axis, camproj, campos, camup, camtarget

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

camzoom

2-239

2camzoomPurpose Zoom in and out on a scene

Syntax camzoom(zoom_factor)
camzoom(axes_handle,...)

Description camzoom(zoom_factor) zooms in or out on the scene depending on the value
specified by zoom_factor. If zoom_factor is greater than 1, the scene appears
larger; if zoom_factor is greater than zero and less than 1, the scene appears
smaller.

camzoom(axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle, camzoom
operates on the current axes.

Remarks camzoom sets the axes CameraViewAngle property, which in turn causes the
CameraViewAngleMode property to be set to manual. Note that setting the
CameraViewAngle property disables the MATLAB stretch-to-fill feature
(stretching of the axes to fit the window). This may result in a change to the
aspect ratio of your graph. See the axes function for more information on this
behavior.

See Also axes, camdolly, camorbit, campan, camroll, camva

“Controlling the Camera Viewpoint” for related functions

Defining Scenes with Camera Graphics for more information

capture

2-240

2capturePurpose capture is obsolete in Release 11 (5.3). getframe provides the same
functionality and supports TrueColor displays by returning TrueColor images.

Syntax capture
capture(h)
[X,cmap] = capture(h)

Description capture creates a bitmap copy of the contents of the current figure, including
any uicontrol graphics objects. It creates a new figure and displays the bitmap
copy as an image graphics object in the new figure.

capture(h) creates a new figure that contains a copy of the figure identified by
h.

[X,cmap] = capture(h) returns an image matrix X and a colormap. You
display this information using the statements

colormap(cmap)
image(X)

Remarks The resolution of a bitmap copy is less than that obtained with the print
command.

See Also image, print

“Figure Windows” for related functions

cart2pol

2-241

2cart2polPurpose Transform Cartesian coordinates to polar or cylindrical

Syntax [THETA,RHO,Z] = cart2pol(X,Y,Z)
[THETA,RHO] = cart2pol(X,Y)

Description [THETA,RHO,Z] = cart2pol(X,Y,Z) transforms three-dimensional Cartesian
coordinates stored in corresponding elements of arrays X, Y, and Z, into
cylindrical coordinates. THETA is a counterclockwise angular displacement in
radians from the positive x-axis, RHO is the distance from the origin to a point
in the x-y plane, and Z is the height above the x-y plane. Arrays X, Y, and Z must
be the same size (or any can be scalar).

[THETA,RHO] = cart2pol(X,Y) transforms two-dimensional Cartesian
coordinates stored in corresponding elements of arrays X and Y into polar
coordinates.

Algorithm The mapping from two-dimensional Cartesian coordinates to polar
coordinates, and from three-dimensional Cartesian coordinates to cylindrical
coordinates is

See Also cart2sph, pol2cart, sph2cart

theta = atan2(y,x)
rho = sqrt(x.^2 + y.^2)

Three-Dimensional Mapping

Z

Y

X

rho
theta

P

z

Two-Dimensional Mapping

P

X

Y

rh
o

theta

theta = atan2(y,x)
rho = sqrt(x.^2 + y.^2)

z = z

cart2sph

2-242

2cart2sphPurpose Transform Cartesian coordinates to spherical

Syntax [THETA,PHI,R] = cart2sph(X,Y,Z)

Description [THETA,PHI,R] = cart2sph(X,Y,Z) transforms Cartesian coordinates stored
in corresponding elements of arrays X, Y, and Z into spherical coordinates.
Azimuth THETA and elevation PHI are angular displacements in radians
measured from the positive x-axis, and the x-y plane, respectively; and R is the
distance from the origin to a point.

Arrays X, Y, and Z must be the same size.

Algorithm The mapping from three-dimensional Cartesian coordinates to spherical
coordinates is

See Also cart2pol, pol2cart, sph2cart

Z

Y

X

theta

P

theta = atan2(y,x)
phi = atan2(z, sqrt(x.^2 + y.^2))
r = sqrt(x.^2+y.^2+z.^2)

phi

r

case

2-243

2casePurpose Case switch

Description case is part of the switch statement syntax, which allows for conditional
execution.

A particular case consists of the case statement itself, followed by a case
expression, and one or more statements.

A case is executed only if its associated case expression (case_expr) is the first
to match the switch expression (switch_expr).

Examples The general form of the switch statement is:

switch switch_expr
case case_expr

statement,...,statement
case {case_expr1,case_expr2,case_expr3,...}

statement,...,statement
...

otherwise
statement,...,statement

end

See Also switch

cat

2-244

2catPurpose Concatenate arrays

Syntax C = cat(dim,A,B)
C = cat(dim,A1,A2,A3,A4...)

Description C = cat(dim,A,B) concatenates the arrays A and B along dim.

C = cat(dim,A1,A2,A3,A4,...) concatenates all the input arrays (A1, A2, A3,
A4, and so on) along dim.

cat(2,A,B) is the same as [A,B] and cat(1,A,B) is the same as [A;B].

Remarks When used with comma separated list syntax, cat(dim,C{:}) or
cat(dim,C.field) is a convenient way to concatenate a cell or structure array
containing numeric matrices into a single matrix.

Examples Given,

A = B =
 1 2 5 6
 3 4 7 8

concatenating along different dimensions produces:

The commands

A = magic(3); B = pascal(3);
C = cat(4,A,B);

produce a 3-by-3-by-1-by-2 array.

See Also num2cell

The special character []

5 6
7 8

C = cat(1,A,B) C = cat(2,A,B) C = cat(3,A,B)

1 2
3 4 5 6

7 8
1 2
3 4

5 6
7 8

1 2
3 4

catch

2-245

2catchPurpose Begin catch block

Description The general form of a try statement is:

try,
statement,
...,
statement,

catch,
statement,
...,
statement,

end

Normally, only the statements between the try and catch are executed.
However, if an error occurs while executing any of the statements, the error is
captured into lasterr, and the statements between the catch and end are
executed. If an error occurs within the catch statements, execution stops
unless caught by another try...catch block. The error string produced by a
failed try block can be obtained with lasterr.

See Also end, eval, evalin, try

caxis

2-246

2caxisPurpose Color axis scaling

Syntax caxis([cmin cmax])
caxis auto
caxis manual
caxis(caxis)
v = caxis
caxis(axes_handle,...)

Description caxis controls the mapping of data values to the colormap. It affects any
surfaces, patches, and images with indexed CData and CDataMapping set to
scaled. It does not affect surfaces, patches, or images with true color CData or
with CDataMapping set to direct.

caxis([cmin cmax]) sets the color limits to specified minimum and maximum
values. Data values less than cmin or greater than cmax map to cmin and cmax,
respectively. Values between cmin and cmax linearly map to the current
colormap.

caxis auto lets MATLAB compute the color limits automatically using the
minimum and maximum data values. This is the default behavior. Color values
set to Inf map to the maximum color, and values set to −Inf map to the
minimum color. Faces or edges with color values set to NaN are not drawn.

caxis manual and caxis(caxis) freeze the color axis scaling at the current
limits. This enables subsequent plots to use the same limits when hold is on.

v = caxis returns a two-element row vector containing the [cmin cmax]
currently in use.

caxis(axes_handle,...) uses the axes specified by axes_handle instead of
the current axes.

Remarks caxis changes the CLim and CLimMode properties of axes graphics objects.

How Color Axis Scaling Works
Surface, patch, and image graphics objects having indexed CData and
CDataMapping set to scaled, map CData values to colors in the figure colormap
each time they render. CData values equal to or less than cmin map to the first

caxis

2-247

color value in the colormap, and CData values equal to or greater than cmax
map to the last color value in the colormap. MATLAB performs the following
linear transformation on the intermediate values (referred to as C below) to
map them to an entry in the colormap (whose length is m, and whose row index
is referred to as index below).

index = fix((C–cmin)/(cmax–cmin)∗ m)+1

Examples Create (X,Y,Z) data for a sphere and view the data as a surface.

[X,Y,Z] = sphere;
C = Z;
surf(X,Y,Z,C)

Values of C have the range [−1 1]. Values of C near −1 are assigned the lowest
values in the colormap; values of C near 1 are assigned the highest values in
the colormap.

To map the top half of the surface to the highest value in the color table, use

caxis([−1 0])

To use only the bottom half of the color table, enter

caxis([−1 3])

which maps the lowest CData values to the bottom of the colormap, and the
highest values to the middle of the colormap (by specifying a cmax whose value
is equal to cmin plus twice the range of the CData).

The command

caxis auto

resets axis scaling back to auto-ranging and you see all the colors in the
surface. In this case, entering

caxis

returns

[–1 1]

caxis

2-248

Adjusting the color axis can be useful when using images with scaled color
data. For example, load the image data and colormap for Cape Cod,
Massachusetts.

load cape

This command loads the images data X and the image’s colormap map into the
workspace. Now display the image with CDataMapping set to scaled and install
the image’s colormap.

image(X,'CDataMapping','scaled')
colormap(map)

MATLAB sets the color limits to span the range of the image data, which is 1
to 192:

caxis
ans =

1 192

caxis

2-249

The blue color of the ocean is the first color in the colormap and is mapped to
the lowest data value (1). You can effectively move sealevel by changing the
lower color limit value. For example,

See Also axes, axis, colormap, get, mesh, pcolor, set, surf

The CLim and CLimMode properties of axes graphics objects.

The Colormap property of figure graphics objects.

“Color Operations” for related functions

Axes Color Limits for more examples

Caxis = [1 192]

100 200 300

50

100

150

200

250

300

Caxis = [3 192]

100 200 300

50

100

150

200

250

300

Caxis = [5 192]

100 200 300

50

100

150

200

250

300

Caxis = [6 192]

100 200 300

50

100

150

200

250

300

cd

2-250

2cdPurpose Change working directory

Graphical
Interface

As an alternative to the cd function, use the Current Directory field in the
MATLAB desktop toolbar.

Syntax cd
w = cd
cd('directory')
cd('..')
cd directory or cd ..

Description cd displays the current working directory.

w = cd assigns the current working directory to w.

cd('directory') sets the current working directory to directory. Use the full
pathname for directory. On UNIX platforms, the character ~ is interpreted as
the user’s root directory.

cd('..') changes the current working directory to the directory above it.

cd directory or cd .. is the unquoted form of the syntax.

Examples On UNIX

cd('/usr/local/matlab/toolbox/demos')

changes the current working directory to demos.

On Windows

cd('c:/toolbox/matlab/demos')

changes the current working directory to demos. Then typing

cd ..

changes the current working directory to matlab.

See Also dir, path, pwd, what

cdf2rdf

2-251

2cdf2rdfPurpose Convert complex diagonal form to real block diagonal form

Syntax [V,D] = cdf2rdf(V,D)

Description If the eigensystem [V,D] = eig(X) has complex eigenvalues appearing in
complex-conjugate pairs, cdf2rdf transforms the system so D is in real
diagonal form, with 2-by-2 real blocks along the diagonal replacing the complex
pairs originally there. The eigenvectors are transformed so that

X = V*D/V

continues to hold. The individual columns of V are no longer eigenvectors, but
each pair of vectors associated with a 2-by-2 block in D spans the corresponding
invariant vectors.

Examples The matrix

X =
1 2 3
0 4 5
0 -5 4

has a pair of complex eigenvalues.

[V,D] = eig(X)

V =

 1.0000 -0.0191 - 0.4002i -0.0191 + 0.4002i
 0 0 - 0.6479i 0 + 0.6479i
 0 0.6479 0.6479

D =

1.0000 0 0
0 4.0000 + 5.0000i 0
0 0 4.0000 - 5.0000i

Converting this to real block diagonal form produces

[V,D] = cdf2rdf(V,D)

cdf2rdf

2-252

V =

 1.0000 -0.0191 -0.4002
 0 0 -0.6479
 0 0.6479 0

D =

 1.0000 0 0
 0 4.0000 5.0000
 0 -5.0000 4.0000

Algorithm The real diagonal form for the eigenvalues is obtained from the complex form
using a specially constructed similarity transformation.

See Also eig, rsf2csf

cdfepoch

2-253

2cdfepochPurpose Construct a cdfepoch object for Common Data Format (CDF) export

Syntax E = cdfepoch(date)

Description E = cdfepoch(date) constructs a cdfepoch object, where date is a valid string
(datestr), a number (datenum) representing a date, or a cdfepoch object.

When writing data to a CDF using cdfwrite, use cdfepoch to convert
MATLAB formatted dates to CDF formatted dates. The MATLAB cdfepoch
object simulates the CDFEPOCH datatype in CDF files

Note A CDF epoch is the number of milliseconds since 1-Jan-0000. MATLAB
datenums are the number of days since 0-Jan-0000.

See also cdfinfo, cdfread, cdfwrite, datenum

cdfinfo

2-254

2cdfinfoPurpose Return information about a CDF file

Syntax info = cdfinfo(file)

Description info = cdfinfo(file) returns information about the Common Data Format
(CDF) file specified in the string, file. The function returns a structure, info,
that contains the fields shown in the following table.

The GlobalAttributes and VariableAttributes Fields
GlobalAttributes and VariableAttributes are structure arrays that each
contain one field for each global or variable attribute respectively. The name of
the field corresponds to the name of an attribute. The data in that field,
contained in a cell array, represents the entry values for that attribute.

Field Description Return Type

FileModDate Date the file was last modified String

Filename Name of the file String

FileSettings Library settings used to create
the file

Structure array

FileSize Size of the file, in bytes Double

Format File format (CDF) String

FormatVersion Version of the CDF library
used to create the file

String

GlobalAttributes Global metadata Structure array

Subfiles Filenames containing the CDF
file’s data, if it is a multifile
CDF

Cell array

VariableAttributes Metadata for the variables Structure array

Variables Details about the variables in
the file

Cell array

cdfinfo

2-255

For VariableAttributes, the attribute data resides in an N-by-2 cell array,
where N is the number of variables. The first column of this cell array contains
the variable names associated with the entries. The second column contains
the entry values.

Note Attribute names may not match the names of the attributes in the CDF
file exactly. Because attribute names can contain characters that are illegal in
MATLAB field names, they may be translated into legal field names. Illegal
characters that appear at the beginning of attributes are removed; other
illegal characters are replaced with underscores ('_'). If an attribute’s name is
modified, the attribute’s internal number is appended to the end of the field
name. For example, Variable%Attribute might become
Variable_Attribute_013.

The Variables Field
The Variables field of the returned info structure is an N-by-6 cell array,
where N is the number of variables. The six columns of the cell array contain
the following information.

Column No. Description Return Type

 1 Name of the variable String

 2 Dimensions of the variable, as returned by
the size function

Double
array

 3 Number of records assigned for the variable Double

 4 Data type of the variable, as stored in the
CDF file

String

cdfinfo

2-256

Examples info = cdfinfo('example.cdf')
info =
 Filename: 'example.cdf'
 FileModDate: '29-Jun-1995 05:51:58'
 FileSize: 230513
 Format: 'CDF'
 FormatVersion: '2.4.8'
 FileSettings: [1x1 struct]
 Subfiles: {}
 Variables: {7x6 cell}
 GlobalAttributes: [1x1 struct]
 VariableAttributes: [1x1 struct]

info.Variables
ans =

'L_gse' [1x2 double] [1] 'char' 'F/T' 'Full'
'Status%C1' [1x2 double] [7493] 'uint8' 'T/T' 'Full'
'B_gse%C1' [1x2 double] [7493] 'single' 'T/T' 'Full'
'B_nsigma%C1' [1x2 double] [7493] 'single' 'T/' 'Full'

 5 Record and dimension variance settings for
the variable. The single T or F to the left of
the slash designates whether values vary by
record. The zero or more T or F letters to the
right of the slash designate whether values
vary at each dimension. Here are some
examples.

T/ (scalar variable)
F/T (one-dimensional variable)
T/TFF (three-dimensional variable)

String

6 Sparsity of the variable’s records. This is a
string holding one of three possible values:

• 'Full'
• 'Sparse (padded)'
• 'Sparse (nearest)'

String

Column No. Description Return Type

cdfinfo

2-257

See Also cdfread

cdfread

2-258

2cdfreadPurpose Read data from a CDF file

Syntax data = cdfread(file)
data = cdfread(file, 'records', recnums, ...)
data = cdfread(file, 'variables', varnames, ...)
data = cdfread(file, 'slices', dimensionvalues, ...)
[data, info] = cdfread(file, ...)

Description data = cdfread(file) reads all of the variables from each record of the
Common Data Format (CDF) file specified in the string, file. The return
value, data, is a cell array in which each row contains a record and each column
represents a variable.

data = cdfread(file, 'records', recnums, ...) reads only those records
specified in the vector, recnums. The record numbers are zero-based. The
return value, data, is a cell array having length(recnums) number of rows and
as many columns as there are variables.

data = cdfread(file, 'variables', varnames, ...) reads only those
variables specified in the 1-by-N or N-by-1 cell array of strings, varnames. The
return alue, data, is returned in a cell array having length(varnames)
number of columns and a row for each record requested.

data = cdfread(file, 'slices', dimensionvalues, ...) reads specific
values from the records of one variable in the CDF file. The N-by-3 matrix,
dimensionvalues, indicates which records are to be read by specifying start,
interval, and count parameters for each of the N dimensions of the variable.
The start parameter is zero-based.

The number of rows in dimensionvalues must be less than or equal to the
number of dimensions of the variable. Unspecified rows default to [0 1 N],
where N is the total number of values in a record. This causes cdfread to read
every value from those dimensions.

Because you can read just one variable at a time, you must also include a
'variables' parameter with this syntax.

[data, info] = cdfread(file, ...) also returns details about the CDF file
in the info structure.

cdfread

2-259

Examples Read all of the data from the file.

data = cdfread('example.cdf');

Read just the data from variable 'Time'.

data = cdfread('example.cdf', 'Variable', {'Time'});

Read the first value in the first dimension, the second value in the second
dimension, the first and third values in the third dimension, and all values in
the remaining dimension of the variable 'multidimensional'.

data = cdfread('example.cdf', 'Variable', ...
{'multidimensional'}, 'Slices', [0 1 1; 1 1 1; 0 2 2]);

This is similar to reading the whole variable into 'data', and then using the
MATLAB command

data{1}(1, 2, [1 3], :)

See Also cdfinfo, cdfwrite, cdfepoch

cdfwrite

2-260

2cdfwritePurpose Write data to a CDF file

Syntax cdfwrite(file, variablelist)
cdfwrite(..., 'PadValues', padvals)
cdfwrite(..., 'GlobalAttributes', gattrib)
cdfwrite(..., 'VariableAttributes', vattrib)
cdfwrite(..., 'WriteMode', mode)
cdfwrite(..., 'Format', format)

Description cdfwrite(file,variablelist) writes out a Common Data Format (CDF) file,
specified in the string, file. The variablelist argument is a cell array of
ordered pairs, which are comprised of a CDF variable name (a string) and the
corresponding CDF variable value. To write out multiple records for a variable,
put the values in a cell array, where each element in the cell array represents
a record.

cdfwrite(...,'PadValues',padvals) writes out pad values for given
variable names. padvals is a cell array of ordered pairs, which are comprised
of a variable name (a string) and a corresponding pad value. Pad values are the
default value associated with the variable when an out-of-bounds record is
accessed. Variable names that appear in padvals must appear in
variablelist.

cdfwrite(...,'GlobalAttributes',gattrib) writes the structure gattrib
as global metadata for the CDF file. Each field of the structure is the name of
a global attribute. The value of each field contains the value of the attribute.
To write out multiple values for an attribute, put the values in a cell array
where each element in the cell array represents a record.

Note To specify a global attribute name that is illegal in MATLAB, create a
field called 'CDFAttributeRename' in the attribute structure. The value of
this field must have a value that is a cell array of ordered pairs. The ordered
pair consists of the name of the original attribute, as listed in the
GlobalAttributes structure and the corresponding name of the attribute to be
written to the CDF file.

cdfwrite

2-261

cdfwrite(..., 'VariableAttributes', vattrib) writes the structure
vattrib as variable metadata for the CDF. Each field of the struct is the name
of a variable attribute. The value of each field should be an M-by-2 cell array
where M is the number of variables with attributes. The first element in the
cell array should be the name of the variable and the second element should be
the value of the attribute for that variable.

Note To specify a variable attribute name that is illegal in MATLAB, create
a field called 'CDFAttributeRename' in the attribute structure. The value of
this field must have a value that is a cell array of ordered pairs. The ordered
pair consists of the name of the original attribute, as listed in the
VariableAttributes struct, and the corresponding name of the attribute to
be written to the CDF file. If you are specifying a variable attribute of a CDF
variable that you are renaming, the name of the variable in the
VariableAttributes structure must be the same as the renamed variable.

cdfwrite(...,'WriteMode',mode) where mode is either 'overwrite' or
'append', indicates whether or not the specified variables should be appended
to the CDF file if the file already exists. By default, cdfwrite overwrites
existing variables and attributes.,

cdfwrite(...,'Format',format) where format is either 'multifile' or
'singlefile', indicates whether or not the data is written out as a multifile
CDF. In a multifile CDF, each variable is stored in a separate file with the
name *.vN, where N is the number of the variable that is written out to the
CDF. By default, cdfwrite writes out a single file CDF. When 'WriteMode' is
set to 'Append', the 'Format' option is ignored, and the format of the
pre-existing CDF is used.

 Examples Write out a file 'example.cdf' containing a variable 'Longitude' with the
value [0:360].

cdfwrite('example', {'Longitude', 0:360});

Write out a file 'example.cdf' containing variables 'Longitude' and
'Latitude' with the variable 'Latitude' having a pad value of 10 for all
out-of-bounds records that are accessed.

cdfwrite

2-262

cdfwrite('example', {'Longitude', 0:360, 'Latitude', 10:20},...
 'PadValues', {'Latitude', 10});

Write out a file 'example.cdf', containing a variable 'Longitude' with the
value [0:360], and with a variable attribute of 'validmin' with the value 10.

varAttribStruct.validmin = {'longitude' [10]};
cdfwrite('example', {'Longitude' 0:360}, 'VarAttribStruct',...
 varAttribStruct);

See Also cdfread, cdfinfo, cdfepoch

ceil

2-263

2ceilPurpose Round toward infinity

Syntax B = ceil(A)

Description B = ceil(A) rounds the elements of A to the nearest integers greater than or
equal to A. For complex A, the imaginary and real parts are rounded
independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7, 2.4+3.6i]

a =
 Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000

 Columns 5 through 6
 7.0000 2.4000 + 3.6000i

ceil(a)

ans =
 Columns 1 through 4
 -1.0000 0 4.0000 6.0000

 Columns 5 through 6
 7.0000 3.0000 + 4.0000i

See Also fix, floor, round

cell

2-264

2cellPurpose Create cell array

Syntax c = cell(n)
c = cell(m,n) or c = cell([m n])
c = cell(m,n,p,...) or c = cell([m n p ...])
c = cell(size(A))
c = cell(javaobj)

Description c = cell(n) creates an n-by-n cell array of empty matrices. An error message
appears if n is not a scalar.

c = cell(m,n) or c = cell([m,n]) creates an m-by-n cell array of empty
matrices. Arguments m and n must be scalars.

c = cell(m,n,p,...) or c = cell([m n p ...]) creates an m-by-n-by-p-...
cell array of empty matrices. Arguments m, n, p,... must be scalars.

c = cell(size(A)) creates a cell array the same size as A containing all empty
matrices.

c = cell(javaobj) converts a Java array or Java object, javaobj, into a
MATLAB cell array. Elements of the resulting cell array will be of the
MATLAB type (if any) closest to the Java array elements or Java object.

Examples This example creates a cell array that is the same size as another array, A.

A = ones(2,2)

A =
 1 1
 1 1

c = cell(size(A))

c =
 [] []
 [] []

The next example converts an array of java.lang.String objects into a
MATLAB cell array.

cell

2-265

strArray = java_array('java.lang.String',3);
strArray(1) = java.lang.String('one');
strArray(2) = java.lang.String('two');
strArray(3) = java.lang.String('three');

cellArray = cell(strArray)
cellArray =
 'one'
 'two'
 'three'

See Also num2cell, ones, rand, randn, zeros

cell2mat

2-266

2cell2matPurpose Convert cell array of matrices into single matrix

Syntax m = cell2mat(c)

Description m = cell2mat(c) converts a multidimensional cell array, c, with contents of
the same data type into a single matrix, m. The contents of c must be able to
concatenate into a hyperrectangle. Moreover, for each pair of neighboring cells,
the dimensions of the cell’s contents must match, excluding the dimension in
which the cells are neighbors.

The example shown below combines matrices in a 3-by-2 cell array into a single
60-by-50 matrix:

cell2mat(c)

Remarks The dimensionality (or number of dimensions) of m will match the highest
dimensionality contained in the cell array.

cell2mat is not supported for cell arrays containing cell arrays or objects.

Examples Combine the matrices in four cells of cell array C into the single matrix, M:

C = {[1] [2 3 4]; [5; 9] [6 7 8; 10 11 12]}
C =
 [1] [1x3 double]
 [2x1 double] [2x3 double]

cell2mat

10x25

20x25

30x25

10x25

20x25

30x25

60x50

cell2mat

2-267

C{1,1} C{1,2}
ans = ans =
 1 2 3 4

C{2,1} C{2,2}
ans = ans =
 5 6 7 8
 9 10 11 12

M = cell2mat(C)
M =
 1 2 3 4
 5 6 7 8
 9 10 11 12

See Also mat2cell, num2cell

cell2struct

2-268

2cell2structPurpose Convert cell array to structure array

Syntax s = cell2struct(c,fields,dim)

Description s = cell2struct(c,fields,dim) creates a structure array, s, from the
information contained within cell array, c.

The fields argument specifies field names for the structure array. fields can
be a character array or a cell array of strings.

The dim argument controls which axis of the cell array is to be used in creating
the structure array. The length of c along the specified dimension must match
the number of fields named in fields. In other words, the following must be
true.

size(c,dim) == length(fields) % if fields is a cell array
size(c,dim) == size(fields,1) % if fields is a char array

Examples The cell array, c, in this example contains information on trees. The three
columns of the array indicate the common name, genus, and average height of
a tree.

c = {'birch','betula',65; 'maple','acer',50}
c =
 'birch' 'betula' [65]
 'maple' 'acer' [50]

To put this information into a structure with the fields name, genus, and
height, use cell2struct along the second dimension of the 2-by-3 cell array.

fields = {'name', 'genus', 'height'};
s = cell2struct(c, fields, 2);

This yields the following 2-by-1 structure array.

s(1) s(2)
ans = ans =
 name: 'birch' name: 'maple'
 genus: 'betula' genus: 'acer'
 height: 65 height: 50

See Also fieldnames, struct2cell

celldisp

2-269

2celldispPurpose Display cell array contents.

Syntax celldisp(C)
celldisp(C,name)

Description celldisp(C) recursively displays the contents of a cell array.

celldisp(C,name) uses the string name for the display instead of the name of
the first input (or ans).

Example Use celldisp to display the contents of a 2-by-3 cell array:

C = {[1 2] 'Tony' 3+4i; [1 2;3 4] -5 'abc'};
celldisp(C)

C{1,1} =
 1 2

C{2,1} =
 1 2
 3 4

C{1,2} =
Tony

C{2,2} =
 -5

C{1,3} =
 3.0000+ 4.0000i

C{2,3} =
abc

See Also cellplot

cellfun

2-270

2cellfunPurpose Apply a function to each element in a cell array

Syntax D = cellfun('fname',C)
D = cellfun('size',C,k)
D = cellfun('isclass',C,classname)

Description D = cellfun('fname',C) applies the function fname to the elements of the cell
array C and returns the results in the double array D. Each element of D
contains the value returned by fname for the corresponding element in C. The
output array D is the same size as the cell array C.

These functions are supported:

D = cellfun('size',C,k) returns the size along the k-th dimension of each
element of C.

D = cellfun('isclass',C,'classname') returns true for each element of C
that matches classname. This function syntax returns false for objects that
are a subclass of classname.

Limitations If the cell array contains objects, cellfun does not call overloaded versions of
the function fname.

Example Consider this 2-by-3 cell array:

C{1,1} = [1 2; 4 5];
C{1,2} = 'Name';

Function Return Value

isempty true for an empty cell element

islogical true for a logical cell element

isreal true for a real cell element

length Length of the cell element

ndims Number of dimensions of the cell element

prodofsize Number of elements in the cell element

cellfun

2-271

C{1,3} = pi;
C{2,1} = 2 + 4i;
C{2,2} = 7;
C{2,3} = magic(3);

cellfun returns a 2-by-3 double array:

D = cellfun('isreal',C)

D =
 1 1 1
 0 1 1

len = cellfun('length',C)

len =
 2 4 1
 1 1 3

isdbl = cellfun('isclass',C,'double')

isdbl =
 1 0 1
 1 1 1

See Also isempty, islogical, isreal, length, ndims, size

cellplot

2-272

2cellplotPurpose Graphically display the structure of cell arrays

Syntax cellplot(c)
cellplot(c,'legend')
handles = cellplot(...)

Description cellplot(c) displays a figure window that graphically represents the
contents of c. Filled rectangles represent elements of vectors and arrays, while
scalars and short text strings are displayed as text.

cellplot(c,'legend') also puts a legend next to the plot.

handles = cellplot(c) displays a figure window and returns a vector of
surface handles.

Limitations The cellplot function can display only two-dimensional cell arrays.

Examples Consider a 2-by-2 cell array containing a matrix, a vector, and two text strings:

c{1,1} = '2-by-2';
c{1,2} = 'eigenvalues of eye(2)';
c{2,1} = eye(2);
c{2,2} = eig(eye(2));

 The command cellplot(c) produces:

cellstr

2-273

2cellstrPurpose Create cell array of strings from character array

Syntax c = cellstr(S)

Description c = cellstr(S) places each row of the character array S into separate cells of
c. Use the char function to convert back to a string matrix.

Examples Given the string matrix

S=['abc ';'defg';'hi ']

S =
 abc
 defg
 hi

whos S
 Name Size Bytes Class
 S 3x4 24 char array

The following command returns a 3-by-1 cell array.

c = cellstr(S)

c =
 'abc'
 'defg'
 'hi'

whos c
 Name Size Bytes Class
 c 3x1 294 cell array

See Also iscellstr, strings

cgs

2-274

2cgsPurpose Conjugate Gradients Squared method

Syntax x = cgs(A,b)
cgs(A,b,tol)
cgs(A,b,tol,maxit)
cgs(A,b,tol,maxit,M)
cgs(A,b,tol,maxit,M1,M2)
cgs(A,b,tol,maxit,M1,M2,x0)
cgs(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
[x,flag] = cgs(A,b,...)
[x,flag,relres] = cgs(A,b,...)
[x,flag,relres,iter] = cgs(A,b,...)
[x,flag,relres,iter,resvec] = cgs(A,b,...)

Description x = cgs(A,b) attempts to solve the system of linear equations A*x = b for x.
The n-by-n coefficient matrix A must be square and should be large and sparse.
The column vector b must have length n. A can be a function afun such that
afun(x) returns A*x.

If cgs converges, a message to that effect is displayed. If cgs fails to converge
after the maximum number of iterations or halts for any reason, a warning
message is printed displaying the relative residual norm(b-A*x)/norm(b) and
the iteration number at which the method stopped or failed.

cgs(A,b,tol) specifies the tolerance of the method, tol. If tol is [], then cgs
uses the default, 1e-6.

cgs(A,b,tol,maxit) specifies the maximum number of iterations, maxit. If
maxit is [] then cgs uses the default, min(n,20).

cgs(A,b,tol,maxit,M) and cgs(A,b,tol,maxit,M1,M2) use the
preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If M is [] then cgs applies no preconditioner. M
can be a function that returns M\x.

cgs(A,b,tol,maxit,M1,M2,x0) specifies the initial guess x0. If x0 is [], then
cgs uses the default, an all-zero vector.

cgs

2-275

cgs(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes parameters
p1,p2,... to functions afun(x,p1,p2,...), m1fun(x,p1,p2,...), and
m2fun(x,p1,p2,...)

[x,flag] = cgs(A,b,...) returns a solution x and a flag that describes the
convergence of cgs.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = cgs(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, then relres <= tol.

[x,flag,relres,iter] = cgs(A,b,...) also returns the iteration number at
which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = cgs(A,b,...) also returns a vector of the
residual norms at each iteration, including norm(b-A*x0).

Examples Example 1.

A = gallery('wilk',21);
b = sum(A,2);
tol = 1e-12; maxit = 15;
M1 = diag([10:-1:1 1 1:10]);
x = cgs(A,b,tol,maxit,M1,[],[]);

Flag Convergence

0 cgs converged to the desired tolerance tol within maxit
iterations.

1 cgs iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 cgs stagnated. (Two consecutive iterates were the same.)

4 One of the scalar quantities calculated during cgs became
too small or too large to continue computing.

cgs

2-276

Alternatively, use this matrix-vector product function

function y = afun(x,n)
y = [0;

x(1:n-1)] + [((n-1)/2:-1:0)';
(1:(n-1)/2)'] .*x + [x(2:n);
0];

and this preconditioner backsolve function

function y = mfun(r,n)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

as inputs to cgs.

x1 = cgs(@afun,b,tol,maxit,@mfun,[],[],21);

Note that both afun and mfun must accept cgs’s extra input n=21.

Example 2.

load west0479
A = west0479
b = sum(A,2)
[x,flag] = cgs(A,b)

flag is 1 because cgs does not converge to the default tolerance 1e-6within the
default 20 iterations.

[L1,U1] = luinc(A,1e-5)
[x1,flag1] = cgs(A,b,1e-6,20,L1,U1)

flag1 is 2 because the upper triangular U1 has a zero on its diagonal, and cgs
fails in the first iteration when it tries to solve a system such as U1*y = r for
y with backslash.

[L2,U2] = luinc(A,1e-6)
[x2,flag2,relres2,iter2,resvec2] = cgs(A,b,1e-15,10,L2,U2)

flag2 is 0 because cgs converges to the tolerance of 6.344e-16 (the value of
relres2) at the fifth iteration (the value of iter2) when preconditioned by the
incomplete LU factorization with a drop tolerance of 1e-6.
resvec2(1) = norm(b) and resvec2(6) = norm(b-A*x2). You can follow the

cgs

2-277

progress of cgs by plotting the relative residuals at each iteration starting from
the initial estimate (iterate number 0) with

semilogy(0:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')

See Also bicg, bicgstab, gmres, lsqr, luinc, minres, pcg, qmr, symmlq

@ (function handle), \ (backslash)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Sonneveld, Peter, “CGS: A fast Lanczos-type solver for nonsymmetric linear
systems”, SIAM J. Sci. Stat. Comput., January 1989, Vol. 10, No. 1, pp. 36-52.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration number

re
la

tiv
e

re
si

du
al

char

2-278

2charPurpose Create character array (string)

Syntax S = char(X)
S = char(C)
S = char(t1,t2,t3...)

Description S = char(X) converts the array X that contains positive integers representing
character codes into a MATLAB character array (the first 127 codes are
ASCII). The actual characters displayed depend on the character set encoding
for a given font. The result for any elements of X outside the range from 0 to
65535 is not defined (and may vary from platform to platform). Use double to
convert a character array into its numeric codes.

S = char(C) when C is a cell array of strings, places each element of C into the
rows of the character array s. Use cellstr to convert back.

S = char(t1,t2,t3,..) forms the character array S containing the text
strings T1,T2,T3,... as rows, automatically padding each string with blanks to
form a valid matrix. Each text parameter, Ti, can itself be a character array.
This allows the creation of arbitrarily large character arrays. Empty strings
are significant.

Remarks Ordinarily, the elements of A are integers in the range 32:127, which are the
printable ASCII characters, or in the range 0:255, which are all 8-bit values.
For noninteger values, or values outside the range 0:255, the characters
printed are determined by fix(rem(A,256)).

Examples To print a 3-by-32 display of the printable ASCII characters:

ascii = char(reshape(32:127,32,3)')
ascii =
! ” # $ % & ' () ∗ + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _
' a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~

char

2-279

See Also cellstr, double, get, set, strings, strvcat, text

checkin

2-280

2checkinPurpose Check file into source control system

Graphical
Interface

As an alternative to the checkin function, use Source Control Check In in the
Editor, Simulink, or Stateflow File menu.

Syntax checkin('filename','comments','string')
checkin({'filename1','filename2','filename3', ...},'comments',

'string')
checkin('filename','option','value', ...)

Description checkin('filename','comments','string') checks in the file named
filename to the source control system. Use the full pathname for the filename.
You must save the file before checking it in. The file can be open or closed when
you use checkin. The string argument is a MATLAB string containing
check-in comments for the source control system. You must supply the
comments argument and 'string'.

checkin({'filename1','filename2','filename3', ...},'comments',
'string') checks in the files named filename1 through filenamen to the
source control system. Use the full pathnames for the files. Additional
arguments apply to all files checked in.

checkin('filename','option','value', ...) provides additional checkin
options. The option and value arguments are shown in the table below.

You can check in a file that you checked out in a previous MATLAB session or
that you checked out directly from your source control system.

option
Argument

Purpose value Argument

'force' When set to on, filename is checked in
even if the file has not changed since it
was checked out. The default value for
force is off.

'on'
'off' (default)

'lock' When set to on, filename remains
checked out. Comments are submitted.
The default value for lock is off.

'on'
'off' (default)

checkin

2-281

Examples Check in a File with Comments
Typing

checkin('/matlab/mymfiles/clock.m','comments','Adjustment for
Y2K')

checks in the file /matlab/mymfiles/clock.m to the source control system with
the comment Adjustment for Y2K.

Check in Multiple Files with Comments
Typing

checkin({'/matlab/mymfiles/clock.m', ...
'/matlab/mymfiles/calendar.m'},'comments','Adjustment for Y2K')

checks two files into the source control system using the same comment for
each.

Check a File in and Keep It Checked out
Typing

checkin('/matlab/mymfiles/clock.m','comments','Adjustment for
Y2K','lock','on')

checks the file /matlab/mymfiles/clock.m into the source control system and
keeps the file checked out.

See Also checkout, cmopts, undocheckout

checkout

2-282

2checkoutPurpose Check file out of source control system

Graphical
Interface

As an alternative to the checkout function, use Source Control Check Out in
the Editor, Simulink, or Stateflow File menu.

Syntax checkout('filename')
checkout({'filename1','filename2','filename3', ...})
checkout('filename','option','value', ...)

Description checkout('filename') checks out the file named filename from the source
control system. filename must be the full pathname for the file. The file can be
open or closed when you use checkout.

checkout({'filename1','filename2','filename3', ...}) checks out the
files named filename1 through filenamen from the source control system. Use
the full pathnames for the files. Additional arguments apply to all files checked
out.

checkout('filename','option','value', ...) provides additional
checkout options. The option and value arguments are shown in the following
table.

checkout

2-283

If you end the MATLAB session, the file remains checked out. You can check
in the file from within MATLAB during a later session, or directly from your
source control system.

Examples Check out a File
Typing

checkout('/matlab/mymfiles/clock.m')

checks out the file /matlab/mymfiles/clock.m from the source control system.

option
Argument

Purpose value
Argument

'force' When set to on, the checkout is forced,
even if you already have the file checked
out. This is effectively an undocheckout
followed by a checkout. When force is
set to off, you can’t check out the file if
you already have it checked out.

'on'
'off' (default)

'lock' When set to on, the checkout gets the file,
allows you to write to it, and locks the file
so that access to the file for others is read
only. When set to off, the checkout gets a
read-only version of the file, allowing
another user to check out the file for
updating. With lock set to off, you don’t
have to check in a file after checking it
out.

'on' (default)
'off'

'revision' Checks out the specified revision of the
file.

'version_num'

checkout

2-284

Check out Multiple Files
Typing

checkout({'/matlab/mymfiles/clock.m',...
'/matlab/mymfiles/calendar.m'})

checks out /matlab/mymfiles/clock.m and
/matlab/mymfiles/calendar.m from the source control system.

Force a Checkout, Even If File Is Already Checked out
Typing

checkout('/matlab/mymfiles/clock.m','force','on')

checks out /matlab/mymfiles/clock.m even if clock.m is already checked out
to you.

Check out Specified Revision of File
Typing

checkout('/matlab/mymfiles/clock.m','revision','1.1')

checks out revision 1.1 of clock.m.

See Also checkin, cmopts, undocheckout

chol

2-285

2cholPurpose Cholesky factorization

Syntax R = chol(X)
[R,p] = chol(X)

Description The chol function uses only the diagonal and upper triangle of X. The lower
triangular is assumed to be the (complex conjugate) transpose of the upper.
That is, X is Hermitian.

R = chol(X), where X is positive definite produces an upper triangular R so
that R'*R = X. If X is not positive definite, an error message is printed.

[R,p] = chol(X), with two output arguments, never produces an error
message. If X is positive definite, then p is 0 and R is the same as above. If X is
not positive definite, then p is a positive integer and R is an upper triangular
matrix of order q = p-1 so that R'*R = X(1:q,1:q).

Examples The binomial coefficients arranged in a symmetric array create an interesting
positive definite matrix.

n = 5;
X = pascal(n)
X =

1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

It is interesting because its Cholesky factor consists of the same coefficients,
arranged in an upper triangular matrix.

R = chol(X)
R =

1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

chol

2-286

Destroy the positive definiteness (and actually make the matrix singular) by
subtracting 1 from the last element.

X(n,n) = X(n,n)-1

X =
1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 69

Now an attempt to find the Cholesky factorization fails.

Algorithm chol uses the the LAPACK subroutines DPOTRF (real) and ZPOTRF (complex).

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

See Also cholinc, cholupdate

cholinc

2-287

2cholincPurpose Sparse incomplete Cholesky and Cholesky-Infinity factorizations

Syntax R = cholinc(X,droptol)
R = cholinc(X,options)
R = cholinc(X,'0')
[R,p] = cholinc(X,'0')
R = cholinc(X,'inf')

Description cholinc produces two different kinds of incomplete Cholesky factorizations:
the drop tolerance and the 0 level of fill-in factorizations. These factors may be
useful as preconditioners for a symmetric positive definite system of linear
equations being solved by an iterative method such as pcg (Preconditioned
Conjugate Gradients). cholinc works only for sparse matrices.

R = cholinc(X,droptol) performs the incomplete Cholesky factorization of X,
with drop tolerance droptol.

R = cholinc(X,options) allows additional options to the incomplete
Cholesky factorization. options is a structure with up to three fields:

Only the fields of interest need to be set.

droptol is a non-negative scalar used as the drop tolerance for the incomplete
Cholesky factorization. This factorization is computed by performing the
incomplete LU factorization with the pivot threshold option set to 0 (which
forces diagonal pivoting) and then scaling the rows of the incomplete upper
triangular factor, U, by the square root of the diagonal entries in that column.
Since the nonzero entries U(i,j) are bounded below by droptol*norm(X(:,j))
(see luinc), the nonzero entries R(i,j) are bounded below by the local drop
tolerance droptol*norm(X(:,j))/R(i,i).

Setting droptol = 0 produces the complete Cholesky factorization, which is
the default.

droptol Drop tolerance of the incomplete factorization

michol Modified incomplete Cholesky

rdiag Replace zeros on the diagonal of R

cholinc

2-288

michol stands for modified incomplete Cholesky factorization. Its value is
either 0 (unmodified, the default) or 1 (modified). This performs the modified
incomplete LU factorization of X and scales the returned upper triangular
factor as described above.

rdiag is either 0 or 1. If it is 1, any zero diagonal entries of the upper triangular
factor R are replaced by the square root of the local drop tolerance in an
attempt to avoid a singular factor. The default is 0.

R = cholinc(X,'0') produces the incomplete Cholesky factor of a real sparse
matrix that is symmetric and positive definite using no fill-in. The upper
triangular R has the same sparsity pattern as triu(X), although R may be zero
in some positions where X is nonzero due to cancellation. The lower triangle of
X is assumed to be the transpose of the upper. Note that the positive
definiteness of X does not guarantee the existence of a factor with the required
sparsity. An error message results if the factorization is not possible. If the
factorization is successful, R'*R agrees with X over its sparsity pattern.

[R,p] = cholinc(X,'0') with two output arguments, never produces an error
message. If R exists, p is 0. If R does not exist, then p is a positive integer and R
is an upper triangular matrix of size q-by-n where q = p-1. In this latter case,
the sparsity pattern of R is that of the q-by-n upper triangle of X. R'*R agrees
with X over the sparsity pattern of its first q rows and first q columns.

R = cholinc(X,'inf') produces the Cholesky-Infinity factorization. This
factorization is based on the Cholesky factorization, and additionally handles
real positive semi-definite matrices. It may be useful for finding a solution to
systems which arise in interior-point methods. When a zero pivot is
encountered in the ordinary Cholesky factorization, the diagonal of the
Cholesky-Infinity factor is set to Inf and the rest of that row is set to 0. This
forces a 0 in the corresponding entry of the solution vector in the associated
system of linear equations. In practice, X is assumed to be positive
semi-definite so even negative pivots are replaced with a value of Inf.

Remarks The incomplete factorizations may be useful as preconditioners for solving
large sparse systems of linear equations. A single 0 on the diagonal of the upper
triangular factor makes it singular. The incomplete factorization with a drop
tolerance prints a warning message if the upper triangular factor has zeros on
the diagonal. Similarly, using the rdiag option to replace a zero diagonal only

cholinc

2-289

gets rid of the symptoms of the problem, but it does not solve it. The
preconditioner may not be singular, but it probably is not useful, and a warning
message is printed.

The Cholesky-Infinity factorization is meant to be used within interior-point
methods. Otherwise, its use is not recommended.

Examples Example 1.

Start with a symmetric positive definite matrix, S.

S = delsq(numgrid('C',15));

S is the two-dimensional, five-point discrete negative Lapacian on the grid
generated by numgrid('C',15).

Compute the Cholesky factorization and the incomplete Cholesky factorization
of level 0 to compare the fill-in. Make S singular by zeroing out a diagonal entry
and compute the (partial) incomplete Cholesky factorization of level 0.

C = chol(S);
R0 = cholinc(S,'0');
S2 = S; S2(101,101) = 0;
[R,p] = cholinc(S2,'0');

Fill-in occurs within the bands of S in the complete Cholesky factor, but none
in the incomplete Cholesky factor. The incomplete factorization of the singular
S2 stopped at row p = 101 resulting in a 100-by-139 partial factor.

D1 = (R0'*R0).*spones(S)-S;
D2 = (R'*R).*spones(S2)-S2;

D1 has elements of the order of eps, showing that R0'*R0 agrees with S over its
sparsity pattern. D2 has elements of the order of eps over its first 100 rows and
first 100 columns, D2(1:100,:) and D2(:,1:100).

cholinc

2-290

Example 2.

The first subplot below shows that cholinc(S,0), the incomplete Cholesky
factor with a drop tolerance of 0, is the same as the Cholesky factor of S.
Increasing the drop tolerance increases the sparsity of the incomplete factors,
as seen below.

0 50 100

0

20

40

60

80

100

120

140

nz = 643

S

0 50 100

0

20

40

60

80

100

120

140

nz = 1557

C= chol(S)

0 50 100

0

20

40

60

80

100

120

140

nz = 391

R0=cholinc(S,’0’)

0 50 100

0

20

40

60

80

100

nz = 290

Partial factor [R,p]=cholinc(S2,’0’)

0 50 100

0

20

40

60

80

100

120

140

nz = 1557

cholinc(S,0)

0 50 100

0

20

40

60

80

100

120

140

nz = 1211

cholinc(S,1e−3)

0 50 100

0

20

40

60

80

100

120

140

nz = 671

cholinc(S,1e−2)

0 50 100

0

20

40

60

80

100

120

140

nz = 391

cholinc(S,1e−1)

cholinc

2-291

Unfortunately, the sparser factors are poor approximations, as is seen by the
plot of drop tolerance versus norm(R'*R-S,1)/norm(S,1) in the next figure.

Example 3.

The Hilbert matrices have (i,j) entries 1/(i+j-1) and are theoretically positive
definite:

H3 = hilb(3)
H3 =
 1.0000 0.5000 0.3333
 0.5000 0.3333 0.2500
 0.3333 0.2500 0.2000

R3 = chol(H3)
R3 =
 1.0000 0.5000 0.3333
 0 0.2887 0.2887
 0 0 0.0745

In practice, the Cholesky factorization breaks down for larger matrices:

H20 = sparse(hilb(20));
[R,p] = chol(H20);
p =
 14

10
−4

10
−3

10
−2

10
−1

10
0

0

500

1000

1500
Drop tolerance vs nnz(cholinc(S,droptol))

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

Drop tolerance vs norm(R’*R−S)/norm(S)

cholinc

2-292

For hilb(20), the Cholesky factorization failed in the computation of row 14
because of a numerically zero pivot. You can use the Cholesky-Infinity
factorization to avoid this error. When a zero pivot is encountered, cholinc
places an Inf on the main diagonal, zeros out the rest of the row, and continues
with the computation:

Rinf = cholinc(H20,'inf');

In this case, all subsequent pivots are also too small, so the remainder of the
upper triangular factor is:

full(Rinf(14:end,14:end))
ans =
 Inf 0 0 0 0 0 0
 0 Inf 0 0 0 0 0
 0 0 Inf 0 0 0 0
 0 0 0 Inf 0 0 0
 0 0 0 0 Inf 0 0
 0 0 0 0 0 Inf 0
 0 0 0 0 0 0 Inf

Limitations cholinc works on square sparse matrices only. For cholinc(X,'0') and
cholinc(X,'inf'), X must be real.

Algorithm R = cholinc(X,droptol) is obtained from [L,U] = luinc(X,options), where
options.droptol = droptol and options.thresh = 0. The rows of the
uppertriangular U are scaled by the square root of the diagonal in that row, and
this scaled factor becomes R.

R = cholinc(X,options) is produced in a similar manner, except the rdiag
option translates into the udiag option and the milu option takes the value of
the michol option.

R = cholinc(X,'0') is based on the “KJI” variant of the Cholesky
factorization. Updates are made only to positions which are nonzero in the
upper triangle of X.

R = cholinc(X,'inf') is based on the algorithm in Zhang [2].

cholinc

2-293

See Also chol, luinc, pcg

References [1] Saad, Yousef, Iterative Methods for Sparse Linear Systems, PWS Publishing
Company, 1996. Chapter 10, “Preconditioning Techniques.”

[2] Zhang, Yin, Solving Large-Scale Linear Programs by Interior-Point
Methods Under the MATLAB Environment, Department of Mathematics and
Statistics, University of Maryland Baltimore County, Technical Report
TR96-01

cholupdate

2-294

2cholupdatePurpose Rank 1 update to Cholesky factorization

Syntax R1 = cholupdate(R,x)
R1 = cholupdate(R,x,'+')
R1 = cholupdate(R,x,'-')
[R1,p] = cholupdate(R,x,'-')

Description R1 = cholupdate(R,x) where R = chol(A) is the original Cholesky
factorization of A, returns the upper triangular Cholesky factor of A + x*x',
where x is a column vector of appropriate length. cholupdate uses only the
diagonal and upper triangle of R. The lower triangle of R is ignored.

R1 = cholupdate(R,x,'+') is the same as R1 = cholupdate(R,x).

R1 = cholupdate(R,x,'-') returns the Cholesky factor of A - x*x'. An
error message reports when R is not a valid Cholesky factor or when the
downdated matrix is not positive definite and so does not have a Cholesky
factoriza- tion.

[R1,p] = cholupdate(R,x,'-') will not return an error message. If p is 0,
R1 is the Cholesky factor of A - x*x'. If p is greater than 0, R1 is the Cholesky
factor of the original A. If p is 1, cholupdate failed because the downdated
matrix is not positive definite. If p is 2, cholupdate failed because the upper
triangle of R was not a valid Cholesky factor.

Remarks cholupdate works only for full matrices.

Example A = pascal(4)
A =

 1 1 1 1
 1 2 3 4
 1 3 6 10
 1 4 10 20

R = chol(A)

cholupdate

2-295

R =

 1 1 1 1
 0 1 2 3
 0 0 1 3
 0 0 0 1

x = [0 0 0 1]';

This is called a rank one update to A since rank(x*x') is 1:

A + x*x'
ans =

 1 1 1 1
 1 2 3 4
 1 3 6 10
 1 4 10 21

Instead of computing the Cholesky factor with R1 = chol(A + x*x'), we can
use cholupdate:

R1 = cholupdate(R,x)
R1 =

 1.0000 1.0000 1.0000 1.0000
 0 1.0000 2.0000 3.0000
 0 0 1.0000 3.0000
 0 0 0 1.4142

Next destroy the positive definiteness (and actually make the matrix singular)
by subtracting 1 from the last element of A. The downdated matrix is:

A - x*x'
ans =

 1 1 1 1
 1 2 3 4
 1 3 6 10
 1 4 10 19

cholupdate

2-296

Compare chol with cholupdate:

R1 = chol(A-x*x')
??? Error using ==> chol
Matrix must be positive definite.

R1 = cholupdate(R,x,'-')
??? Error using ==> cholupdate
Downdated matrix must be positive definite.

However, subtracting 0.5 from the last element of A produces a positive
definite matrix, and we can use cholupdate to compute its Cholesky factor:

x = [0 0 0 1/sqrt(2)]';
R1 = cholupdate(R,x,'-')
R1 =
 1.0000 1.0000 1.0000 1.0000
 0 1.0000 2.0000 3.0000
 0 0 1.0000 3.0000
 0 0 0 0.7071

Algorithm cholupdate uses the algorithms from the LINPACK subroutines ZCHUD and
ZCHDD. cholupdate is useful since computing the new Cholesky factor from
scratch is an algorithm, while simply updating the existing factor in
this way is an algorithm.

See Also chol, qrupdate

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK Users'
Guide, SIAM, Philadelphia, 1979.

O N3()
O N2()

circshift

2-297

2circshiftPurpose Shift array circularly

Syntax B = circshift(A,shiftsize)

Description B = circshift(A,shiftsize) circularly shifts the values in the array, A, by
shiftsize elements. shiftsize is a vector of integer scalars where the n-th
element specifies the shift amount for the n-th dimension of array A. If an
element in shiftsize is positive, the values of A are shifted down (or to the
right). If it is negative, the values of A are shifted up (or to the left). If it is 0,
the values in that dimension are not shifted.

Example Circularly shift first dimension values down by 1.

A = [1 2 3;4 5 6; 7 8 9]
A =
 1 2 3
 4 5 6
 7 8 9

B = circshift(A,1)
B =
 7 8 9
 1 2 3
 4 5 6

Circularly shift first dimension values down by 1 and second dimension values
to the left by 1.

B = circshift(A,[1 -1]);
B =
 8 9 7
 2 3 1
 5 6 4

See Also fftshift, shiftdim

cla

2-298

2claPurpose Clear current axes

Syntax cla
cla reset

Description cla deletes from the current axes all graphics objects whose handles are not
hidden (i.e., their HandleVisibility property is set to on).

cla reset deletes from the current axes all graphics objects regardless of the
setting of their HandleVisibility property and resets all axes properties,
except Position and Units, to their default values.

Remarks The cla command behaves the same way when issued on the command line as
it does in callback routines – it does not recognize the HandleVisibility
setting of callback. This means that when issued from within a callback
routine, cla deletes only those objects whose HandleVisibility property is set
to on.

See Also clf, hold, newplot, reset

“Axes Operations” for related functions

clabel

2-299

2clabelPurpose Contour plot elevation labels

Syntax clabel(C,h)
clabel(C,h,v)
clabel(C,h,'manual')

clabel(C)
clabel(C,v)
clabel(C,'manual')

Description The clabel function adds height labels to a two-dimensional contour plot.

clabel(C,h) rotates the labels and inserts them in the contour lines. The
function inserts only those labels that fit within the contour, depending on the
size of the contour.

clabel(C,h,v) creates labels only for those contour levels given in vector v,
then rotates the labels and inserts them in the contour lines.

clabel(C,h,'manual') places contour labels at locations you select with a
mouse. Press the left mouse button (the mouse button on a single-button
mouse) or the space bar to label a contour at the closest location beneath the
center of the cursor. Press the Return key while the cursor is within the figure
window to terminate labeling. The labels are rotated and inserted in the
contour lines.

clabel(C) adds labels to the current contour plot using the contour structure
C output from contour. The function labels all contours displayed and
randomly selects label positions.

clabel(C,v) labels only those contour levels given in vector v.

clabel(C,'manual') places contour labels at locations you select with a
mouse.

Remarks When the syntax includes the argument h, this function rotates the labels and
inserts them in the contour lines (see Example). Otherwise, the labels are
displayed upright and a '+' indicates which contour line the label is
annotating.

clabel

2-300

Examples Generate, draw, and label a simple contour plot.

[x,y] = meshgrid(–2:.2:2);
z = x.^exp(–x.^2–y.^2);
[C,h] = contour(x,y,z);
clabel(C,h);

See Also contour, contourc, contourf

“Annotating Plots” for related functions

Drawing Text in a Box for an example that illustrates the use of contour labels

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−
0.2

−0
.2

−
9.869e−

17

−9.869e−17

0.2

0.2

0.2

0.
2

0.
2

0.
4

0.4

0.4

0.
4

0.6
0.

6

0.6

0.
6

0.
6

0.
8

0.8

0.8

0.8

0.
8

1

1

1
1

class

2-301

2classPurpose Create object or return class of object

Syntax str = class(object)
obj = class(s,'class_name')
obj = class(s,'class_name',parent1,parent2...)
obj = class(struct([]),'class_name',parent1,parent2...)

Description str = class(object) returns a string specifying the class of object.

The following table lists the object class names that may be returned. All
except the last one are MATLAB classes.

obj = class(s,'class_name') creates an object of MATLAB class
'class_name' using structure s as a template. This syntax is valid only in a

logical Logical array of true and false values

char Characters array

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

int16 16-bit signed integer array

uint16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

int64 64-bit signed integer array

uint64 64-bit unsigned integer array

single Single-precision floating point number array

double Double-precision floating point number array

cell Cell array

struct Structure array

function handle Array of values for calling functions indirectly

'class_name' Custom MATLAB object class or Java class

class

2-302

function named class_name.m in a directory named @class_name (where
'class_name' is the same as the string passed into class).

obj = class(s,'class_name',parent1,parent2,...) creates an object of
MATLAB class 'class_name' that inherits the methods and fields of the
parent objects parent1, parent2, and so on. Structure s is used as a template
for the object.

obj = class(struct([]),'class_name',parent1,parent2,...) creates an
object of MATLAB class 'class_name' that inherits the methods and fields of
the parent objects parent1, parent2, and so on. Specifying the empty
structure, struct([]), as the first argument ensures that the object created
contains no fields other than those that are inherited from the parent objects.

Examples To return in nameStr the name of the class of Java object j

nameStr = class(j)

To create a user-defined MATLAB object of class polynom

p = class(p,'polynom')

See Also inferiorto, isa, superiorto

The “MATLAB Classes and Objects” and the “Calling Java from MATLAB”
chapters in Programming and Data Types.

clc

2-303

2clcPurpose Clear Command Window

Graphical
Interface

As an alternative to the clc function, use Clear Command Window in the
MATLAB desktop Edit menu.

Syntax clc

Description clc clears all input and output from the Command Window display, giving you
a “clean screen.”

After using clc, you cannot use the scroll bar to see the history of functions,
but still can use the up arrow to recall statements from the command history.

Examples Use clc in an M-file to always display output in the same starting position on
the screen.

See Also clear, clf, close, home

clear

2-304

2clearPurpose Remove items from workspace, freeing up system memory

Graphical
Interface

As an alternative to the clear function, use Clear Workspace in the MATLAB
desktop Edit menu, or in the context menu in the Workspace browser.

Syntax clear
clear name
clear name1 name2 name3 ...
clear global name
clear keyword
clear('name1','name2','name3',...)

Description clear removes all variables from the workspace. This frees up system memory.

clear name removes just the M-file or MEX-file function or variable name from
the workspace. You can use wildcards (*) to remove items selectively. For
example, clear my* removes any variables whose names begin with the string
my. It removes debugging breakpoints in M-files and reinitializes persistent
variables, since the breakpoints for a function and persistent variables are
cleared whenever the M-file is changed or cleared. If name is global, it is
removed from the current workspace, but left accessible to any functions
declaring it global. If name has been locked by mlock, it remains in memory.

Use a partial path to distinguish between different overloaded versions of a
function. For example, clear inline/display clears only the display method
for inline objects, leaving any other implementations in memory.

clear name1 name2 name3 ... removes name1, name2, and name3 from the
workspace.

clear global name removes the global variable name. If name is global, clear
name removes name from the current workspace, but leaves it accessible to any
functions declaring it global. Use clear global name to completely remove a
global variable.

clear

2-305

clear keyword clears the items indicated by keyword.

clear('name1','name2','name3',...) is the function form of the syntax. Use
this form when the variable name or function name is stored in a string.

Keyword Items Cleared

all Removes all variables, functions, and MEX-files from
memory, leaving the workspace empty. Using clear all
removes debugging breakpoints in M-files and
reinitializes persistent variables, since the breakpoints
for a function and persistent variables are cleared
whenever the M-file is changed or cleared. When issued
from the Command Window prompt, also removes the
Java packages import list.

classes The same as clear all, but also clears MATLAB class
definitions. If any objects exist outside the workspace
(for example, in user data or persistent variables in a
locked M-file), a warning is issued and the class
definition is not cleared. Issue a clear classes
function if the number or names of fields in a class are
changed.

functions Clears all the currently compiled M-functions and
MEX-functions from memory. Using clear function
removes debugging breakpoints in the function M-file
and reinitializes persistent variables, since the
breakpoints for a function and persistent variables are
cleared whenever the M-file is changed or cleared.

global Clears all global variables from the workspace.

import Removes the Java packages import list. It can only be
issued from the Command Window prompt. It cannot be
used in a function.

variables Clears all variables from the workspace.

clear

2-306

Remarks When you use clear in a function, it has the following effect on items in your
function and base workspaces:

• clear name—If name is the name of a function, the function is cleared in both
the function workspace and in your base workspace.

• clear functions—All functions are cleared in both the function workspace
and in your base workspace.

• clear global—All global variables are cleared in both the function
workspace and in your base workspace.

• clear all—All functions, global variables, and classes are cleared in both
the function workspace and in your base workspace.

Limitations clear does not affect the amount of memory allocated to the MATLAB process
under UNIX.

Examples Given a workspace containing the following variables

 Name Size Bytes Class

 c 3x4 1200 cell array
 frame 1x1 java.awt.Frame
 gbl1 1x1 8 double array (global)
 gbl2 1x1 8 double array (global)
 xint 1x1 1 int8 array

you can clear a single variable, xint, by typing

clear xint

To clear all global variables, type

clear global
whos
 Name Size Bytes Class

 c 3x4 1200 cell array
 frame 1x1 java.awt.Frame

clear

2-307

To clear all compiled M- and MEX-functions from memory, type clear
functions. In the case shown below, clear functions was unable to clear one
M-file function from memory, testfun, because the function is locked.

clear functions % Attempt to clear all functions.

inmem
ans =

'testfun' % One M-file function remains in memory.

mislocked testfun
ans =
 1 % This function is locked in memory.

Once you unlock the function from memory, you can clear it.

munlock testfun
clear functions

inmem
ans =
 Empty cell array: 0-by-1

See Also clc, close, import, mlock, munlock, pack, persistent, who, whos

clear (serial)

2-308

2clear (serial)Purpose Remove a serial port object from the MATLAB workspace

Syntax clear obj

Arguments

Description clear obj removes obj from the MATLAB workspace.

Remarks If obj is connected to the device and it is cleared from the workspace, then obj
remains connected to the device. You can restore obj to the workspace with the
instrfind function. A serial port object connected to the device has a Status
property value of open.

To disconnect obj from the device, use the fclose function. To remove obj from
memory, use the delete function. You should remove invalid serial port objects
from the workspace with clear.

If you use the help command to display help for clear, then you need to supply
the pathname shown below.

help serial/private/clear

Example This example creates the serial port object s, copies s to a new variable scopy,
and clears s from the MATLAB workspace. s is then restored to the workspace
with instrfind and is shown to be identical to scopy.

s = serial('COM1');
scopy = s;
clear s
s = instrfind;
isequal(scopy,s)
ans =
 1

See Also Functions
delete, fclose, instrfind, isvalid

Properties
Status

obj A serial port object or an array of serial port objects.

clf

2-309

2clfPurpose Clear current figure window

Syntax clf
clf reset

Description clf deletes from the current figure all graphics objects whose handles are not
hidden (i.e., their HandleVisibility property is set to on).

clf reset deletes from the current figure all graphics objects regardless of the
setting of their HandleVisibility property and resets all figure properties,
except Position, Units, PaperPosition, and PaperUnits to their default
values.

Remarks The clf command behaves the same way when issued on the command line as
it does in callback routines – it does not recognize the HandleVisibility
setting of callback. This means that when issued from within a callback
routine, clf deletes only those objects whose HandleVisibility property is set
to on.

See Also cla, clc, hold, reset

“Figure Windows” for related functions

clipboard

2-310

2clipboardPurpose Copy and paste strings to and from the system clipboard.

Graphical
Interface

As an alternative to clipboard, use the Import Wizard. To use the Import
Wizard to copy data from the clipboard, select Paste Special from the Edit
menu.

Syntax clipboard('copy',data)
str = clipboard('paste')
data = clipboard('pastespecial')

Description clipboard('copy', data) sets the clipboard contents to data. If data is not a
character array, clipboard uses mat2str to convert it to a string.

str = clipboard('paste') returns the current contents of the clipboard as a
string or as an empty string (' '), if the current clipboard content cannot be
converted to a string.

data = clipboard('pastespecial') returns the current contents of the
clipboard as an array using uiimport.

Note Requires an active X display on Unix and Java elsewhere.

See Also load, uiimport

clock

2-311

2clockPurpose Current time as a date vector

Syntax c = clock

Description c = clock returns a 6-element date vector containing the current date and
time in decimal form:

c = [year month day hour minute seconds]

The first five elements are integers. The seconds element is accurate to several
digits beyond the decimal point. The statement fix(clock) rounds to integer
display format.

See Also cputime, datenum, datevec, etime, tic, toc

close

2-312

2closePurpose Delete specified figure

Syntax close
close(h)
close name
close all
close all hidden
status = close(...)

Description close deletes the current figure or the specified figure(s). It optionally returns
the status of the close operation.

close deletes the current figure (equivalent to close(gcf)).

close(h) deletes the figure identified by h. If h is a vector or matrix, close
deletes all figures identified by h.

close name deletes the figure with the specified name.

close all deletes all figures whose handles are not hidden.

close all hidden deletes all figures including those with hidden handles.

status = close(...) returns 1 if the specified windows have been deleted
and 0 otherwise.

Remarks The close function works by evaluating the specified figure’s
CloseRequestFcn property with the statement:

eval(get(h,'CloseRequestFcn'))

The default CloseRequestFcn, closereq, deletes the current figure using
delete(get(0,'CurrentFigure')). If you specify multiple figure handles,
close executes each figure’s CloseRequestFcn in turn. If MATLAB encounters
an error that terminates the execution of a CloseRequestFcn, the figure is not
deleted. Note that using your computer’s window manager (i.e., the Close
menu item) also calls the figure’s CloseRequestFcn.

If a figure’s handle is hidden (i.e., the figure’s HandleVisibility property is set
to callback or off and the root ShowHiddenHandles property is set on), you

close

2-313

must specify the hidden option when trying to access a figure using the all
option.

To delete all figures unconditionally, use the statements:

set(0,'ShowHiddenHandles','on')
delete(get(0,'Children'))

The delete function does not execute the figure’s CloseRequestFcn; it simply
deletes the specified figure.

The figure CloseRequestFcn allows you to either delay or abort the closing of
a figure once the close function has been issued. For example, you can display
a dialog box to see if the user really wants to delete the figure or save and clean
up before closing.

See Also delete, figure, gcf

The figure HandleVisibility property

The root ShowHiddenHandles property

“Figure Windows” for related functions

close

2-314

2closePurpose Close Audio Video Interleaved (AVI) file

Syntax aviobj = close(aviobj)

Description aviobj = close(aviobj) finishes writing and closes the AVI file associated
with aviobj, which is an AVI file object, created using the avifile function.

See Also avifile, addframe, movie2avi

closereq

2-315

2closereqPurpose Default figure close request function

Syntax closereq

Description closereq delete the current figure.

See Also The figure CloseRequestFcn property

“Figure Windows” for related functions

cmopts

2-316

2cmoptsPurpose Get name of source control system

Graphical
Interface

As an alternative to cmopts, use preferences. Select File -> Preferences in the
MATLAB desktop, and then select General -> Source Control.

Syntax cmopts

Description cmopts returns the name of the source control system you selected using
preferences, which is one of the following:

clearcase
customverctrl
pvcs
rcs
sourcesafe

If you have not selected a source control system, cmopts returns

none

Specifying a Source Control System
To specify the source control system:

1 From the MATLAB Editor window or from a Simulink or Stateflow model
window, select File -> Preferences.

The Preferences dialog box opens.

2 In the left pane, click the + for General, and then select Source Control.

The currently selected system is shown.

3 Select the system you want to use from the Source control system list.

4 Click OK.

For more information, see source control preferences.

Examples Type cmopts and MATLAB returns rcs, meaning the source control system
specified in preferences is RCS.

See Also checkin, checkout, customverctrl

colamd

2-317

2colamdPurpose Column approximate minimum degree permutation

Syntax p = colamd(S)
p = colamd(S,knobs)
[p,stats] = colamd(S)
[p,stats] = colamd(S,knobs)

Description p = colamd(S) returns the column approximate minimum degree
permutation vector for the sparse matrix S. For a non-symmetric matrix S,
S(:,p) tends to have sparser LU factors than S. The Cholesky factorization of
S(:,p)' * S(:,p) also tends to be sparser than that of S'*S.

knobs is a two-element vector. If S is m-by-n, then rows with more than
(knobs(1))*n entries are ignored. Columns with more than (knobs(2))*m
entries are removed prior to ordering, and ordered last in the output
permutation p. If the knobs parameter is not present, then
knobs(1) = knobs(2) = spparms('wh_frac').

stats is an optional vector that provides data about the ordering and the
validity of the matrix S.

Although, MATLAB built-in functions generate valid sparse matrices, a user
may construct an invalid sparse matrix using the MATLAB C or Fortran APIs
and pass it to colamd. For this reason, colamd verifies that S is valid:

stats(1) Number of dense or empty rows ignored by colamd

stats(2) Number of dense or empty columns ignored by colamd

stats(3) Number of garbage collections performed on the internal data
structure used by colamd (roughly of size
2.2*nnz(S) + 4*m + 7*n integers)

stats(4) 0 if the matrix is valid, or 1 if invalid

stats(5) Rightmost column index that is unsorted or contains duplicate
entries, or 0 if no such column exists

stats(6) Last seen duplicate or out-of-order row index in the column
index given by stats(5), or 0 if no such row index exists

stats(7) Number of duplicate and out-of-order row indices

colamd

2-318

• If a row index appears two or more times in the same column, colamd ignores
the duplicate entries, continues processing, and provides information about
the duplicate entries in stats(4:7).

• If row indices in a column are out of order, colamd sorts each column of its
internal copy of the matrix S (but does not repair the input matrix S),
continues processing, and provides information about the out-of-order
entries in stats(4:7).

• If S is invalid in any other way, colamd cannot continue. It prints an error
message, and returns no output arguments (p or stats) .

The ordering is followed by a column elimination tree post-ordering.

Note colamd tends to be faster than colmmd and tends to return a better
ordering.

See Also colmmd, colperm, spparms, symamd, symmmd, symrcm

References [1] The authors of the code for colamd are Stefan I. Larimore and Timothy A.
Davis (davis@cise.ufl.edu), University of Florida. The algorithm was
developed in collaboration with John Gilbert, Xerox PARC, and Esmond Ng,
Oak Ridge National Laboratory. Sparse Matrix Algorithms Research at the
University of Florida: http://www.cise.ufl.edu/research/sparse/

colmmd

2-319

2colmmdPurpose Sparse column minimum degree permutation

Syntax p = colmmd(S)

Description p = colmmd(S) returns the column minimum degree permutation vector for
the sparse matrix S. For a nonsymmetric matrix S, this is a column
permutation p such that S(:,p) tends to have sparser LU factors than S.

The colmmd permutation is automatically used by \ and / for the solution of
nonsymmetric and symmetric indefinite sparse linear systems.

Use spparms to change some options and parameters associated with heuristics
in the algorithm.

Algorithm The minimum degree algorithm for symmetric matrices is described in the
review paper by George and Liu [1]. For nonsymmetric matrices, the MATLAB
minimum degree algorithm is new and is described in the paper by Gilbert,
Moler, and Schreiber [2]. It is roughly like symmetric minimum degree for
A'*A, but does not actually form A'*A.

Each stage of the algorithm chooses a vertex in the graph of A'*A of lowest
degree (that is, a column of A having nonzero elements in common with the
fewest other columns), eliminates that vertex, and updates the remainder of
the graph by adding fill (that is, merging rows). If the input matrix S is of size
m-by-n, the columns are all eliminated and the permutation is complete after n
stages. To speed up the process, several heuristics are used to carry out
multiple stages simultaneously.

Examples The Harwell-Boeing collection of sparse matrices and the MATLAB demos
directory include a test matrix WEST0479. It is a matrix of order 479 resulting
from a model due to Westerberg of an eight-stage chemical distillation column.
The spy plot shows evidence of the eight stages. The colmmd ordering
scrambles this structure.

load west0479
A = west0479;
p = colmmd(A);
spy(A)
spy(A(:,p))

colmmd

2-320

Comparing the spy plot of the LU factorization of the original matrix with that
of the reordered matrix shows that minimum degree reduces the time and
storage requirements by better than a factor of 2.8. The nonzero counts are
16777 and 5904, respectively.

spy(lu(A))
spy(lu(A(:,p)))

0 100 200 300 400

0

100

200

300

400

nz = 1887

A

0 100 200 300 400

0

100

200

300

400

nz = 1887

A(:,p)

0 100 200 300 400

0

100

200

300

400

nz = 16777

lu(A)

0 100 200 300 400

0

100

200

300

400

nz = 5904

lu(A(:,p))

colmmd

2-321

See Also colamd, colperm, lu, spparms, symamd, symmmd, symrcm

The arithmetic operator \

References [1] George, Alan and Liu, Joseph, “The Evolution of the Minimum Degree
Ordering Algorithm,” SIAM Review, 1989, 31:1-19.

[2] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse Matrices in
MATLAB: Design and Implementation,” SIAM Journal on Matrix Analysis
and Applications 13, 1992, pp. 333-356.

colorbar

2-322

2colorbarPurpose Display colorbar showing the color scale

Syntax colorbar
colorbar('vert')
colorbar('horiz')
colorbar(h)
h = colorbar(...)
colorbar(...,'peer',axes_handle)

Description The colorbar function displays the current colormap in the current figure and
resizes the current axes to accommodate the colorbar.

colorbar updates the most recently created colorbar or, when the current axes
does not have a colorbar, colorbar adds a new vertical colorbar.

colorbar('vert') adds a vertical colorbar to the current axes.

colorbar('horiz') adds a horizontal colorbar to the current axes.

colorbar(h) uses the axes h to create the colorbar. The colorbar is horizontal
if the width of the axes is greater than its height, as determined by the axes
Position property.

h = colorbar(...) returns a handle to the colorbar, which is an axes graphics
object.

colorbar(...,'peer',axes_handle) creates a colorbar associated with the
axes axes_handle instead of the current axes.

Remarks colorbar works with two-dimensional and three-dimensional plots.

Examples Display a colorbar beside the axes.

surf(peaks(30))
colormap cool

colorbar

2-323

colorbar

See Also colormap

“Color Operations” for related functions

0
5

10
15

20
25

30

0

5

10

15

20

25

30
−8

−6

−4

−2

0

2

4

6

8

10

−6

−4

−2

0

2

4

6

8

colordef

2-324

2colordefPurpose Sets default property values to display different color schemes

Syntax colordef white
colordef black
colordef none
colordef(fig,color_option)
h = colordef('new',color_option)

Description colordef enables you to select either a white or black background for graphics
display. It sets axis lines and labels to show up against the background color.

colordef white sets the axis background color to white, the axis lines and
labels to black, and the figure background color to light gray.

colordef black sets the axis background color to black, the axis lines and
labels to white, and the figure background color to dark gray.

colordef none sets the figure coloring to that used by MATLAB Version 4
(essentially a black background).

colordef(fig,color_option) sets the color scheme of the figure identified by
the handle fig to the color option 'white', 'black', or 'none'.

h = colordef('new',color_option) returns the handle to a new figure
created with the specified color options (i.e., 'white', 'black', or 'none').

Remarks colordef affects only subsequently drawn figures, not those currently on the
display. This is because colordef works by setting default property values (on
the root or figure level). You can list the currently set default values on the root
level with the statement:

get(0,'defaults')

You can remove all default values using the reset command:

reset(0)

See the get and reset references pages for more information.

See Also whitebg

colordef

2-325

“Color Operations” for related functions

colormap

2-326

2colormapPurpose Set and get the current colormap

Syntax colormap(map)
colormap('default')
cmap = colormap

Description A colormap is an m-by-3 matrix of real numbers between 0.0 and 1.0. Each row
is an RGB vector that defines one color. The kth row of the colormap defines the
k-th color, where map(k,:) = [r(k) g(k) b(k)]) specifies the intensity of red,
green, and blue.

colormap(map) sets the colormap to the matrix map. If any values in map are
outside the interval [0 1], MATLAB returns the error: Colormap must have
values in [0,1].

colormap('default') sets the current colormap to the default colormap.

cmap = colormap; retrieves the current colormap. The values returned are in
the interval [0 1].

Specifying Colormaps
M-files in the color directory generate a number of colormaps. Each M-file
accepts the colormap size as an argument. For example,

colormap(hsv(128))

creates an hsv colormap with 128 colors. If you do not specify a size, MATLAB
creates a colormap the same size as the current colormap.

Supported Colormaps
MATLAB supports a number of colormaps.

• autumn varies smoothly from red, through orange, to yellow.

• bone is a grayscale colormap with a higher value for the blue component.
This colormap is useful for adding an “electronic” look to grayscale images.

• colorcube contains as many regularly spaced colors in RGB colorspace as
possible, while attempting to provide more steps of gray, pure red, pure
green, and pure blue.

colormap

2-327

• cool consists of colors that are shades of cyan and magenta. It varies
smoothly from cyan to magenta.

• copper varies smoothly from black to bright copper.

• flag consists of the colors red, white, blue, and black. This colormap
completely changes color with each index increment.

• gray returns a linear grayscale colormap.

• hot varies smoothly from black, through shades of red, orange, and yellow,
to white.

• hsv varies the hue component of the hue-saturation-value color model. The
colors begin with red, pass through yellow, green, cyan, blue, magenta, and
return to red. The colormap is particularly appropriate for displaying
periodic functions. hsv(m) is the same as hsv2rgb([h ones(m,2)]) where h
is the linear ramp, h = (0:m–1)'/m.

• jet ranges from blue to red, and passes through the colors cyan, yellow, and
orange. It is a variation of the hsv colormap. The jet colormap is associated
with an astrophysical fluid jet simulation from the National Center for
Supercomputer Applications. See the “Examples” section.

• lines produces a colormap of colors specified by the axes ColorOrder
property and a shade of gray.

• pink contains pastel shades of pink. The pink colormap provides sepia tone
colorization of grayscale photographs.

• prism repeats the six colors red, orange, yellow, green, blue, and violet.

• spring consists of colors that are shades of magenta and yellow.

• summer consists of colors that are shades of green and yellow.

• white is an all white monochrome colormap.

• winter consists of colors that are shades of blue and green.

Examples The images and colormaps demo, imagedemo, provides an introduction to
colormaps. Select Color Spiral from the menu. This uses the pcolor function
to display a 16-by-16 matrix whose elements vary from 0 to 255 in a rectilinear
spiral. The hsv colormap starts with red in the center, then passes through
yellow, green, cyan, blue, and magenta before returning to red at the outside
end of the spiral. Selecting Colormap Menu gives access to a number of other
colormaps.

colormap

2-328

The rgbplot function plots colormap values. Try rgbplot(hsv),
rgbplot(gray), and rgbplot(hot).

The following commands display the flujet data using the jet colormap.

load flujet
image(X)
colormap(jet)

The demos directory contains a CAT scan image of a human spine. To view the
image, type the following commands:

load spine
image(X)

colormap

2-329

colormap bone

Algorithm Each figure has its own Colormap property. colormap is an M-file that sets and
gets this property.

See Also brighten, caxis, colormapeditor, colorbar, contrast, hsv2rgb, pcolor,
rgb2hsv, rgbplot

The Colormap property of figure graphics objects.

“Color Operations” for related functions

Coloring Mesh and Surface Plots for more information about colormaps and
other coloring methods.

colormapeditor

2-330

2colormapeditorPurpose Start colormap editor

Syntax colormapeditor

Description colormapeditor displays the current figure’s colormap as a strip of
rectangular cells in the colormap editor. Node pointers are colored cells below
the colormap strip that indicate points in the colormap where the rate of the
variation of R, G, and B values change. You can also work in the HSV
colorspace by setting the Interpolating Colorspace selector to HSV.

You can also start the colormap editor by selecting Colormap from the Edit
menu.

Node Pointer Operations
You can select and move node pointers to change a range of colors in the
colormap. The color of a node pointer remains constant as you move it, but the
colormap changes by linearly interpolating the RGB values between nodes.

Change the color at a node by double-clicking the node pointer. MATLAB
displays a color picker from which you can select a new color. After you select
a new color at a node, MATLAB reinterpolates the colors in between nodes.

Operation How to Perform

Add a node Click below the corresponding cell in the colormap
strip

Select a node Left-click on the node

Select multiple
nodes

Adjacent: left-click on first node, Shift+click on the
last node
Nonadjacent: left-click on first node, Ctrl+click on
subsequent nodes

Move a node Select and drag with the mouse or select and use
the left and right arrow keys.

colormapeditor

2-331

Current Color Info
When you put the mouse over a color cell or node pointer, the colormap editor
displays the following information about that colormap element:

• The element’s index in the colormap

• The value from the graphics object color data that is mapped to the node’s
color (i.e., data from the CData property of any image, patch, or surface
objects in the figure)

• The color’s RGB and HSV color value

Move multiple
nodes

Select multiple nodes and use the left and right
arrow keys to move nodes as a group. Movement
stops when one of the selected nodes hits an
unselected node or an end node.

Delete a node Select the node and then press the Delete key, or
select Delete from the Edit menu, or type Ctrl+x.

Delete multiple
nodes

Select the nodes and then press the Delete key, or
select Delete from the Edit menu, or type Ctrl+x.

Display color picker
for a node

Double click on the node pointer.

Operation How to Perform

colormapeditor

2-332

Interpolating Colorspace
The colorspace determines what values are used to calculate the colors of cells
between nodes. For example, in the RGB colorspace, internode colors are
calculated by linearly interpolating the red, green, and blue intensity values
from one node to the next. Switching to the HSV colorspace causes the
colormap editor to recalculate the colors between nodes using the hue,
saturation, and value components of the color definition.

Note that when you switch from one colorspace to another, the color editor
preserves the number, color, and location of the node pointers, which can cause
the colormap to change.

Interpolating in HSV: Since hue is conceptually mapped about a color circle,
the interpolation between hue values can be ambiguous. To minimize this
ambiguity, the interpolation uses the shortest distance around the circle. For
example, interpolating between two nodes, one with at hue of 2 (slightly orange
red) and another with a hue of 356 (slightly magenta red), does not result in
hues 3,4,5...353,354,355 (orange/red-yellow-green-cyan-blue-magenta/red).

Colormap index for
color cell

Object’s CData for
color cell

RGB and HSV
values of selected
colormap element

colormapeditor

2-333

Taking the shortest distance around the circle gives 357,358,1,2
(orange/red-red-magenta/red).

Color Data Min and Max
The Color Data Min and Color Data Max text fields enable you to specify
values for the axes CLim property. These values change the mapping of object
color data (the CData property of images, patches, and surfaces) to the
colormap. See Axes Color Limits — The Clim Property for discussion and
examples of how to use this property.

Examples This example modifies a default MATLAB colormap so that ranges of data
values are displayed in specific ranges of color. The graph is a slice plane
illustrating a cross section of fluid flow through a jet nozzle. See the slice
reference page for more information on this type of graph.

Example Objectives
The objectives are as follows:

• Regions of flow from left to right (positive data) are mapped to colors from
yellow through orange to dark red. Yellow is slowest and dark red is the
fastest moving fluid.

• Regions that have a speed close to zero are colored green.

• Regions where the fluid is actually moving right to left (negative data) are
shades of blue (darker blue is faster).

The following picture shows the desired coloring of the slice plane. The colorbar
shows the data to color mapping.

colormapeditor

2-334

Running the Example

Note If you are viewing this documentation in the MATLAB help browser,
you can display the graph used in this example by running this M-file from
the MATLAB editor (select Run from the Debug menu).

Click Run Demo if you want to run a demonstration of the example.

Initially, the default colormap (jet) colored the slice plane, as illustrated in the
following picture. Note that this example uses a colormap that is 48 elements
to display wider bands of color (the default is 64 elements).

colormapeditor

2-335

1 Start the colormap editor using the colormapeditor command. The color
map editor displays the current figure’ s colormap, as shown in the following
picture.

colormapeditor

2-336

2 Since we want the regions of left-to-right flow (positive speed) to range from
yellow to dark red, we can delete the cyan node pointer. To do this, first
select it by clicking with the left mouse button and press Delete. The
colormap now looks like this.

colormapeditor

2-337

The Immediate Apply box is checked so the graph displays the results of
the changes made to the colormap.

colormapeditor

2-338

3 We want the fluid speed values around zero to stand out, so we need to find
the color cell where the negative-to-positive transition occurs. Dragging the
cursor over the color strip enables you to read the data values in the
Current Color Info panel.

In this case, cell 10 is the first positive value, so we click below that cell and
create a node pointer. Double-clicking on the node pointer displays the color
picker. Set the color of this node to green.

colormapeditor

2-339

The graph continues to update to the modified colormap.

colormapeditor

2-340

4 In the current state, the colormap colors are interpolated from the green
node to the yellowish node about 20 cells away. We actually want only the
single cell that is centered around zero to be colored green. To limit the color
green to one cell, move the blue and yellow node pointers next to the green
pointer.

5 Before making further adjustments to the colormap, we need to move the
green cell so that it is centered around zero. Use the colorbar to locate the
green cell.

colormapeditor

2-341

To recenter the green cell around zero, select the blue, green, and yellow
node pointers (left-click on blue, Shift+click on yellow) and move them as a
group using the left arrow key. Watch the colorbar in the figure window to
see when the green color is centered around zero.

Note that green cell is not
centered around zero.

colormapeditor

2-342

The slice plane now has the desired range of colors for negative, zero, and
positive data.

colormapeditor

2-343

6 Increase the orange-red coloring in the slice by moving the red node pointer
towards the yellow node.

Green cell is now centered
around zero.

colormapeditor

2-344

7 Darken the end points to bring out more detail in the extremes of the data.
Double-click on the end nodes to display the color picker. Set the red end
point to the RGB value [50 0 0] and set the blue end point to the RGB value
[0 0 50].

The slice plane coloring now matches the example objectives.

colormapeditor

2-345

See Also colormap

Color Operations for related functions.

ColorSpec

2-346

2ColorSpecPurpose Color specification

Description ColorSpec is not a command; it refers to the three ways in which you specify
color in MATLAB:

• RGB triple

• Short name

• Long name

The short names and long names are MATLAB strings that specify one of eight
predefined colors. The RGB triple is a three-element row vector whose
elements specify the intensities of the red, green, and blue components of the
color; the intensities must be in the range [0 1]. The following table lists the
predefined colors and their RGB equivalents.

Remarks The eight predefined colors and any colors you specify as RGB values are not
part of a figure’s colormap, nor are they affected by changes to the figure’s
colormap. They are referred to as fixed colors, as opposed to colormap colors.

Examples To change the background color of a figure to green, specify the color with a
short name, a long name, or an RGB triple. These statements generate
equivalent results:

whitebg('g')

RGB Value Short Name Long Name

[1 1 0] y yellow

[1 0 1] m magenta

[0 1 1] c cyan

[1 0 0] r red

[0 1 0] g green

[0 0 1] b blue

[1 1 1] w white

[0 0 0] k black

ColorSpec

2-347

whitebg('green')
whitebg([0 1 0]);

You can use ColorSpec anywhere you need to define a color. For example, this
statement changes the figure background color to pink:

set(gcf,'Color',[1,0.4,0.6])

See Also bar, bar3, colordef, colormap, fill, fill3, whitebg

“Color Operations” for related functions

colperm

2-348

2colpermPurpose Sparse column permutation based on nonzero count

Syntax j = colperm(S)

Description j = colperm(S) generates a permutation vector j such that the columns of
S(:,j) are ordered according to increasing count of nonzero entries. This is
sometimes useful as a preordering for LU factorization; in this case use
lu(S(:,j)).

If S is symmetric, then j = colperm(S) generates a permutation j so that both
the rows and columns of S(j,j) are ordered according to increasing count of
nonzero entries. If S is positive definite, this is sometimes useful as a
preordering for Cholesky factorization; in this case use chol(S(j,j)).

Algorithm The algorithm involves a sort on the counts of nonzeros in each column.

Examples The n-by-n arrowhead matrix

A = [ones(1,n); ones(n-1,1) speye(n-1,n-1)]

has a full first row and column. Its LU factorization, lu(A), is almost
completely full. The statement

j = colperm(A)

returns j = [2:n 1]. So A(j,j) sends the full row and column to the bottom
and the rear, and lu(A(j,j)) has the same nonzero structure as A itself.

On the other hand, the Bucky ball example,

B = bucky

has exactly three nonzero elements in each row and column, so
j = colperm(B) is the identity permutation and is no help at all for reducing
fill-in with subsequent factorizations.

See Also chol, colamd, colmmd, lu, spparms, symamd, symmmd, symrcm

comet

2-349

2cometPurpose Two-dimensional comet plot

Syntax comet(y)
comet(x,y)
comet(x,y,p)

Description A comet plot is an animated graph in which a circle (the comet head) traces the
data points on the screen. The comet body is a trailing segment that follows the
head. The tail is a solid line that traces the entire function.

comet(y) displays a comet plot of the vector y.

comet(x,y) displays a comet plot of vector y versus vector x.

comet(x,y,p) specifies a comet body of length p*length(y). p defaults to 0.1.

Remarks Note that the trace left by comet is created by using an EraseMode of none,
which means you cannot print the plot (you get only the comet head) and it
disappears if you cause a redraw (e.g., by resizing the window).

Examples Create a simple comet plot:

t = 0:.01:2*pi;
x = cos(2∗ t).*(cos(t).^2);
y = sin(2∗ t).*(sin(t).^2);
comet(x,y);

See Also comet3

“Direction and Velocity Plots” for related functions

comet3

2-350

2comet3Purpose Three-dimensional comet plot

Syntax comet3(z)
comet3(x,y,z)
comet3(x,y,z,p)

Description A comet plot is an animated graph in which a circle (the comet head) traces the
data points on the screen. The comet body is a trailing segment that follows the
head. The tail is a solid line that traces the entire function.

comet3(z) displays a three-dimensional comet plot of the vector z.

comet3(x,y,z) displays a comet plot of the curve through the points
[x(i),y(i),z(i)].

comet3(x,y,z,p) specifies a comet body of length p∗ length(y).

Remarks Note that the trace left by comet3 is created by using an EraseMode of none,
which means you cannot print the plot (you get only the comet head) and it
disappears if you cause a redraw (e.g., by resizing the window).

Examples Create a three-dimensional comet plot.

t = -10*pi:pi/250:10*pi;
comet3((cos(2*t).^2).*sin(t),(sin(2*t).^2).*cos(t),t);

See Also comet

“Direction and Velocity Plots” for related functions

compan

2-351

2companPurpose Companion matrix

Syntax A = compan(u)

Description A = compan(u) returns the corresponding companion matrix whose first row is
-u(2:n)/u(1), where u is a vector of polynomial coefficients. The eigenvalues
of compan(u) are the roots of the polynomial.

Examples The polynomial has a companion matrix
given by

u = [1 0 -7 6]
A = compan(u)
A =

0 7 -6
1 0 0
0 1 0

The eigenvalues are the polynomial roots:

eig(compan(u))

ans =
-3.0000
2.0000
1.0000

This is also roots(u).

See Also eig, poly, polyval, roots

x 1–() x 2–() x 3+() x3 7x– 6+=

compass

2-352

2compassPurpose Plot arrows emanating from the origin

Syntax compass(X,Y)
compass(Z)
compass(...,LineSpec)
h = compass(...)

Description A compass plot displays direction or velocity vectors as arrows emanating from
the origin. X, Y, and Z are in Cartesian coordinates and plotted on a circular
grid.

compass(X,Y) displays a compass plot having n arrows, where n is the number
of elements in X or Y. The location of the base of each arrow is the origin. The
location of the tip of each arrow is a point relative to the base and determined
by [X(i),Y(i)].

compass(Z) displays a compass plot having n arrows, where n is the number of
elements in Z. The location of the base of each arrow is the origin. The location
of the tip of each arrow is relative to the base as determined by the real and
imaginary components of Z. This syntax is equivalent to
compass(real(Z),imag(Z)).

compass(...,LineSpec) draws a compass plot using the line type, marker
symbol, and color specified by LineSpec.

h = compass(...) returns handles to line objects.

Examples Draw a compass plot of the eigenvalues of a matrix.

Z = eig(randn(20,20));
compass(Z)

compass

2-353

See Also feather, LineSpec, rose

“Direction and Velocity Plots” for related functions

Compass Plots for another example

 1.0538

 2.1076

 3.1613

 4.2151

 5.2689

30

210

60

240

90

270

120

300

150

330

180 0

complex

2-354

2complexPurpose Construct complex data from real and imaginary components

Syntax c = complex(a,b)
c = complex(a)

Description c = complex(a,b) creates a complex output, c, from the two real inputs.

c = a + bi

The output is the same size as the inputs, which must be scalars or equally
sized vectors, matrices, or multi-dimensional arrays of the same data type.

Note If b is all zeros, c is complex and the value of all its imaginary
components is 0. In contrast, the result of the addition a+0i returns a strictly
real result.

c = complex(a) for real a returns the complex result c with real part a and 0
as the value of all imaginary components. Even though the value of all
imaginary components is 0, c is complex and isreal(c) returns false.

The complex function provides a useful substitute for expressions such as

a + i*b or a + j*b

in cases when the names “i” and “j” may be used for other variables (and do
not equal), when a and b are not double-precision, or when b is all zero.

Example Create complex uint8 vector from two real uint8 vectors.

a = uint8([1;2;3;4])
b = uint8([2;2;7;7])

c = complex(a,b)

c =
 1.0000 + 2.0000i
 2.0000 + 2.0000i
 3.0000 + 7.0000i
 4.0000 + 7.0000i

1–

complex

2-355

See Also abs, angle, conj, i, imag, isreal, j, real

computer

2-356

2computerPurpose Identify information about computer on which MATLAB is running

Syntax str = computer
[str,maxsize] = computer
[str,maxsize,endian] = computer

Description str = computer returns the string str with the computer type on which
MATLAB is running.

[str,maxsize] = computer returns the integer maxsize, which contains the
maximum number of elements allowed in an array with this version of
MATLAB.

[str,maxsize,endian] = computer also returns either 'L' for little endian
byte ordering or 'B' for big endian byte ordering.

The list of supported computers changes as new computers are added and
others become obsolete. A typical list follows.

Remarks SGI64 users prior to R12 must migrate to SGI with R12.
LNX86 users prior to R12 must migrate to GLNX86 with R12.

See Also ispc, isunix

str Computer

ALPHA Compaq Alpha (OSF1)

HP700 HP 9000/700 (HP-UX 10.20)

HPUX HP PA-RISC (HP-UX 11.00)

IBM_RS IBM RS6000 workstation (AIX)

GLNX86 Linux on PC

PCWIN Microsoft Windows

SGI Silicon Graphics (IRIX/IRIX64)

SOL2 Sun Solaris 2 SPARC workstation

cond

2-357

2condPurpose Condition number with respect to inversion

Syntax c = cond(X)
c = cond(X,p)

Description The condition number of a matrix measures the sensitivity of the solution of a
system of linear equations to errors in the data. It gives an indication of the
accuracy of the results from matrix inversion and the linear equation solution.
Values of cond(X) and cond(X,p) near 1 indicate a well-conditioned matrix.

c = cond(X) returns the 2-norm condition number, the ratio of the largest
singular value of X to the smallest.

c = cond(X,p) returns the matrix condition number in p-norm:

norm(X,p) * norm(inv(X),p

Algorithm The algorithm for cond (when p = 2) uses the singular value decomposition,
svd.

See Also condeig, condest, norm, normest, rank, rcond, svd

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

If p is... Then cond(X,p) returns the...

1 1-norm condition number

2 2-norm condition number

'fro' Frobenius norm condition number

inf Infinity norm condition number

condeig

2-358

2condeigPurpose Condition number with respect to eigenvalues

Syntax c = condeig(A)
[V,D,s] = condeig(A)

Description c = condeig(A) returns a vector of condition numbers for the eigenvalues of A.
These condition numbers are the reciprocals of the cosines of the angles
between the left and right eigenvectors.

[V,D,s] = condeig(A) is equivalent to

[V,D] = eig(A);
s = condeig(A);

Large condition numbers imply that A is near a matrix with multiple
eigenvalues.

See Also balance, cond, eig

condest

2-359

2condestPurpose 1-norm condition number estimate

Syntax c = condest(A)
[c,v] = condest(A)

Description c = condest(A) computes a lower bound C for the 1-norm condition number of
a square matrix A.

c = condest(A,t) changes t, a positive integer parameter equal to the
number of columns in an underlying iteration matrix. Increasing the number
of columns usually gives a better condition estimate but increases the cost. The
default is t = 2, which almost always gives an estimate correct to within a
factor 2.

[c,v] = condest(A) also computes a vector v which is an approximate null
vector if c is large. v satisfies norm(A*v,1) = norm(A,1)*norm(v,1)/c.

Note condest invokes rand. If repeatable results are required then invoke
rand('state',j), for some j, before calling this function.

This function is particularly useful for sparse matrices.

condest uses block 1-norm power method of Higham and Tisseur [1].

See Also cond, norm, normest

Reference [1] Higham, N. J. and F. Tisseur, “A Block Algorithm for Matrix 1-Norm
Estimation, with an Application to 1-Norm Pseudospectra,” SIAM Journal
Matrix Anal. Appl., Vol. 21, No. 4, 2000, pp.1185-1201.

coneplot

2-360

2coneplotPurpose Plot velocity vectors as cones in a 3-D vector field

Syntax coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz)
coneplot(U,V,W,Cx,Cy,Cz)
coneplot(...,s)
coneplot(...,color)
coneplot(...,'quiver')
coneplot(...,'method')
coneplot(X,Y,Z,U,V,W,'nointerp')
h = coneplot(...)

Description coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz) plots velocity vectors as cones pointing in
the direction of the velocity vector and having a length proportional to the
magnitude of the velocity vector.

• X, Y, Z define the coordinates for the vector field.

• U, V, W define the vector field. These arrays must be the same size, monotonic,
and 3-D plaid (such as the data produced by meshgrid).

• Cx, Cy, Cz define the location of the cones in vector field. The section Starting
Points for Stream Plots in Visualization Techniques provides more
information on defining starting points.

coneplot(U,V,W,Cx,Cy,Cz) (omitting the X, Y, and Z arguments) assumes
[X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p]= size(U).

coneplot(...,s) MATLAB automatically scales the cones to fit the graph and
then stretches them by the scale factor s. If you do not specify a value for s,
MATLAB uses a value of 1. Use s = 0 to plot the cones without automatic
scaling.

coneplot(...,color) interpolates the array color onto the vector field and
then colors the cones according to the interpolated values. The size of the color
array must be the same size as the U, V, W arrays. This option works only with
cones (i.e., not with the quiver option).

coneplot(...,'quiver') draws arrows instead of cones (see quiver3 for an
illustration of a quiver plot).

coneplot

2-361

coneplot(...,'method') specifies the interpolation method to use. method
can be: linear, cubic, nearest. linear is the default (see interp3 for a
discussion of these interpolation methods)

coneplot(X,Y,Z,U,V,W,'nointerp') does not interpolate the positions of the
cones into the volume. The cones are drawn at positions defined by X, Y, Z and
are oriented according to U, V, W. Arrays X, Y, Z, U, V, W must all be the same size.

h = coneplot(...) returns the handle to the patch object used to draw the
cones. You can use the set command to change the properties of the cones.

Remarks coneplot automatically scales the cones to fit the graph, while keeping them
in proportion to the respective velocity vectors.

It is usually best to set the data aspect ratio of the axes before calling coneplot.
You can set the ratio using the daspect command,

daspect([1,1,1])

Examples This example plots the velocity vector cones for vector volume data
representing the motion of air through a rectangular region of space. The final
graph employs a number of enhancements to visualize the data more
effectively. These include:

• Cone plots indicate the magnitude and direction of the wind velocity.

• Slice planes placed at the limits of the data range provide a visual context for
the cone plots within the volume.

• Directional lighting provides visual queues as to the orientation of the cones.

• View adjustments compose the scene to best reveal the information content
of the data by selecting the view point, projection type, and magnification.

1. Load and Inspect Data
The winds data set contains six 3-D arrays: u, v, and w specify the vector
components at each of the coordinate specified in x, y, and z. The coordinates
define a lattice grid structure where the data is sampled within the volume.

coneplot

2-362

It is useful to establish the range of the data to place the slice planes and to
specify where you want the cone plots (min, max).

load wind
xmin = min(x(:));
xmax = max(x(:));
ymin = min(y(:));
ymax = max(y(:));
zmin = min(z(:));

2. Create the Cone Plot

• Decide where in data space you want to plot cones. This example selects the
full range of x and y in eight steps and the range 3 to 15 in four steps in z
(linspace, meshgrid).

• Use daspect to set the data aspect ratio of the axes before calling coneplot
so MATLAB can determine the proper size of the cones.

• Draw the cones, setting the scale factor to 5 to make the cones larger than
the default size.

• Set the coloring of each cone (FaceColor, EdgeColor).

daspect([2,2,1])
xrange = linspace(xmin,xmax,8);
yrange = linspace(ymin,ymax,8);
zrange = 3:4:15;
[cx cy cz] = meshgrid(xrange,yrange,zrange);
hcones = coneplot(x,y,z,u,v,w,cx,cy,cz,5);
set(hcones,'FaceColor','red','EdgeColor','none')

coneplot

2-363

3. Add the Slice Planes

• Calculate the magnitude of the vector field (which represents wind speed) to
generate scalar data for the slice command.

• Create slice planes along the x-axis at xmin and xmax, along the y-axis at
ymax, and along the z-axis at zmin.

• Specify interpolated face color so the slice coloring indicates wind speed and
do not draw edges (hold, slice, FaceColor, EdgeColor).

hold on
wind_speed = sqrt(u.^2 + v.^2 + w.^2);
hsurfaces = slice(x,y,z,wind_speed,[xmin,xmax],ymax,zmin);
set(hsurfaces,'FaceColor','interp','EdgeColor','none')
hold off

4. Define the View

• Use the axis command to set the axis limits equal to the range of the data.

• Orient the view to azimuth = 30 and elevation = 40 (rotate3d is a useful
command for selecting the best view).

• Select perspective projection to provide a more realistic looking volume
(camproj).

• Zoom in on the scene a little to make the plot as large as possible (camzoom).

axis tight; view(30,40); axis off
camproj perspective; camzoom(1.5)

5. Add Lighting to the Scene
The light source affects both the slice planes (surfaces) and the cone plots
(patches). However, you can set the lighting characteristics of each
independently.

• Add a light source to the right of the camera and use Phong lighting give the
cones and slice planes a smooth, three-dimensional appearance (camlight,
lighting).

• Increase the value of the AmbientStrength property for each slice plane to
improve the visibility of the dark blue colors. (Note that you can also specify
a different colormap to change to coloring of the slice planes.)

coneplot

2-364

• Increase the value of the DiffuseStrength property of the cones to brighten
particularly those cones not showing specular reflections.

camlight right; lighting phong
set(hsurfaces,'AmbientStrength',.6)
set(hcones,'DiffuseStrength',.8)

See Also isosurface, patch, reducevolume, smooth3, streamline, stream2, stream3,
subvolume

[2] “Volume Visualization” for related functions

conj

2-365

2conjPurpose Complex conjugate

Syntax ZC = conj(Z)

Description ZC = conj(Z) returns the complex conjugate of the elements of Z.

Algorithm If Z is a complex array:

conj(Z) = real(Z) - i*imag(Z)

See Also i, j, imag, real

continue

2-366

2continuePurpose Pass control to the next iteration of for or while loop

Syntax continue

Description continue passes control to the next iteration of the for or while loop in which
it appears, skipping any remaining statements in the body of the loop.

In nested loops, continue passes control to the next iteration of the for or
while loop enclosing it.

Examples The example below shows a continue loop that counts the lines of code in the
file, magic.m, skipping all blank lines and comments. A continue statement is
used to advance to the next line in magic.m without incrementing the count
whenever a blank line or comment line is encountered.

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)
 line = fgetl(fid);
 if isempty(line) | strncmp(line,'%',1)
 continue
 end
 count = count + 1;
end
disp(sprintf('%d lines',count));

See Also for, while, end, break, return

contour

2-367

2contourPurpose Two-dimensional contour plot

Syntax contour(Z)
contour(Z,n)
contour(Z,v)
contour(X,Y,Z)
contour(X,Y,Z,n)
contour(X,Y,Z,v)
contour(...,LineSpec)
[C,h] = contour(...)

Description A contour plot displays isolines of matrix Z. Label the contour lines using
clabel.

contour(Z) draws a contour plot of matrix Z, where Z is interpreted as heights
with respect to the x-y plane. Z must be at least a 2-by-2 matrix. The number
of contour levels and the values of the contour levels are chosen automatically
based on the minimum and maximum values of Z. The ranges of the x- and
y-axis are [1:n] and [1:m], where [m,n] = size(Z).

contour(Z,n) draws a contour plot of matrix Z with n contour levels.

contour(Z,v) draws a contour plot of matrix Z with contour lines at the data
values specified in vector v. The number of contour levels is equal to length(v).
To draw a single contour of level i, use contour(Z,[i i]).

contour(X,Y,Z), contour(X,Y,Z,n), and contour(X,Y,Z,v) draw contour
plots of Z. X and Y specify the x- and y-axis limits. When X and Y are matrices,
they must be the same size as Z, in which case they specify a surface as surf
does.

contour(...,LineSpec) draws the contours using the line type and color
specified by LineSpec. contour ignores marker symbols.

[C,h] = contour(...) returns the contour matrix C (see contourc) and a
vector of handles to graphics objects. clabel uses the contour matrix C to create
the labels. contour creates patch graphics objects unless you specify LineSpec,
in which case contour creates line graphics objects.

contour

2-368

Remarks If you do not specify LineSpec, colormap and caxis control the color.

If X or Y is irregularly spaced, contour calculates contours using a regularly
spaced contour grid, then transforms the data to X or Y.

Examples To view a contour plot of the function

over the range –2 ≤ x ≤ 2, –2 ≤ y ≤ 3, create matrix Z using the statements

[X,Y] = meshgrid(–2:.2:2,–2:.2:3);
Z = X.∗ exp(–X.^2–Y.^2);

Then, generate a contour plot of Z.

[C,h] = contour(X,Y,Z);
clabel(C,h)
colormap cool

View the same function over the same range with 20 evenly spaced contour
lines and colored with the default colormap jet.

z xe x2 y2––()=

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

−0.3

−0.2

−0.2

−0.1

−0.1

−0.1

 0
 0

 0.1

 0.1

 0.1

 0.2

 0
.2

 0.3

 0.4

contour

2-369

contour(X,Y,Z,20)

Use interp2 to create smoother contours. Also set the contour label text
BackgroundColor to a light yellow and the EdgeColor to light gray.

Z = magic(4);
[C,h] = contour(interp2(Z,4));
h = clabel(C,h);
set(h,'BackgroundColor',[1 1 .6],...
 'Edgecolor',[.7 .7 .7])

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

contour

2-370

See Also clabel, contour3, contourc, contourf, interp2, quiver

“Contour Plots” category for related functions

Contour Plots section for more examples

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

2

4 4

4

6

6

6

6

6

8

8

8 8

8

8

8

8

8 8

8
8

10

10

10

10

10
10

10
10

10

12

12
12

12

14

14

14

contour3

2-371

2contour3Purpose Three-dimensional contour plot

Syntax contour3(Z)
contour3(Z,n)
contour3(Z,v)
contour3(X,Y,Z)
contour3(X,Y,Z,n)
contour3(X,Y,Z,v)
contour3(...,LineSpec)
[C,h] = contour3(...)

Description contour3 creates a three-dimensional contour plot of a surface defined on a
rectangular grid.

contour3(Z) draws a contour plot of matrix Z in a three-dimensional view. Z is
interpreted as heights with respect to the x-y plane. Z must be at least a 2-by-2
matrix. The number of contour levels and the values of contour levels are
chosen automatically. The ranges of the x- and y-axis are [1:n] and [1:m],
where [m,n] = size(Z).

contour3(Z,n) draws a contour plot of matrix Z with n contour levels in a
three-dimensional view.

contour3(Z,v) draws a contour plot of matrix Z with contour lines at the
values specified in vector v. The number of contour levels is equal to length(v).
To draw a single contour of level i, use contour(Z,[i i]).

contour3(X,Y,Z), contour3(X,Y,Z,n), and contour3(X,Y,Z,v) use X and Y
to define the x- and y-axis limits. If X is a matrix, X(1,:) defines the x-axis. If
Y is a matrix, Y(:,1) defines the y-axis. When X and Y are matrices, they must
be the same size as Z, in which case they specify a surface as surf does.

contour3(...,LineSpec) draws the contours using the line type and color
specified by LineSpec.

[C,h] = contour3(...) returns the contour matrix C as described in the
function contourc and a column vector containing handles to graphics objects.
contour3 creates patch graphics objects unless you specify LineSpec, in which
case contour3 creates line graphics objects.

contour3

2-372

Remarks If you do not specify LineSpec, colormap and caxis control the color.

If X or Y is irregularly spaced, contour3 calculates contours using a regularly
spaced contour grid, then transforms the data to X or Y.

Examples Plot the three-dimensional contour of a function and superimpose a surface
plot to enhance visualization of the function.

[X,Y] = meshgrid([-2:.25:2]);
Z = X.*exp(-X.^2-Y.^2);
contour3(X,Y,Z,30)
surface(X,Y,Z,’EdgeColor’,[.8 .8 .8],’FaceColor’,’none’)
grid off
view(-15,25)
colormap cool

See Also contour, contourc, meshc, meshgrid, surfc

“Contour Plots” category for related functions

Contour Plots section for more examples

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1

0

1

2

−0.5

0

0.5

contourc

2-373

2contourcPurpose Low-level contour plot computation

Syntax C = contourc(Z)
C = contourc(Z,n)
C = contourc(Z,v)
C = contourc(x,y,Z)
C = contourc(x,y,Z,n)
C = contourc(x,y,Z,v)

Description contourc calculates the contour matrix C used by contour, contour3, and
contourf. The values in Z determine the heights of the contour lines with
respect to a plane. The contour calculations use a regularly spaced grid
determined by the dimensions of Z.

C = contourc(Z) computes the contour matrix from data in matrix Z, where Z
must be at least a 2-by-2 matrix. The contours are isolines in the units of Z. The
number of contour lines and the corresponding values of the contour lines are
chosen automatically.

C = contourc(Z,n) computes contours of matrix Z with n contour levels.

C = contourc(Z,v) computes contours of matrix Z with contour lines at the
values specified in vector v. The length of v determines the number of contour
levels. To compute a single contour of level i, use contourc(Z,[i i]).

C = contourc(x,y,Z), C = contourc(x,y,Z,n), and C = contourc(x,y,Z,v)
compute contours of Z using vectors x and y to determine the x- and y-axis
limits. x and y must be monotonically increasing.

Remarks C is a two-row matrix specifying all the contour lines. Each contour line defined
in matrix C begins with a column that contains the value of the contour
(specified by v and used by clabel), and the number of (x,y) vertices in the
contour line. The remaining columns contain the data for the (x,y)pairs.

C = [value1 xdata(1) xdata(2)...value2 xdata(1) xdata(2)...;
dim1 ydata(1) ydata(2)...dim2 ydata(1) ydata(2)...]

Specifying irregularly spaced x and y vectors is not the same as contouring
irregularly spaced data. If x or y is irregularly spaced, contourc calculates

contourc

2-374

contours using a regularly spaced contour grid, then transforms the data to x
or y.

See Also clabel, contour, contour3, contourf

“Contour Plots” for related functions

The Contouring Algorithm for more information

contourf

2-375

2contourfPurpose Filled two-dimensional contour plot

Syntax contourf(Z)
contourf(Z,n)
contourf(Z,v)
contourf(X,Y,Z)
contourf(X,Y,Z,n)
contourf(X,Y,Z,v)
[C,h,CF] = contourf(...)

Description A filled contour plot displays isolines calculated from matrix Z and fills the
areas between the isolines using constant colors. The color of the filled areas
depends on the current figure’s colormap.

contourf(Z) draws a contour plot of matrix Z, where Z is interpreted as
heights with respect to a plane. Z must be at least a 2-by-2 matrix. The number
of contour lines and the values of the contour lines are chosen automatically.

contourf(Z,n) draws a contour plot of matrix Z with n contour levels.

contourf(Z,v) draws a contour plot of matrix Z with contour levels at the
values specified in vector v.

contourf(X,Y,Z), contourf(X,Y,Z,n), and contourf(X,Y,Z,v) produce
contour plots of Z using X and Y to determine the x- and y-axis limits. When X
and Y are matrices, they must be the same size as Z, in which case they specify
a surface as surf does.

[C,h,CF] = contourf(...) returns the contour matrix C as calculated by the
function contourc and used by clabel, a vector of handles h to patch graphics
objects, and a contour matrix CF for the filled areas.

Remarks If X or Y is irregularly spaced, contourf calculates contours using a regularly
spaced contour grid, then transforms the data to X or Y.

Examples Create a filled contour plot of the peaks function.

[C,h] = contourf(peaks(20),10);

contourf

2-376

colormap autumn

See Also clabel, contour, contour3, contourc, quiver

“Contour Plots” for related functions

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

contourslice

2-377

2contourslicePurpose Draw contours in volume slice planes

Syntax contourslice(X,Y,Z,V,Sx,Sy,Sz)
contourslice(X,Y,Z,V,Xi,Yi,Zi)
contourslice(V,Sx,Sy,Sz), contourslice(V,Xi,Yi,Zi)
contourslice(...,n)
contourslice(...,cvals)
contourslice(...,[cv cv])
contourslice(...,'method')
h = contourslice(...)

Description contourslice(X,Y,Z,V,Sx,Sy,Sz) draws contours in the x-, y-, and z-axis
aligned planes at the points in the vectors Sx, Sy, Sz. The arrays X, Y, and Z
define the coordinates for the volume V and must be monotonic and 3-D plaid
(such as the data produced by meshgrid) The color at each contour is
determined by the volume V, which must be an m-by-n-by-p volume array.

contourslice(X,Y,Z,V,Xi,Yi,Zi) draws contours through the volume V
along the surface defined by the arrays Xi,Yi,Zi.

contourslice(V,Sx,Sy,Sz) and contourslice(V,Xi,Yi,Zi) (omitting the X,
Y, and Z arguments) assumes [X,Y,Z] = meshgrid(1:n,1:m,1:p) where
[m,n,p]= size(v).

contourslice(...,n) draws n contour lines per plane, overriding the
automatic value.

contourslice(...,cvals) draws length(cval) contour lines per plane at the
values specified in vector cvals.

contourslice(...,[cv cv]) computes a single contour per plane at the level
cv.

contourslice(...,'method') specifies the interpolation method to use.
method can be: linear, cubic, nearest. nearest is the default except when the
contours are being drawn along the surface defined by Xi, Yi, Zi, in which case
linear is the default (see interp3 for a discussion of these interpolation
methods).

h = contourslice(...) returns a vector of handles to patch objects that are
used to implement the contour lines.

contourslice

2-378

Examples This example uses the flow data set to illustrate the use of contoured slice
planes (type doc flow for more information on this data set). Notice that this
example:

• Specifies a vector of length = 9 for Sx, an empty vector for the Sy, and a
scalar value (0) for Sz. This creates nine contour plots along the x direction
in the y-z plane, and one in the x-y plane at z = 0.

• Uses linspace to define a ten-element linearly spaced vector of values from
-8 to 2 that specifies the number of contour lines to draw at each interval.

• Defines the view and projection type (camva, camproj, campos)

• Sets figure (gcf) and axes (gca) characteristics.

[x y z v] = flow;
h = contourslice(x,y,z,v,[1:9],[],[0],linspace(-8,2,10));
axis([0,10,-3,3,-3,3]); daspect([1,1,1])
camva(24); camproj perspective;
campos([-3,-15,5])
set(gcf,'Color',[.5,.5,.5],'Renderer','zbuffer')
set(gca,'Color','black','XColor','white', ...

'YColor','white','ZColor','white')
box on

contourslice

2-379

See Also isosurface, smooth3, subvolume, reducevolume

“Volume Visualization” for related functions

1
2

3
4

5
6

7
8

9
10

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

contrast

2-380

2contrastPurpose Grayscale colormap for contrast enhancement

Syntax cmap = contrast(X)
cmap = contrast(X,m)

Description The contrast function enhances the contrast of an image. It creates a new gray
colormap, cmap, that has an approximately equal intensity distribution. All
three elements in each row are identical.

cmap = contrast(X) returns a gray colormap that is the same length as the
current colormap.

cmap = contrast(X,m) returns an m-by-3 gray colormap.

Examples Add contrast to the clown image defined by X.

load clown;
cmap = contrast(X);
image(X);
colormap(cmap);

See Also brighten, colormap, image

“Colormaps” for related functions

conv

2-381

2convPurpose Convolution and polynomial multiplication

Syntax w = conv(u,v)

Description w = conv(u,v) convolves vectors u and v. Algebraically, convolution is the
same operation as multiplying the polynomials whose coefficients are the
elements of u and v.

Definition Let m = length(u) and n = length(v). Then w is the vector of length m+n-1
whose kth element is

The sum is over all the values of j which lead to legal subscripts for u(j) and
v(k+1-j), specifically j = max(1,k+1-n): min(k,m). When m = n, this gives

w(1) = u(1)*v(1)
w(2) = u(1)*v(2)+u(2)*v(1)
w(3) = u(1)*v(3)+u(2)*v(2)+u(3)*v(1)
...
w(n) = u(1)*v(n)+u(2)*v(n-1)+ ... +u(n)*v(1)
...
w(2*n-1) = u(n)*v(n)

Algorithm The convolution theorem says, roughly, that convolving two sequences is the
same as multiplying their Fourier transforms. In order to make this precise, it
is necessary to pad the two vectors with zeros and ignore roundoff error. Thus,
if

X = fft([x zeros(1,length(y)-1)])

and

Y = fft([y zeros(1,length(x)-1)])

then conv(x,y) = ifft(X.*Y)

See Also conv2, convn, deconv, filter

convmtx and xcorr in the Signal Processing Toolbox

w k() u j()v k 1 j–+()
j

∑=

conv2

2-382

2conv2Purpose Two-dimensional convolution

Syntax C = conv2(A,B)
C = conv2(hcol,hrow,A)
C = conv2(...,'shape')

Description C = conv2(A,B) computes the two-dimensional convolution of matrices A and
B. If one of these matrices describes a two-dimensional finite impulse response
(FIR) filter, the other matrix is filtered in two dimensions.

The size of C in each dimension is equal to the sum of the corresponding
dimensions of the input matrices, minus one. That is, if the size of A is [ma,na]
and the size of B is [mb,nb], then the size of C is [ma+mb-1,na+nb-1].

C = conv2(hcol,hrow,A) convolves A first with the vector hcol along the rows
and then with the vector hrow along the columns. If hcol is a column vector and
hrow is a row vector, this case is the same as C = conv2(hcol*hrow,A).

C = conv2(...,'shape') returns a subsection of the two-dimensional
convolution, as specified by the shape parameter:

Algorithm conv2 uses a straightforward formal implementation of the two-dimensional
convolution equation in spatial form. If and are functions of two discrete
variables, and , then the formula for the two-dimensional convolution of

 and is

In practice however, conv2 computes the convolution for finite intervals.

full Returns the full two-dimensional convolution (default).

same Returns the central part of the convolution of the same size as A.

valid Returns only those parts of the convolution that are computed
without the zero-padded edges. Using this option, C has size
[ma-mb+1,na-nb+1] when all(size(A) >= size(B)). Otherwise
conv2 returns [].

a b
n1 n2

a b

c n1 n2,() a k1 k2,() b n1 k1– n2 k2–,()
k2 ∞–=

∞
∑

k1 ∞–=

∞
∑=

conv2

2-383

Note that matrix indices in MATLAB always start at 1 rather than 0.
Therefore, matrix elements A(1,1), B(1,1), and C(1,1) correspond to
mathematical quantities a(0,0), b(0,0), and c(0,0).

Examples Example 1. For the 'same' case, conv2 returns the central part of the
convolution. If there are an odd number of rows or columns, the "center" leaves
one more at the beginning than the end.

This example first computes the convolution of A using the default ('full')
shape, then computes the convolution using the 'same' shape. Note that the
array returned using 'same' corresponds to the underlined elements of the
array returned using the default shape.

A = rand(3);
B = rand(4);
C = conv2(A,B) % C is 6-by-6

C =
 0.1838 0.2374 0.9727 1.2644 0.7890 0.3750
 0.6929 1.2019 1.5499 2.1733 1.3325 0.3096
 0.5627 1.5150 2.3576 3.1553 2.5373 1.0602
 0.9986 2.3811 3.4302 3.5128 2.4489 0.8462
 0.3089 1.1419 1.8229 2.1561 1.6364 0.6841
 0.3287 0.9347 1.6464 1.7928 1.2422 0.5423

Cs = conv2(A,B,'same') % Cs is the same size as A: 3-by-3
Cs =
 2.3576 3.1553 2.5373
 3.4302 3.5128 2.4489
 1.8229 2.1561 1.6364

Example 2. In image processing, the Sobel edge finding operation is a
two-dimensional convolution of an input array with the special matrix

s = [1 2 1; 0 0 0; -1 -2 -1];

These commands extract the horizontal edges from a raised pedestal.

A = zeros(10);
A(3:7,3:7) = ones(5);
H = conv2(A,s);
mesh(H)

conv2

2-384

Transposing the filter s extracts the vertical edges of A.

V = conv2(A,s');
figure, mesh(V)

0

5

10

15

0

5

10

15
−4

−2

0

2

4

0

5

10

15

0

5

10

15
−4

−2

0

2

4

conv2

2-385

This figure combines both horizontal and vertical edges.

figure
mesh(sqrt(H.^2 + V.^2))

See Also conv, convn, filter2

xcorr2 in the Signal Processing Toolbox

0

5

10

15

0

5

10

15
0

1

2

3

4

5

convhull

2-386

2convhullPurpose Convex hull

Syntax K = convhull(x,y)
[K,a] = convhull(x,y)

Description K = convhull(x,y) returns indices into the x and y vectors of the points on the
convex hull.

[K,a] = convhull(x,y) also returns the area of the convex hull.

Visualization Use plot to plot the output of convhull.

Examples xx = -1:.05:1; yy = abs(sqrt(xx));
[x,y] = pol2cart(xx,yy);
k = convhull(x,y);
plot(x(k),y(k),'r-',x,y,'b+')

Algorithm convhull is based on Qhull [2]. It uses the Qhull joggle option ('QJ'). For
information about qhull, see http://www.geom.umn.edu/software/qhull/.
For copyright information, see
http://www.geom.umn.edu/software/download/COPYING.html.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

convhull

2-387

See Also convhulln, delaunay, plot, polyarea, voronoi

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar
ber/ and in PostScript format at
ftp://geom.umn.edu/pub/software/qhull-96.ps.

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

convhulln

2-388

2convhullnPurpose n-D convex hull

Syntax K = convhulln(X)
[K,v] = convhulln(X)

Description K = convhulln(X) returns the indices K of the points in X that comprise the
facets of the convex hull of X. X is an m-by-n array representing m points in n-D
space. If the convex hull has p facets then K is p-by-n.

[K,v] = convhulln(X) also returns the volume v of the convex hull.

Visualization Plotting the output of convhulln depends on the value of n:

• For n = 2, use plot as you would for convhull.

• For n = 3, you can use trisurf to plot the output. The calling sequence is
K = convhulln(X);
trisurf(K,(X(:,1),X(:,2),X(:,3))

For more control over the color of the facets, use patch to plot the output. For
an example, see “Tessellation and Interpolation of Scattered Data in Higher
Dimensions” in the MATLAB documentation.

• You cannot plot convhulln output for n > 3.

Algorithm convhulln is based on Qhull [2]. It uses the Qhull joggle option ('QJ'). For
information about qhull, see http://www.geom.umn.edu/software/qhull/.
For copyright information, see
http://www.geom.umn.edu/software/download/COPYING.html.

See Also convhull, delaunayn, dsearchn, tsearchn, voronoin

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar
ber/ and in PostScript format at
ftp://geom.umn.edu/pub/software/qhull-96.ps.

convhulln

2-389

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

convn

2-390

2convnPurpose N-dimensional convolution

Syntax C = convn(A,B)
C = convn(A,B,'shape')

Description C = convn(A,B) computes the N-dimensional convolution of the arrays A and
B. The size of the result is size(A)+size(B)-1.

C = convn(A,B,'shape') returns a subsection of the N-dimensional
convolution, as specified by the shape parameter:

See Also conv, conv2

'full' Returns the full N-dimensional convolution (default).

'same' Returns the central part of the result that is the same size as A.

'valid' Returns only those parts of the convolution that can be computed
without assuming that the array A is zero-padded. The size of the
result is

max(size(A)-size(B) + 1, 0)

copyfile

2-391

2copyfilePurpose Copy file or directory

Graphical
Interface

As an alternative to the copyfile function, use the Current Directory browser.
Select the files and then select copy and paste commands from the Edit menu.

Syntax copyfile('source','destination')
copyfile('source','destination','f')
[status,message,messageid] = copyfile('source','destination','f')

Description copyfile('source','destination') copies the file or directory, source (and
all its contents) to the file or directory, destination, where source and
destination are the absolute or relative pathnames for the directory or file. If
source is a directory, destination cannot be a file. If source is a directory,
copyfile copies the contents of source, not the directory itself. To rename a
file or directory when copying it, make destination a different name than
source. If destination already exists, copyfile replaces it without warning.
Use the wildcard * at the end of source to copy all matching files. Note that the
read-only and archive attributes of source are not preserved in destination.

copyfile('source','destination','f') copies source to destination,
regardless of the read-only attribute of destination.

[status,message,messageid] = copyfile('source','destination','f')
copies source to destination, returning the status, a message, and the
MATLAB error message ID (see error and lasterr). Here, status is 1 for
success and is 0 for no error. Only one output argument is required and the f
input argument is optional.

Examples Copy File in Current Directory, Assigning a New Name to It
To make a copy of a file myfun.m in the current directory, assigning it the name
myfun2.m, type

copyfile('myfun.m','myfun2.m')

Copy File to Another Directory
To copy myfun.m to the directory d:/work/myfiles, keeping the same filename,
type

copyfile('myfun.m','d:/work/myfiles')

copyfile

2-392

Copy All Matching Files by Using a Wildcard
To copy all files in the directory myfiles whose names begin with my to the
directory newprojects, where newprojects is at the same level as the current
directory, type

copyfile('myfiles/my*','../newprojects')

Copy Directory and Return Status
In this example, all files and subdirectories in the current directory’s myfiles
directory are copied to the directory d:/work/myfiles. Note that before
running the copyfile function, d:/work does not contain the directory
myfiles. It is created because myfiles is appended to destination in the
copyfile function:

[s,mess,messid]=copyfile('myfiles','d:/work/myfiles')
s =
 1

mess =
 ''

messid =
 ''

The message returned indicates that copyfile was successful.

Copy File to Read-Only Directory
Copy myfile.m from the current directory to d:/work/restricted, where
restricted is a read-only directory:

copyfile('myfile.m','d:/work/restricted','f')

After the copy, myfile.m exists in d:/work/restricted.

See Also delete, dir, fileattrib, filebrowser, mkdir, movefile, rmdir

copyobj

2-393

2copyobjPurpose Copy graphics objects and their descendants

Syntax new_handle = copyobj(h,p)

Description copyobj creates copies of graphics objects. The copies are identical to the
original objects except the copies have different values for their Parent
property and a new handle. The new parent must be appropriate for the copied
object (e.g., you can copy a line object only to another axes object).

new_handle = copyobj(h,p) copies one or more graphics objects identified by
h and returns the handle of the new object or a vector of handles to new objects.
The new graphics objects are children of the graphics objects specified by p.

Remarks h and p can be scalars or vectors. When both are vectors, they must be the same
length and the output argument, new_handle, is a vector of the same length.
In this case, new_handle(i) is a copy of h(i) with its Parent property set to
p(i).

When h is a scalar and p is a vector, h is copied once to each of the parents in p.
Each new_handle(i) is a copy of h with its Parent property set to p(i), and
length(new_handle) equals length(p).

When h is a vector and p is a scalar, each new_handle(i) is a copy of h(i) with
its Parent property set to p. The length of new_handle equals length(h).

Graphics objects are arranged as a hierarchy. Here, each graphics object is
shown connected below its appropriate parent object.

Uimenu

Line

Axes Uicontrol

Image

Figure

Uicontextmenu

Light SurfacePatch Text

Root

Rectangle

copyobj

2-394

Examples Copy a surface to a new axes within a different figure.

h = surf(peaks);
colormap hot
figure % Create a new figure
axes % Create an axes object in the figure
new_handle = copyobj(h,gca);
colormap hot
view(3)
grid on

Note that while the surface is copied, the colormap (figure property), view, and
grid (axes properties) are not copies.

See Also findobj, gcf, gca, gco, get, set

Parent property for all graphics objects

“Finding and Identifying Graphics Objects” for related functions

corrcoef

2-395

2corrcoefPurpose Correlation coefficients

Syntax R = corrcoef(X)
R = corrcoef(x,y)
[R,P]=corrcoef(...)
[R,P,RLO,RUP]=corrcoef(...)
[...]=corrcoef(...,'param1',val1,'param2',val2,...)

Description R = corrcoef(X) returns a matrix R of correlation coefficients calculated from
an input matrix X whose rows are observations and whose columns are
variables. The matrix R = corrcoef(X) is related to the covariance
matrix C = cov(X) by

corrcoef(X) is the zeroth lag of the covariance function, that is, the zeroth lag
of xcov(x,'coeff') packed into a square array.

R = corrcoef(x,y) where x and y are column vectors is the same as
corrcoef([x y]).

[R,P]=corrcoef(...) also returns P, a matrix of p-values for testing the
hypothesis of no correlation. Each p-value is the probability of getting a
correlation as large as the observed value by random chance, when the true
correlation is zero. If P(i,j) is small, say less than 0.05, then the correlation
R(i,j) is significant.

[R,P,RLO,RUP]=corrcoef(...) also returns matrices RLO and RUP, of the same
size as R, containing lower and upper bounds for a 95% confidence interval for
each coefficient.

[...]=corrcoef(...,'param1',val1,'param2',val2,...) specifies
additional parameters and their values. Valid parameters are the following.

R i j,() C i j,()
C i i,()C j j,()

---------------------------------------=

corrcoef

2-396

The p-value is computed by transforming the correlation to create a t statistic
having n-2 degrees of freedom, where n is the number of rows of X. The
confidence bounds are based on an asymptotic normal distribution of
0.5*log((1+R)/(1-R)), with an approximate variance equal to 1/(n-3).
These bounds are accurate for large samples when X has a multivariate normal
distribution. The 'pairwise' option can produce an R matrix that is not
positive definite.

Examples Generate random data having correlation between column 4 and the other
columns.

x = randn(30,4); % Uncorrelated data
x(:,4) = sum(x,2); % Introduce correlation.
[r,p] = corrcoef(x) % Compute sample correlation and p-values.
[i,j] = find(p<0.05); % Find significant correlations.
[i,j] % Display their (row,col) indices.

r =
 1.0000 -0.3566 0.1929 0.3457
 -0.3566 1.0000 -0.1429 0.4461
 0.1929 -0.1429 1.0000 0.5183
 0.3457 0.4461 0.5183 1.0000

p =
 1.0000 0.0531 0.3072 0.0613
 0.0531 1.0000 0.4511 0.0135
 0.3072 0.4511 1.0000 0.0033
 0.0613 0.0135 0.0033 1.0000

ans =
 4 2
 4 3
 2 4

'alpha' A number between 0 and 1 to specify a confidence level of
100*(1 - alpha)%. Default is 0.05 for 95% confidence intervals.

'rows' Either 'all' (default) to use all rows, 'complete' to use rows
with no NaN values, or 'pairwise' to compute R(i,j) using
rows with no NaN values in either column i or j.

corrcoef

2-397

 3 4

See Also cov, mean, std

xcorr, xcov in the Signal Processing Toolbox

cos

2-398

2cosPurpose Cosine

Syntax Y = cos(X)

Description The cos function operates element-wise on arrays. The function’s domains and
ranges include complex values. All angles are in radians.

Y = cos(X) returns the circular cosine for each element of X.

Examples Graph the cosine function over the domain .

x = -pi:0.01:pi;
plot(x,cos(x)), grid on

The expression cos(pi/2) is not exactly zero but a value the size of the
floating-point accuracy, eps, because pi is only a floating-point approximation
to the exact value of .

Definition The cosine can be defined as

π– x π≤ ≤

−4 −3 −2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

π

x iy+()cos x() y()coshcos i x()sinh y()sin–=

z()cos eiz e iz–+
2

-----------------------=

cos

2-399

Algorithm cos uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

See Also acos, acosh, cosh

cosh

2-400

2coshPurpose Hyperbolic cosine

Syntax Y = cosh(X)

Description The cosh function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Y = cosh(X) returns the hyperbolic cosine for each element of X.

Examples Graph the hyperbolic cosine function over the domain .

x = -5:0.01:5;
plot(x,cosh(x)), grid on

Definition The hyperbolic cosine can be defined as

Algorithm cosh uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

5– x 5≤ ≤

−5 0 5
0

10

20

30

40

50

60

70

80

cosh z()
ez e z–

+
2

-------------------=

cosh

2-401

See Also acos, acosh, cos

cot

2-402

2cotPurpose Cotangent

Syntax Y = cot(X)

Description The cot function operates element-wise on arrays. The function’s domains and
ranges include complex values. All angles are in radians.

Y = cot(X) returns the cotangent for each element of X.

Examples Graph the cotangent the domains and

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,cot(x1),x2,cot(x2)), grid on

Definition The cotangent can be defined as

Algorithm cot uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

π– x 0< < 0 x π.< <

−4 −3 −2 −1 0 1 2 3 4
−100

−80

−60

−40

−20

0

20

40

60

80

100

z()cot 1
z()tan

------------------=

cot

2-403

See Also acot, acoth, coth

coth

2-404

2 cothPurpose Hyperbolic cotangent

Syntax Y = coth(X)

Description The coth function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Y = coth(X) returns the hyperbolic cotangent for each element of X.

Examples Graph the hyperbolic cotangent over the domains and

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,coth(x1),x2,coth(x2)), grid on

Definition The hyperbolic cotangent can be defined as

Algorithm coth uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

π– x 0< < 0 x π.< <

−4 −3 −2 −1 0 1 2 3 4
−100

−50

0

50

100

150

z()coth 1
z()tanh

---------------------=

coth

2-405

See Also acot, acoth, cot

cov

2-406

2covPurpose Covariance matrix

Syntax C = cov(X)
C = cov(x,y)

Description C = cov(x) where x is a vector returns the variance of the vector elements. For
matrices where each row is an observation and each column a variable, cov(x)
is the covariance matrix. diag(cov(x)) is a vector of variances for each
column, and sqrt(diag(cov(x))) is a vector of standard deviations.

C = cov(x,y), where x and y are column vectors of equal length, is equivalent
to cov([x y]).

Remarks cov removes the mean from each column before calculating the result.

The covariance function is defined as

where is the mathematical expectation and .

Examples Consider A = [-1 1 2 ; -2 3 1 ; 4 0 3]. To obtain a vector of variances for
each column of A:

v = diag(cov(A))'
v =
 10.3333 2.3333 1.0000

Compare vector v with covariance matrix C:

C =
 10.3333 -4.1667 3.0000
 -4.1667 2.3333 -1.5000
 3.0000 -1.5000 1.0000

The diagonal elements C(i,i) represent the variances for the columns of A.
The off-diagonal elements C(i,j) represent the covariances of columns i and
j.

See Also corrcoef, mean, std

xcorr, xcov in the Signal Processing Toolbox

cov x1,x2() E x1 µ1–() x2 µ2–()[]=

E µi Exi=

cplxpair

2-407

2cplxpairPurpose Sort complex numbers into complex conjugate pairs

Syntax B = cplxpair(A)
B = cplxpair(A,tol)
B = cplxpair(A,[],dim)
B = cplxpair(A,tol,dim)

Description B = cplxpair(A) sorts the elements along different dimensions of a complex
array, grouping together complex conjugate pairs.

The conjugate pairs are ordered by increasing real part. Within a pair, the
element with negative imaginary part comes first. The purely real values are
returned following all the complex pairs. The complex conjugate pairs are
forced to be exact complex conjugates. A default tolerance of 100*eps relative
to abs(A(i)) determines which numbers are real and which elements are
paired complex conjugates.

If A is a vector, cplxpair(A) returns A with complex conjugate pairs grouped
together.

If A is a matrix, cplxpair(A) returns A with its columns sorted and complex
conjugates paired.

If A is a multidimensional array, cplxpair(A) treats the values along the first
non-singleton dimension as vectors, returning an array of sorted elements.

B = cplxpair(A,tol) overrides the default tolerance.

B = cplxpair(A,[],dim) sorts A along the dimension specified by scalar dim.

B = cplxpair(A,tol,dim) sorts A along the specified dimension and overrides
the default tolerance.

Diagnostics If there are an odd number of complex numbers, or if the complex numbers
cannot be grouped into complex conjugate pairs within the tolerance, cplxpair
generates the error message

Complex numbers can't be paired.

cputime

2-408

2cputimePurpose Elapsed CPU time

Syntax cputime

Description cputime returns the total CPU time (in seconds) used by MATLAB from the
time it was started. This number can overflow the internal representation and
wrap around.

Examples The following code returns the CPU time used to run surf(peaks(40)).

t = cputime; surf(peaks(40)); e = cputime-t

e =
0.4667

See Also clock, etime, tic, toc

cross

2-409

2crossPurpose Vector cross product

Syntax C = cross(A,B)
C = cross(A,B,dim)

Description C = cross(A,B) returns the cross product of the vectors A and B. That is,
C = A x B. A and B must be 3-element vectors. If A and B are multidimensional
arrays, cross returns the cross product of A and B along the first dimension of
length 3.

C = cross(A,B,dim) where A and B are multidimensional arrays, returns the
cross product of A and B in dimension dim . A and B must have the same size,
and both size(A,dim) and size(B,dim) must be 3.

Remarks To perform a dot (scalar) product of two vectors of the same size, use
c = dot(a,b).

Examples The cross and dot products of two vectors are calculated as shown:

a = [1 2 3];
b = [4 5 6];
c = cross(a,b)

c =
 -3 6 -3

d = dot(a,b)

d =
 32

See Also dot

csc

2-410

2cscPurpose Cosecant

Syntax Y = csc(x)

Description The csc function operates element-wise on arrays. The function’s domains and
ranges include complex values. All angles are in radians.

Y = csc(x) returns the cosecant for each element of x.

Examples Graph the cosecant over the domains and .

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,csc(x1),x2,csc(x2)), grid on

Definition The cosecant can be defined as

Algorithm csc uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

π– x 0< < 0 x π< <

−4 −3 −2 −1 0 1 2 3 4
−150

−100

−50

0

50

100

150

z()csc 1
z()sin

-----------------=

csc

2-411

See Also acsc, acsch, csch

csch

2-412

2 cschPurpose Hyperbolic cosecant

Syntax Y = csch(x)

Description The csch function operates element-wise on arrays. The function’s domains
and ranges include complex values. All angles are in radians.

Y = csch(x) returns the hyperbolic cosecant for each element of x.

Examples Graph the hyperbolic cosecant over the domains and .

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,csch(x1),x2,csch(x2)), grid on

Definition The hyperbolic cosecant can be defined as

Algorithm csch uses FDLIBM, which was developed at SunSoft, a Sun Microsystems, Inc.
business, by Kwok C. Ng, and others. For information about FDLIBM, see
http://www.netlib.org.

π– x 0< < 0 x π< <

−4 −3 −2 −1 0 1 2 3 4
−100

−80

−60

−40

−20

0

20

40

60

80

100

z()csch 1
z()sinh

--------------------=

csch

2-413

See Also acsc, acsch, csc

csvread

2-414

2csvreadPurpose Read a comma-separated value file

Syntax M = csvread('filename')
M = csvread('filename',row,col)
M = csvread('filename',row,col,range)

Description M = csvread('filename') reads a comma-separated value formatted file,
filename. The result is returned in M. The file can only contain numeric values.

M = csvread('filename',row,col) reads data from the comma-separated
value formatted file starting at the specified row and column. The row and
column arguments are zero-based, so that row=0 and col=0 specifies the first
value in the file.

M = csvread('filename',row,col,range) reads only the range specified.
Specify the range using the notation, [R1 C1 R2 C2] where (R1,C1) is the
upper-left corner of the data to be read and (R2,C2) is the lower-right corner.
The range can also be specified using spreadsheet notation as in range =
'A1..B7'.

Remarks csvread fills empty delimited fields with zero. Data files having lines that end
with a nonspace delimiter, such as a semicolon, produce a result that has an
additional last column of zeros.

Examples Given the file, csvlist.dat that contains the comma-separated values

 02, 04, 06, 08, 10, 12
 03, 06, 09, 12, 15, 18
 05, 10, 15, 20, 25, 30
 07, 14, 21, 28, 35, 42
 11, 22, 33, 44, 55, 66

To read the entire file, use

csvread('csvlist.dat')

ans =

 2 4 6 8 10 12
 3 6 9 12 15 18

csvread

2-415

 5 10 15 20 25 30
 7 14 21 28 35 42
 11 22 33 44 55 66

To read the matrix starting with zero-based row 2, column 0 and assign it to
the variable, m,

m = csvread('csvlist.dat', 2, 0)

m =

 5 10 15 20 25 30
 7 14 21 28 35 42
 11 22 33 44 55 66

To read the matrix bounded by zero-based (2,0) and (3,3) and assign it to m,

m = csvread('csvlist.dat', 2, 0, [2,0,3,3])

m =

 5 10 15 20
 7 14 21 28

See Also csvwrite, dlmread, textread, wk1read, file formats, importdata, uiimport

csvwrite

2-416

2csvwritePurpose Write a comma-separated value file

Syntax csvwrite('filename',M)
csvwrite('filename',M,row,col)

Description csvwrite('filename',M) writes matrix M into filename as comma-separated
values.

csvwrite('filename',M,row,col) writes matrix M into filename starting at
the specified row and column offset. The row and column arguments are
zero-based, so that row=0 and C=0 specifies the first value in the file.

Examples The following example creates a comma-separated value file from the matrix,
m.

m = [3 6 9 12 15; 5 10 15 20 25; 7 14 21 28 35; 11 22 33 44 55];

csvwrite('csvlist.dat',m)
type csvlist.dat

3,6,9,12,15
5,10,15,20,25
7,14,21,28,35
11,22,33,44,55

The next example writes the matrix to the file, starting at a column offset of 2.

csvwrite('csvlist.dat',m,0,2)
type csvlist.dat

,,3,6,9,12,15
,,5,10,15,20,25
,,7,14,21,28,35
,,11,22,33,44,55

See Also csvread, dlmwrite, textread, wk1write, file formats, importdata, uiimport

cumprod

2-417

2cumprodPurpose Cumulative product

Syntax B = cumprod(A)
B = cumprod(A,dim)

Description B = cumprod(A) returns the cumulative product along different dimensions of
an array.

If A is a vector, cumprod(A) returns a vector containing the cumulative product
of the elements of A.

If A is a matrix, cumprod(A) returns a matrix the same size as A containing the
cumulative products for each column of A.

If A is a multidimensional array, cumprod(A) works on the first nonsingleton
dimension.

B = cumprod(A,dim) returns the cumulative product of the elements along the
dimension of A specified by scalar dim. For example, cumprod(A,1) increments
the first (row) index, thus working along the rows of A.

Examples cumprod(1:5)
ans =
 1 2 6 24 120

A = [1 2 3; 4 5 6];

cumprod(A)
ans =
 1 2 3
 4 10 18

cumprod(A,2)
ans =
 1 2 6
 4 20 120

See Also cumsum, prod, sum

cumsum

2-418

2cumsumPurpose Cumulative sum

Syntax B = cumsum(A)
B = cumsum(A,dim)

Description B = cumsum(A) returns the cumulative sum along different dimensions of an
array.

If A is a vector, cumsum(A) returns a vector containing the cumulative sum of
the elements of A.

If A is a matrix, cumsum(A) returns a matrix the same size as A containing the
cumulative sums for each column of A.

If A is a multidimensional array, cumsum(A) works on the first nonsingleton
dimension.

B = cumsum(A,dim) returns the cumulative sum of the elements along the
dimension of A specified by scalar dim. For example, cumsum(A,1) works across
the first dimension (the rows).

Examples cumsum(1:5)
ans =
 [1 3 6 10 15]

A = [1 2 3; 4 5 6];

cumsum(A)
ans =
 1 2 3
 5 7 9

cumsum(A,2)
ans =
 1 3 6
 4 9 15

See Also cumprod, prod, sum

cumtrapz

2-419

2cumtrapzPurpose Cumulative trapezoidal numerical integration

Syntax Z = cumtrapz(Y)
Z = cumtrapz(X,Y)
Z = cumtrapz(... dim)

Description Z = cumtrapz(Y) computes an approximation of the cumulative integral of Y
via the trapezoidal method with unit spacing. To compute the integral with
other than unit spacing, multiply Z by the spacing increment.

For vectors, cumtrapz(Y) is a vector containing the cumulative integral of Y.

For matrices, cumtrapz(Y) is a matrix the same size as Y with the cumulative
integral over each column.

For multidimensional arrays, cumtrapz(Y) works across the first nonsingleton
dimension.

Z = cumtrapz(X,Y) computes the cumulative integral of Y with respect to X
using trapezoidal integration. X and Y must be vectors of the same length, or X
must be a column vector and Y an array whose first nonsingleton dimension is
length(X). cumtrapz operates across this dimension.

If X is a column vector and Y an array whose first nonsingleton dimension is
length(X), cumtrapz(X,Y) operates across this dimension.

Z = cumtrapz(X,Y,dim) or cumtrapz(Y,DIM) integrates across the
dimension of Y specified by scalar dim. The length of X must be the same as
size(Y,dim).

Example Y = [0 1 2; 3 4 5];

cumtrapz(Y,1)
ans =

0 0 0
 1.5000 2.5000 3.5000

cumtrapz(Y,2)
ans =

0 0.5000 2.0000
 0 3.5000 8.0000

cumtrapz

2-420

See Also cumsum, trapz

curl

2-421

2curlPurpose Computes the curl and angular velocity of a vector field

Syntax [curlx,curly,curlz,cav] = curl(X,Y,Z,U,V,W)
[curlx,curly,curlz,cav] = curl(U,V,W)
[curlz,cav]= curl(X,Y,U,V)
[curlz,cav]= curl(U,V)
[curlx,curly,curlz] = curl(...), [curlx,curly] = curl(...)
cav = curl(...)

Description [curlx,curly,curlz,cav] = curl(X,Y,Z,U,V,W) computes the curl and
angular velocity perpendicular to the flow (in radians per time unit) of a 3-D
vector field U, V, W. The arrays X, Y, Z define the coordinates for U, V, W and must
be monotonic and 3-D plaid (as if produced by meshgrid).

[curlx,curly,curlz,cav] = curl(U,V,W) assumes X, Y, and Z are
determined by the expression:

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

[curlz,cav]= curl(X,Y,U,V) computes the curl z-component and the
angular velocity perpendicular to z (in radians per time unit) of a 2-D vector
field U, V. The arrays X, Y define the coordinates for U, V and must be monotonic
and 2-D plaid (as if produced by meshgrid).

[curlz,cav]= curl(U,V) assumes X and Y are determined by the expression:

[X Y] = meshgrid(1:n,1:m)

where [m,n] = size(U).

[curlx,curly,curlz] = curl(...), curlx,curly] = curl(...) returns
only the curl.

cav = curl(...) returns only the curl angular velocity.

Examples This example uses colored slice planes to display the curl angular velocity at
specified locations in the vector field.

curl

2-422

load wind
cav = curl(x,y,z,u,v,w);
slice(x,y,z,cav,[90 134],[59],[0]);
shading interp
daspect([1 1 1]); axis tight
colormap hot(16)
camlight

This example views the curl angular velocity in one plane of the volume and
plots the velocity vectors (quiver) in the same plane.

load wind
k = 4;
x = x(:,:,k); y = y(:,:,k); u = u(:,:,k); v = v(:,:,k);
cav = curl(x,y,u,v);
pcolor(x,y,cav); shading interp
hold on;
quiver(x,y,u,v,'y')
hold off
colormap copper

curl

2-423

See Also streamribbon, divergence

“Volume Visualization” for related functions

Displaying Curl with Stream Ribbons for another example

customverctrl

2-424

2customverctrlPurpose Allow custom source control system

Syntax customverctrl(filename, arguments)

Description This function is supplied for customers who want to integrate a version control
system that is not supported with MATLAB. This function must conform to the
structure of one of the supported version control systems, for example RCS. See
the files clearcase.m, pvcs.m, rcs.m, and sourcesafe.m in
$matlabroot\toolbox\matlab\verctrl as examples.

See Also checkin, checkout, cmopts, undocheckout

cylinder

2-425

2cylinderPurpose Generate cylinder

Syntax [X,Y,Z] = cylinder
[X,Y,Z] = cylinder(r)
[X,Y,Z] = cylinder(r,n)
cylinder(...)

Description cylinder generates x, y, and z coordinates of a unit cylinder. You can draw the
cylindrical object using surf or mesh, or draw it immediately by not providing
output arguments.

[X,Y,Z] = cylinder returns the x, y, and z coordinates of a cylinder with a
radius equal to 1. The cylinder has 20 equally spaced points around its
circumference.

[X,Y,Z] = cylinder(r) returns the x, y, and z coordinates of a cylinder using
r to define a profile curve. cylinder treats each element in r as a radius at
equally spaced heights along the unit height of the cylinder. The cylinder has
20 equally spaced points around its circumference.

[X,Y,Z] = cylinder(r,n) returns the x, y, and z coordinates of a cylinder
based on the profile curve defined by vector r. The cylinder has n equally
spaced points around its circumference.

cylinder(...), with no output arguments, plots the cylinder using surf.

Remarks cylinder treats its first argument as a profile curve. The resulting surface
graphics object is generated by rotating the curve about the x-axis, and then
aligning it with the z-axis.

Examples Create a cylinder with randomly colored faces.

cylinder
axis square
h = findobj('Type','surface');

cylinder

2-426

set(h,'CData',rand(size(get(h,'CData'))))

Generate a cylinder defined by the profile function 2+sin(t).

t = 0:pi/10:2*pi;
[X,Y,Z] = cylinder(2+cos(t));
surf(X,Y,Z)
axis square

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

cylinder

2-427

See Also sphere, surf

“Polygons and Surfaces” for related functions

−4

−2

0

2

4

−4

−2

0

2

4
0

0.2

0.4

0.6

0.8

1

daspect

2-428

2daspectPurpose Set or query the axes data aspect ratio

Syntax daspect
daspect([aspect_ratio])
daspect('mode')
daspect('auto')
daspect('manual')
daspect(axes_handle,...)

Description The data aspect ratio determines the relative scaling of the data units along the
x-, y-, and z-axes.

daspect with no arguments returns the data aspect ratio of the current axes.

daspect([aspect_ratio]) sets the data aspect ratio in the current axes to the
specified value. Specify the aspect ratio as three relative values representing
the ratio of the x-, y-, and z-axis scaling (e.g., [1 1 3] means one unit in x is
equal in length to one unit in y and three unit in z).

daspect('mode') returns the current value of the data aspect ratio mode,
which can be either auto (the default) or manual. See Remarks.

daspect('auto') sets the data aspect ratio mode to auto.

daspect('manual') sets the data aspect ratio mode to manual.

daspect(axes_handle,...) performs the set or query on the axes identified by
the first argument, axes_handle. When you do not specify an axes handle,
daspect operates on the current axes.

Remarks daspect sets or queries values of the axes object DataAspectRatio and
DataAspectRatioMode properties.

When the data aspect ratio mode is auto, MATLAB adjusts the data aspect
ratio so that each axis spans the space available in the figure window. If you
are displaying a representation of a real-life object, you should set the data
aspect ratio to [1 1 1] to produce the correct proportions.

Setting a value for data aspect ratio or setting the data aspect ratio mode to
manual disables the MATLAB stretch-to-fill feature (stretching of the axes to

daspect

2-429

fit the window). This means setting the data aspect ratio to a value, including
its current value,

daspect(daspect)

can cause a change in the way the graphs look. See the Remarks section of the
axes description for more information.

Examples The following surface plot of the function is useful to illustrate
the data aspect ratio. First plot the function over the range –2 ≤ x ≤ 2, –2 ≤ y ≤ 2,

[x,y] = meshgrid([-2:.2:2]);
z = x.*exp(-x.^2 - y.^2);
surf(x,y,z)

Querying the data aspect ratio shows how MATLAB has drawn the surface.

daspect
ans =

4 4 1

Setting the data aspect ratio to [1 1 1] produces a surface plot with equal
scaling along each axis.

z xe x2 y2––()=

−2
−1

0
1

2

−2

−1

0

1

2
−0.5

0

0.5

daspect

2-430

daspect([1 1 1])

See Also axis, pbaspect, xlim, ylim, zlim

The axes properties DataAspectRatio, PlotBoxAspectRatio, XLim, YLim, ZLim

“Setting the Aspect Ratio and Axis Limits” for related functions

Axes Aspect Ratio for more information.

−2

−1

0

1

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−0.5

0

0.5

date

2-431

2datePurpose Current date string

Syntax str = date

Description str = date returns a string containing the date in dd-mmm-yyyy format.

See Also clock, datenum, now

datenum

2-432

2datenumPurpose Serial date number

Syntax N = datenum(DT)
N = datenum(DT,P)
N = datenum(Y,M,D)
N = datenum(Y,M,D,H,MI,S)

Description The datenum function converts date strings and date vectors (defined by
datevec) into serial date numbers. Date numbers are serial days elapsed from
some reference date. By default, the serial day 1 corresponds to 1-Jan-0000.

N = datenum(DT) converts the date string or date vector DT into a serial date
number. Date strings with two-character years, e.g., 12-june-12, are assumed
to lie within the 100-year period centered about the current year.

Note If DT is a string, it must be in one of the date formats 0, 1, 2, 6, 13, 14,
15, 16, or 23 as defined by datestr.

N = datenum(DT,P) uses the specified pivot year as the starting year of the
100-year range in which a two-character year resides. The default pivot year is
the current year minus 50 years.

N = datenum(Y,M,D) returns the serial date number for corresponding
elements of the Y, M, and D (year, month, day) arrays. Y, M, and D must be arrays
of the same size (or any can be a scalar). Values outside the normal range of
each array are automatically “carried” to the next unit.

N = datenum(Y,M,D,H,MI,S) returns the serial date number for
corresponding elements of the Y, M, D, H, MI, and S (year, month, day, hour,
minute, and second) array values. Y, M, D, H, MI, and S must be arrays of the
same size (or any can be a scalar). Values outside the normal range of each
array are automatically carried to the next unit (for example month values
greater than 12 are carried to years). Month values less than 1 are set to be 1.
All other units can wrap and have valid negative values.

datenum

2-433

Examples Convert a date string to a serial date number.

n = datenum('19-May-2001')

n =
 730990

Specifying year, month, and day, convert a date to a serial date number.

n = datenum(2001,12,19)

n =
 731204

Convert a date vector to a serial date number.

format bank
n = datenum([2001 5 19 18 0 0])

n =
 730990.75

Convert a date string to a serial date number using the default pivot year

n = datenum('12-june-12')

n =
 735032

Convert the same date string to a serial date number using 1900 as the pivot
year.

n = datenum('12-june-12', 1900)

n =
 698507

See Also datestr, datevec, now

datestr

2-434

2datestrPurpose Date string format

Syntax str = datestr(DT,dateform)
str = datestr(DT,dateform,P)

Description The datestr function converts serial date numbers (defined by datenum) and
date vectors (defined by datevec) into date strings.

str = datestr(DT,dateform) converts a single date vector, or each element of
an array of serial date numbers to a date string. Date strings with
two-character years, e.g., 12-june-12, are assumed to lie within the 100-year
period centered about the current year.

str = datestr(DT,dateform,P) uses the specified pivot year as the starting
year of the 100-year range in which a two-character year resides. The default
pivot year is the current year minus 50 years.

The optional argument dateform specifies the date format of the result.
dateform can be either a number or a string:

dateform
(number)

dateform (string) Example

0 'dd-mmm-yyyy HH:MM:SS' 01-Mar-2000 15:45:17

1 'dd-mmm-yyyy' 01-Mar-2000

2 'mm/dd/yy' 03/01/00

3 'mmm' Mar

4 'm' M

5 'mm' 03

6 'mm/dd' 03/01

7 'dd' 01

8 'ddd' Wed

9 'd' W

datestr

2-435

10 'yyyy' 2000

11 'yy' 00

12 'mmmyy' Mar00

13 'HH:MM:SS' 15:45:17

14 'HH:MM:SS PM' 3:45:17 PM

15 'HH:MM' 15:45

16 'HH:MM PM' 3:45 PM

17 'QQ-YY' Q1-01

18 'QQ' Q1

19 'dd/mm' 01/03

20 'dd/mm/yy' 01/03/00

21 'mmm.dd.yyyy HH:MM:SS' Mar.01,2000 15:45:17

22 'mmm.dd.yyyy' Mar.01.2000

23 'mm/dd/yyyy' 03/01/2000

24 'dd/mm/yyyy' 01/03/2000

25 'yy/mm/dd' 00/03/01

26 'yyyy/mm/dd' 2000/03/01

27 'QQ-YYYY’ Q1-2001

28 'mmmyyyy' Mar2000

29 (ISO
8601)

'yyyy-mm-dd' 2000-03-01

30 (ISO
8601)

'yyyymmddTHHMMSS' 20000301T154517

31 'yyyy-mm-dd HH:MM:SS' 2000-03-01 15:45:17

dateform
(number)

dateform (string) Example

datestr

2-436

NOTE dateform numbers 0, 1, 2, 6, 13, 14, 15, 16, and 23 produce a string
suitable for input to datenum or datevec. Other date string formats will not
work with these functions.

Time formats like 'h:m:s', 'h:m:s.s', 'h:m pm', ... can also be part of the
input array DT. If you do not specify dateform, or if you specify dateform as -1,
the date string format defaults to

See Also date, datetick, datenum, datevec

1 if DT contains date information only, e.g., 01-Mar-1995

16 if DT contains time information only e.g., 03:45 PM

0 if DT is a date vector, or a string that contains both date and time
information e.g., 01-Mar-1995 03:45

datetick

2-437

2datetickPurpose Label tick lines using dates

Syntax datetick(tickaxis)
datetick(tickaxis,dateform)

Description datetick(tickaxis) labels the tick lines of an axis using dates, replacing the
default numeric labels. tickaxis is the string 'x', 'y', or 'z'. The default is
'x'. datetick selects a label format based on the minimum and maximum
limits of the specified axis.

datetick(tickaxis,dateform) formats the labels according to the integer
dateform (see table). To produce correct results, the data for the specified axis
must be serial date numbers (as produced by datenum).

dateform (number) dateform (string) Example

0 'dd-mmm-yyyy HH:MM:SS' 01-Mar-2000
15:45:17

1 'dd-mmm-yyyy' 01-Mar-2000

2 'mm/dd/yy' 03/01/00

3 'mmm' Mar

4 'm' M

5 'mm' 03

6 'mm/dd' 03/01

7 'dd' 01

8 'ddd' Wed

9 'd' W

10 'yyyy' 2000

11 'yy' 00

12 'mmmyy' Mar00

13 'HH:MM:SS' 15:45:17

datetick

2-438

Remarks datetick calls datestr to convert date numbers to date strings.

To change the tick spacing and locations, set the appropriate axes property
(i.e., XTick, YTick, or ZTick) before calling datetick.

Example Consider graphing population data based on the 1990 U.S. census:

t = (1900:10:1990)'; % Time interval
p = [75.995 91.972 105.711 123.203 131.669 ...

150.697 179.323 203.212 226.505 249.633]'; % Population
plot(datenum(t,1,1),p) % Convert years to date numbers and plot
grid on

14 'HH:MM:SS PM' 3:45:17 PM

15 'HH:MM' 15:45

16 'HH:MM PM' 3:45 PM

17 'QQ-YY' Q1–01

18 'QQ' Q1

19 'dd/mm' 01/03

20 'dd/mm/yy' 01/03/00

21 'mmm.dd.yyyy HH:MM:SS' Mar.01,2000
15:45:17

22 'mmm.dd.yyyy' Mar.01.2000

23 'mm/dd/yyyy' 03/01/2000

24 'dd/mm/yyyy' 01/03/2000

25 'yy/mm/dd' 00/03/01

26 'yyyy/mm/dd' 2000/03/01

27 'QQ-YYYY’ Q1-2001

28 'mmmyyyy' Mar2000

dateform (number) dateform (string) Example

datetick

2-439

datetick('x',11) % Replace x-axis ticks with 2-digit year labels

See Also The axes properties XTick, YTick, and ZTick.

datenum, datestr

“Annotating Plots” for related functions

00 20 40 60 80 00
60

80

100

120

140

160

180

200

220

240

260

datevec

2-440

2datevecPurpose Date components

C = datevec(A)
C = datevec(A,P)
[Y,M,D,H,MI,S] = datevec(A)

Description C = datevec(A) splits its input into an n-by-6 array with each row containing
the vector [Y,M,D,H,MI,S]. The first five date vector elements are integers.
Input A can either consist of strings of the sort produced by the datestr
function, or scalars of the sort produced by the datenum and now functions. Date
strings with two-character years, e.g., 12-june-12, are assumed to lie within
the 100-year period centered about the current year.

C = datevec(A,P) uses the specified pivot year as the starting year of the
100-year range in which a two-character year resides. The default pivot year is
the current year minus 50 years.

[Y,M,D,H,MI,S] = datevec(A) returns the components of the date vector as
individual variables.

When creating your own date vector, you need not make the components
integers. Any components that lie outside their conventional ranges affect the
next higher component (so that, for instance, the anomalous June 31 becomes
July 1). A zeroth month, with zero days, is allowed.

Examples An example of using a string as input:

datevec('12/24/1984')

ans =
1984 12 24 0 0 0

An example of using a serial date number as input:

t = datenum('12/24/1984')

t =
 725000

datevec(t)

datevec

2-441

ans =
1984 12 24 0 0 0

See Also clock, datenum, datestr, now

dbclear

2-442

2dbclearPurpose Clear breakpoints

Graphical
Interface

As an alternative to the dbclear function, there are various ways to clear
breakpoints using the Editor/Debugger.

Syntax dbclear all
dbclear all in mfile
dbclear in mfile
dbclear in mfile at lineno
dbclear in mfile at subfun
dbclear if error
dbclear if warning
dbclear if naninf
dbclear if infnan

Description dbclear all removes all breakpoints in all M-files, as well as pauses set for
error, warning, and naninf/infnan using dbstop.

dbclear all in mfile removes breakpoints in mfile.

dbclear in mfile removes the breakpoint set at the first executable line in
mfile.

dbclear in mfile at lineno removes the breakpoint set at the line number
lineno in mfile.

dbclear in mfile at subfun removes the breakpoint set at the subfunction
subfun in mfile.

dbclear if error removes the pause set using dbstop if error.

dbclear if warning removes the pause set using dbstop if warning.

dbclear if naninf removes the pause set using dbstop if naninf.

dbclear if infnan removes the pause set using dbstop if infnan.

Remarks The at, in, and if keywords, familiar to users of the UNIX debugger dbx, are
optional.

dbclear

2-443

See Also dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup,
partialpath

dbcont

2-444

2dbcontPurpose Resume execution

Graphical
Interface

As an alternative to the dbcont function, you can select Continue from the
Debug menu in the Editor/Debugger.

Syntax dbcont

Description dbcont resumes execution of an M-file from a breakpoint. Execution continues
until another breakpoint is encountered, an error occurs, or MATLAB returns
to the base workspace prompt.

See Also dbclear, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup

dbdown

2-445

2dbdownPurpose Change local workspace context

Graphical
Interface

As an alternative to the dbdown function, you can select a different workspace
from the Stack field in the Editor/Debugger toolbar.

Syntax dbdown

Description dbdown changes the current workspace context to the workspace of the called
M-file when a breakpoint is encountered. You must have issued the dbup
function at least once before you issue this function. dbdown is the opposite of
dbup.

Multiple dbdown functions change the workspace context to each successively
executed M-file on the stack until the current workspace context is the current
breakpoint. It is not necessary, however, to move back to the current
breakpoint to continue execution or to step to the next line.

See Also dbclear, dbcont, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup

dblquad

2-446

2dblquadPurpose Numerically evaluate double integral

Syntax q = dblquad(fun,xmin,xmax,ymin,ymax)
q = dblquad(fun,xmin,xmax,ymin,ymax,tol)
q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method)
q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method,p1,p2,...)

Description q = dblquad(fun,xmin,xmax,ymin,ymax) calls the quad function to evaluate
the double integral fun(x,y) over the rectangle xmin <= x <= xmax,
ymin <= y <= ymax. fun(x,y)must accept a vector x and a scalar y and return
a vector of values of the integrand.

q = dblquad(fun,xmin,xmax,ymin,ymax,tol) uses a tolerance tol instead of
the default, which is 1.0e-6.

q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method) uses the quadrature
function specified as method, instead of the default quad. Valid values for
method are @quadl or the function handle of a user-defined quadrature method
that has the same calling sequence as quad and quadl.

dblquad(fun,xmin,xmax,ymin,ymax,tol,method,p1,p2,...) passes the
additional parameters p1,p2,... to fun(x,y,p1,p2,...). Use [] as a
placeholder if you do not specify tol or method.
dblquad(fun,xmin,xmax,ymin,ymax,[],[],p1,p2,...) is the same as
dblquad(fun,xmin,xmax,ymin,ymax,1.e-6,@quad,p1,p2,...)

Example fun can be an inline object

Q = dblquad(inline('y*sin(x)+x*cos(y)'), pi, 2*pi, 0, pi)

or a function handle

Q = dblquad(@integrnd, pi, 2*pi, 0, pi)

where integrnd.m is an M-file.

function z = integrnd(x, y)
z = y*sin(x)+x*cos(y);

dblquad

2-447

The integrnd function integrates y*sin(x)+x*cos(y) over the square
pi <= x <= 2*pi, 0 <= y <= pi. Note that the integrand can be evaluated
with a vector x and a scalar y .

Nonsquare regions can be handled by setting the integrand to zero outside of
the region. For example, the volume of a hemisphere is

dblquad(inline('sqrt(max(1-(x.^2+y.^2),0))'),-1,1,-1,1)

or

dblquad(inline('sqrt(1-(x.^2+y.^2)).*(x.^2+y.^2<=1)'),-1,1,-1,1
)

See Also inline, quad, quadl, triplequad, @ (function handle)

dbmex

2-448

2dbmexPurpose Enable MEX-file debugging

Syntax dbmex on
dbmex off
dbmex stop
dbmex print

Description dbmex on enables MEX-file debugging for UNIX platforms. It is not supported
on the Sun Solaris platform. To use this option, first start MATLAB from
within a debugger by typing: matlab -Ddebugger, where debugger is the name
of the debugger.

dbmex off disables MEX-file debugging.

dbmex stop returns to the debugger prompt.

dbmex print displays MEX-file debugging information.

Remarks On Sun Solaris platforms, dbmex is not supported. See the Technical Support
solution 23388 at
http://www.mathworks.com/support/solutions/data/23388.shtml for an
alternative method of debugging.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup

dbquit

2-449

2dbquitPurpose Quit debug mode

Graphical
Interface

As an alternative to the dbquit function, you can select Exit Debug Mode from
the Debug menu in the Editor/Debugger.

Syntax dbquit

Description dbquit immediately terminates the debugger and returns control to the base
workspace prompt. The M-file being processed is not completed and no results
are returned.

All breakpoints remain in effect.

See Also dbclear, dbcont, dbdown, dbstack, dbstatus, dbstep, dbstop, dbtype, dbup

dbstack

2-450

2dbstackPurpose Display function call stack

Graphical
Interface

As an alternative to the dbstack function, you can view the Stack field in the
Editor/Debugger toolbar.

Syntax dbstack
[ST,I] = dbstack

Description dbstack displays the line numbers and M-file names of the function calls that
led to the current breakpoint, listed in the order in which they were executed.
The line number of the most recently executed function call (at which the
current breakpoint occurred) is listed first, followed by its calling function,
which is followed by its calling function, and so on, until the topmost M-file
function is reached.

[ST,I] = dbstack returns the stack trace information in an m-by-1 structure
ST with the fields

The current workspace index is returned in I.

Examples dbstack

In /usr/local/matlab/toolbox/matlab/cond.m at line 13
In test1.m at line 2
In test.m at line 3

See Also dbclear, dbcont, dbdown, dbquit, dbstatus, dbstep, dbstop, dbtype, dbup

name Function name

line Function line number

dbstatus

2-451

2dbstatusPurpose List all breakpoints

Graphical
Interface

As an alternative to the dbstatus function, you can see breakpoint icons for a
file that is open in the Editor/Debugger.

Syntax dbstatus
dbstatus function
s = dbstatus(...)

Description dbstatus lists all breakpoints in effect including error, warning, and naninf.

dbstatus function displays a list of the line numbers for which breakpoints
are set in the specified M-file.

s = dbstatus(...) returns the breakpoint information in an m-by-1
structure with the fields

Use dbstatus class/function or dbstatus private/function or
dbstatus class/private/function to determine the status for methods,
private functions, or private methods (for a class named class). In all these
forms you can further qualify the function name with a subfunction name as in
dbstatus function/subfunction.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstep, dbstop, dbtype, dbup

name Function name

line Function line number

cond Condition string (error, warning, or
naninf)

dbstep

2-452

2dbstepPurpose Execute one or more lines from current breakpoint

Graphical
Interface

As an alternative to the dbstep function, you can select Step or Step In from
the Debug menu in the Editor/Debugger.

Syntax dbstep
dbstep nlines
dbstep in

Description This function allows you to debug an M-file by following its execution from the
current breakpoint. At a breakpoint, the dbstep function steps through
execution of the current M-file one line at a time or at the rate specified by
nlines.

dbstep, by itself, executes the next executable line of the current M-file. dbstep
steps over the current line, skipping any breakpoints set in functions called by
that line.

dbstep nlines executes the specified number of executable lines.

dbstep in steps to the next executable line. If that line contains a call to
another M-file, execution resumes with the first executable line of the called
file. If there is no call to an M-file on that line, dbstep in is the same as dbstep.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstop, dbtype, dbup

dbstop

2-453

2dbstopPurpose Set breakpoints in M-file function

Graphical
Interface

As an alternative to the dbstop function, you can use the Breakpoints menu
or the breakpoint alley in the Editor/Debugger.

Syntax dbstop in mfile
dbstop in mfile at lineno
dbstop in mfile at subfun
dbstop if error
dbstop if all error
dbstop if warning
dbstop if naninf
dbstop if infnan

Description dbstop in mfile temporarily stops execution of mfile when you run it, at the
first executable line, putting MATLAB in debug mode. mfile must be in a
directory that is on the search path or in the current directory. If you have
graphical debugging enabled, the MATLAB Debugger opens with a breakpoint
at the first executable line of mfile. You can then use the debugging utilities,
review the workspace, or issue any valid MATLAB function. Use dbcont or
dbstep to resume execution of mfile. Use dbquit to exit from the Debugger.

dbstop in mfile at lineno temporarily stops execution of mfile when you
run it, just prior to execution of the line whose number is lineno, putting
MATLAB in debug mode. mfile must be in a directory that is on the search
path or in the current directory. If you have graphical debugging enabled, the
MATLAB Debugger opens mfile with a breakpoint at line lineno. If that line
is not executable, execution stops and the breakpoint is set at the next
executable line following lineno. When execution stops, you can use the
debugging utilities, review the workspace, or issue any valid MATLAB
function. Use dbcont or dbstep to resume execution of mfile. Use dbquit to
exit from the Debugger.

dbstop in mfile at subfun temporarily stops execution of mfile when you
run it, just prior to execution of the subfunction subfun, putting MATLAB in
debug mode. mfile must be in a directory that is on the search path or in the
current directory. If you have graphical debugging enabled, the MATLAB
Debugger opens mfile with a breakpoint at the subfunction specified by

dbstop

2-454

subfun. You can then use the debugging utilities, review the workspace, or
issue any valid MATLAB function. Use dbcont or dbstep to resume execution
of mfile. Use dbquit to exit from the Debugger.

dbstop if error stops execution when any M-file you subsequently run
produces a run-time error, putting MATLAB in debug mode, paused at the line
that generated the error. The M-file must be in a directory that is on the search
path or in the current directory. The errors that stop execution do not include
run-time errors that are detected within a try...catch block. You cannot
resume execution after an error. Use dbquit to exit from the Debugger.

dbstop if all error is the same as dbstop if error, except that it stops
execution on any type of run-time error, including errors that are detected
within a try...catch block.

dbstop if warning stops execution when any M-file you subsequently run
produces a run-time warning, putting MATLAB in debug mode, paused at the
line that generated the warning. The M-file must be in a directory that is on
the search path or in the current directory. Use dbcont or dbstep to resume
execution.

dbstop if naninf or dbstop if infnan stops execution when any M-file you
subsequently run encounters an infinite value (Inf) or a value that is not a
number (NaN), putting MATLAB in debug mode, paused at the line where Inf
or NaN was encountered. For convenience, you can use either naninf or
infnan—they perform in exactly the same manner. The M-file must be in a
directory that is on the search path or in the current directory. Use dbcont or
dbstep to resume execution. Use dbquit to exit from the Debugger.

Remarks The at, in, and if keywords, familiar to users of the UNIX debugger dbx, are
optional.

dbstop

2-455

Examples The file buggy, used in these examples, consists of three lines.

function z = buggy(x)
n = length(x);
z = (1:n)./x;

Stop at First Executable Line
The statements

dbstop in buggy
buggy(2:5)

stop execution at the first executable line in buggy

n = length(x);

The function

dbstep

advances to the next line, at which point you can examine the value of n.

Stop if Error
Because buggy only works on vectors, it produces an error if the input x is a full
matrix. The statements

dbstop if error
buggy(magic(3))

produce

??? Error using ==> ./
Matrix dimensions must agree.
Error in ==> c:\buggy.m
On line 3 ==> z = (1:n)./x;
K»

and put MATLAB in debug mode.

dbstop

2-456

Stop if InfNaN
In buggy, if any of the elements of the input x is zero, a division by zero occurs.
The statements

dbstop if naninf
buggy(0:2)

produce

Warning: Divide by zero.
> In c:\buggy.m at line 3
K»

and put MATLAB in debug mode.

See Also break, dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbtype,
dbup, keyboard, partialpath, return

dbtype

2-457

2dbtypePurpose List M-file with line numbers

Graphical
Interface

As an alternative to the dbtype function, you can see an M-file with line
numbers by opening it in the Editor/Debugger.

Syntax dbtype function
dbtype function start:end

Description dbtype function displays the contents of the specified M-file function with
line numbers preceding each line. function must be the name of an M-file
function or a MATLABPATH relative partial pathname.

dbtype function start:end displays the portion of the file specified by a
range of line numbers.

You cannot use dbtype for built-in functions.

Examples To see only the input and output arguments for a function, that is, the first line
of the M-file, type

dtype function 1

For example,

dbtype fileparts 1

returns

1 function [path, fname, extension,version] = fileparts(name)

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbup,
partialpath

dbup

2-458

2dbupPurpose Change local workspace context

Graphical
Interface

As an alternative to the dbup function, you can select a different workspace
from the Stack field in the toolbar of the Editor/Debugger.

Syntax dbup

Description This function allows you to examine the calling M-file by using any other
MATLAB function. In this way, you determine what led to the arguments’
being passed to the called function.

dbup changes the current workspace context (at a breakpoint) to the workspace
of the calling M-file.

Multiple dbup functions change the workspace context to each previous calling
M-file on the stack until the base workspace context is reached. (It is not
necessary, however, to move back to the current breakpoint to continue
execution or to step to the next line.)

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype

dde23

2-459

2dde23Purpose Solve delay differential equations (DDEs) with constant delays

Syntax sol = dde23(ddefun,lags,history,tspan)
sol = dde23(ddefun,lags,history,tspan,options)
sol = dde23(ddefun,lags,history,tspan,options,p1,p2,...)

Arguments

Description sol = dde23(ddefun,lags,history,tspan) integrates the system of DDEs

on the interval , where are constant, positive delays and
.

ddefun Function that evaluates the right side of the differential
equations . The function
must have the form

dydt = ddefun(t,y,Z)

where t corresponds to the current , y is a column vector that
approximates , and Z(:,j) approximates for
delay = lags(j). The output is a column vector
corresponding to .

lags Vector of constant, positive delays .

history Specify history in one of three ways:

• A function of such that y = history(t) returns the
solution for as a column vector

• A constant column vector, if is constant

• The solution sol from a previous integration, if this call
continues that integration

tspan Interval of integration as a vector [t0,tf] with t0 < tf.

options Optional integration argument. A structure you create using
the ddeset function. See ddeset for details.

p1,p2,... Optional parameters that dde23 passes to ddefun, history if
it is a function, and any functions you specify in options.

y ′ t() f t y t() y t τ1–() … y t τk–(), , , ,()=

t
y t() y t τ j–()

τ j
f t y t() y t τ1–() … y t τk–(), , , ,()

τ1 … τk, ,

t
y t() t t0≤

y t()

y ′ t() f t y t() y t τ1–() … y t τk–(), , , ,()=

t0 t f,[] τ 1 … τk, ,
t0 tf<

dde23

2-460

dde23 returns the solution as a structure sol. Use the auxiliary function deval
and the output sol to evaluate the solution at specific points tint in the
interval tspan = [t0,tf].

yint = deval(sol,tint)

The structure sol returned by dde23 has the following fields.

sol = dde23(ddefun,lags,history,tspan,options) solves as above with
default integration properties replaced by values in options, an argument
created with ddeset. See ddeset and “Initial Value Problems for DDEs” in the
MATLAB documentation for details.

Commonly used options are scalar relative error tolerance 'RelTol' (1e-3 by
default) and vector of absolute error tolerances 'AbsTol' (all components are
1e-6 by default).

Use the 'Jumps' option to solve problems with discontinuities in the history or
solution. Set this option to a vector that contains the locations of
discontinuities in the solution prior to t0 (the history) or in coefficients of the
equations at known values of after t0.

Use the 'Events' option to specify a function that dde23 calls to find where
functions vanish. This function must be of the
form

[value,isterminal,direction] = events(t,y,Z)

and contain an event function for each event to be tested. For the kth event
function in events:

• value(k) is the value of the kth event function.

• isterminal(k) = 1 if you want the integration to terminate at a zero of this
event function and 0 otherwise.

sol.x Mesh selected by dde23

sol.y Approximation to at the mesh points in sol.x.

sol.yp Approximation to at the mesh points in sol.x

sol.solver Solver name, 'dde23'

y x()

y ′ x()

t

g t y t() y t τ1–() … y t τk–(), , , ,()

dde23

2-461

• direction(k) = 0 if you want dde23 to compute all zeros of this event
function, +1 if only zeros where the event function increases, and -1 if only
zeros where the event function decreases.

If you specify the 'Events' option and events are detected, the output
structure sol also includes fields:

sol = dde23(ddefun,lags,history,tspan,options,p1,p2,...) passes the
parameters p1,p2,... to the DDE function as ddefun(t,y,z,p1,p2,...), to
the history function, if there is one, as history (t,p1,p2,...), and similarly
to all functions specified in options. Use options = [] as a place holder if no
options are set.

Examples This example solves a DDE on the interval [0, 5] with lags 1 and 0.2. The
function ddex1de computes the delay differential equations, and ddex1hist
computes the history for t <= 0.

Note The demo ddex1 contains the complete code for this example. To see the
code in an editor, click the example name, or type edit ddex1 at the command
line. To run the example type ddex1 at the command line.

sol = dde23(@ddex1de,[1, 0.2],@ddex1hist,[0, 5]);

This code evaluates the solution at 100 equally spaced points in the interval
[0,5], then plots the result.

tint = linspace(0,5);
yint = deval(sol,tint);
plot(tint,yint);

sol.xe Row vector of locations of all events, i.e., times when an event
function vanished

sol.ye Matrix whose columns are the solution values corresponding to
times in sol.xe

sol.ie Vector containing indices that specify which event occurred at
the corresponding time in sol.xe

dde23

2-462

ddex1 shows how you can code this problem using subfunctions. For more
examples see ddex2.

Algorithm dde23 tracks discontinuities and integrates with the explicit Runge-Kutta (2,3)
pair and interpolant of ode23. It uses iteration to take steps longer than the
lags.

See Also ddeget, ddeset, deval, @ (function_handle)

References L.F. Shampine and S. Thompson, “Solving DDEs in MATLAB,” Applied
Numerical Mathematics, Vol. 37, 2001, pp. 441-458.

ddeadv

2-463

2ddeadvPurpose Set up advisory link

Syntax rc = ddeadv(channel,'item','callback')
rc = ddeadv(channel,'item','callback','upmtx')
rc = ddeadv(channel,'item','callback','upmtx',format)
rc = ddeadv(channel,'item','callback','upmtx',format,timeout)

Description ddeadv sets up an advisory link between MATLAB and a server application.
When the data identified by the item argument changes, the string specified
by the callback argument is passed to the eval function and evaluated. If the
advisory link is a hot link, DDE modifies upmtx, the update matrix, to reflect
the data in item.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

If successful, ddeadv returns 1 in variable, rc. Otherwise it returns 0.

Arguments channel Conversation channel from ddeinit.

item String specifying the DDE item name for the advisory link.
Changing the data identified by item at the server triggers the
advisory link.

callback String specifying the callback that is evaluated on update
notification. Changing the data identified by item at the server
causes callback to get passed to the eval function to be
evaluated.

upmtx
(optional)

String specifying the name of a matrix that holds data sent
with an update notification. If upmtx is included, changing
item at the server causes upmtx to be updated with the revised
data. Specifying upmtx creates a hot link. Omitting upmtx or
specifying it as an empty string creates a warm link. If upmtx
exists in the workspace, its contents are overwritten. If upmtx
does not exist, it is created.

ddeadv

2-464

Examples Set up a hot link between a range of cells in Excel (Row 1, Column 1 through
Row 5, Column 5) and the matrix x. If successful, display the matrix:

rc = ddeadv(channel, 'r1c1:r5c5', 'disp(x)', 'x');

Communication with Excel must have been established previously with a
ddeinit command.

See Also ddeexec, ddeinit, ddepoke, ddereq, ddeterm, ddeunadv

format
(optional)

Two-element array specifying the format of the data to be sent
on update. The first element specifies the Windows clipboard
format to use for the data. The only currently supported format
is cf_text, which corresponds to a value of 1. The second
element specifies the type of the resultant matrix. Valid types
are numeric (the default, which corresponds to a value of 0)
and string (which corresponds to a value of 1). The default
format array is [1 0].

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). If
advisory link is not established within timeout milliseconds,
the function fails. The default value of timeout is three
seconds.

ddeexec

2-465

2ddeexecPurpose Send string for execution

Syntax rc = ddeexec(channel,'command')
rc = ddeexec(channel,'command','item')
rc = ddeexec(channel,'command','item',timeout)

Description ddeexec sends a string for execution to another application via an established
DDE conversation. Specify the string as the command argument.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

If successful, ddeexec returns 1 in variable, rc. Otherwise it returns 0.

Arguments

Examples Given the channel assigned to a conversation, send a command to Excel:

rc = ddeexec(channel,'[formula.goto("r1c1")]')

Communication with Excel must have been established previously with a
ddeinit command.

See Also ddeadv, ddeinit, ddepoke, ddereq, ddeterm, ddeunadv

channel Conversation channel from ddeinit.

command String specifying the command to be executed.

item
(optional)

String specifying the DDE item name for execution. This
argument is not used for many applications. If your application
requires this argument, it provides additional information for
command. Consult your server documentation for more
information.

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.

ddeget

2-466

2ddegetPurpose Extract properties from options structure created with ddeset

Syntax val = ddeget(options,'name')
val = ddeget(options,'name',default)

Description val = ddeget(options,'name') extracts the value of the named property
from the structure options, returning an empty matrix if the property value is
not specified in options. It is sufficient to type only the leading characters that
uniquely identify the property. Case is ignored for property names. [] is a valid
options argument.

val = ddeget(options,'name',default) extracts the named property as
above, but returns val = default if the named property is not specified in
options. For example,

val = ddeget(opts,'RelTol',1e-4);

returns val = 1e-4 if the RelTol is not specified in opts.

See Also dde23, ddeset

ddeinit

2-467

2ddeinitPurpose Initiate DDE conversation

Syntax channel = ddeinit('service','topic')

Description channel = ddeinit('service','topic') returns a channel handle assigned
to the conversation, which is used with other MATLAB DDE functions.
'service' is a string specifying the service or application name for the
conversation. 'topic' is a string specifying the topic for the conversation.

Examples To initiate a conversation with Excel for the spreadsheet 'stocks.xls':

channel = ddeinit('excel','stocks.xls')

channel =
0.00

See Also ddeadv, ddeexec, ddepoke, ddereq, ddeterm, ddeunadv

ddepoke

2-468

2ddepokePurpose Send data to application

Syntax rc = ddepoke(channel,'item',data)
rc = ddepoke(channel,'item',data,format)
rc = ddepoke(channel,'item',data,format,timeout)

Description ddepoke sends data to an application via an established DDE conversation.
ddepoke formats the data matrix as follows before sending it to the server
application:

• String matrices are converted, element by element, to characters and the
resulting character buffer is sent.

• Numeric matrices are sent as tab-delimited columns and carriage-return,
line-feed delimited rows of numbers. Only the real part of nonsparse
matrices are sent.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

If successful, ddepoke returns 1 in variable, rc. Otherwise it returns 0.

Arguments channel Conversation channel from ddeinit.

item String specifying the DDE item for the data sent. Item is the
server data entity that is to contain the data sent in the data
argument.

data Matrix containing the data to send.

format
(optional)

Scalar specifying the format of the data requested. The value
indicates the Windows clipboard format to use for the data
transfer. The only format currently supported is cf_text,
which corresponds to a value of 1.

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.

ddepoke

2-469

Examples Assume that a conversation channel with Excel has previously been
established with ddeinit. To send a 5-by-5 identity matrix to Excel, placing the
data in Row 1, Column 1 through Row 5, Column 5:

rc = ddepoke(channel, 'r1c1:r5c5', eye(5));

See Also ddeadv, ddeexec, ddeinit, ddereq, ddeterm, ddeunadv

ddereq

2-470

2ddereqPurpose Request data from application

Syntax data = ddereq(channel,'item')
data = ddereq(channel,'item',format)
data = ddereq(channel,'item',format,timeout)

Description ddereq requests data from a server application via an established DDE
conversation. ddereq returns a matrix containing the requested data or an
empty matrix if the function is unsuccessful.

If you omit optional arguments that are not at the end of the argument list, you
must substitute the empty matrix for the missing argument(s).

If successful, ddereq returns a matrix containing the requested data in
variable, data. Otherwise, it returns an empty matrix.

Arguments

Examples Assume that we have an Excel spreadsheet stocks.xls. This spreadsheet
contains the prices of three stocks in row 3 (columns 1 through 3) and the
number of shares of these stocks in rows 6 through 8 (column 2). Initiate
conversation with Excel with the command:

channel = ddeinit('excel','stocks.xls')

channel Conversation channel from ddeinit.

item String specifying the server application's DDE item name for
the data requested.

format
(optional)

Two-element array specifying the format of the data requested.
The first element specifies the Windows clipboard format to
use. The only currently supported format is cf_text, which
corresponds to a value of 1. The second element specifies the
type of the resultant matrix. Valid types are numeric (the
default, which corresponds to 0) and string (which
corresponds to a value of 1). The default format array is [1 0].

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.

ddereq

2-471

DDE functions require the rxcy reference style for Excel worksheets. In Excel
terminology the prices are in r3c1:r3c3 and the shares in r6c2:r8c2.

To request the prices from Excel:

prices = ddereq(channel,'r3c1:r3c3')

prices =
42.50 15.00 78.88

To request the number of shares of each stock:

shares = ddereq(channel, 'r6c2:r8c2')

shares =
100.00
500.00
300.00

See Also ddeadv, ddeexec, ddeinit, ddepoke, ddeterm, ddeunadv

ddeset

2-472

2ddesetPurpose Create/alter delay differential equations (DDE) options structure

Syntax options = ddeset('name1',value1,'name2',value2,...)
options = ddeset(oldopts,'name1',value1,...)
options = ddeset(oldopts,newopts)
ddeset

Description options = ddeset('name1',value1,'name2',value2,...) creates an
integrator options structure options in which the named properties have the
specified values. Any unspecified properties have default values. It is sufficient
to type only the leading characters that uniquely identify the property. Case is
ignored for property names.

options = ddeset(oldopts,'name1',value1,...) alters an existing options
structure oldopts.

options = ddeset(oldopts,newopts) combines an existing options structure
oldopts with a new options structure newopts. Any new properties overwrite
corresponding old properties.

ddeset with no input arguments displays all property names and their possible
values.

DDE Properties These properties are available:

Property Value Description

RelTol Positive scalar
{1e-3}

Relative error tolerance that applies to all components
of the solution vector. The estimated error in each
integration step satisfies
|e(i)| <= max(RelTol*abs(y(i)),AbsTol(i)).

AbsTol Positive scalar or
vector {1e-6}

Absolute error tolerance that applies to all components
of the solution vector. Elements of a vector of tolerances
apply to corresponding components of the solution
vector.

ddeset

2-473

NormControl on | {off} Control error relative to norm of solution. Set this
property on to request that dde23 control the error in
each integration step with
norm(e) <= max(RelTol*norm(y),AbsTol). By default
dde23 uses a more stringent component-wise error
control.

Stats on | {off} Display computational cost statistics.

Events Function The solver uses the specified function to locate where
functions of t, y, Z vanish. See dde23 for details.

MaxStep Positive scalar
{0.1*tspan}

Upper bound on the magnitude of the step size. The
default is one-tenth of the tspan interval.

InitialStep Positive scalar Suggested initial step size. The solver tries this first. By
default the solver determines an initial step size
automatically.

OutputFcn Function Installable output function. This output function is
called by the solver after each time step. When a solver
is called with no output arguments, OutputFcn defaults
to the function odeplot. Otherwise, OutputFcn defaults
to [].

To create or modify an output function, see ODE Solver
Output Properties in the “Differential Equations”
section of the MATLAB documentation.

OutputSel Vector of integers Output selection indices. Specifies the components of
the solution vector that dde23 passes to the OutputFcn.
The default is all components.

Property Value Description

ddeset

2-474

See Also dde23, ddeget, @ (function_handle)

Jumps Vector Location of discontinuities in solution. Points where
the history or solution may have a jump discontinuity in
a low-order derivative. See dde23 for details.

InitialY Vector Initial value of solution. By default the initial value of
the solution is the value returned by history at the
initial point. A different initial value can be supplied as
the value of the InitialY property.

Property Value Description

t

ddeterm

2-475

2ddetermPurpose Terminate DDE conversation

Syntax rc = ddeterm(channel)

Description rc = ddeterm(channel) accepts a channel handle returned by a previous call
to ddeinit that established the DDE conversation. ddeterm terminates this
conversation. rc is a return code where 0 indicates failure and 1 indicates
success.

Examples To close a conversation channel previously opened with ddeinit:

rc = ddeterm(channel)

rc =

1.00

See Also ddeadv, ddeexec, ddeinit, ddepoke, ddereq, ddeunadv

ddeunadv

2-476

2ddeunadvPurpose Release advisory link

Syntax rc = ddeunadv(channel,'item')
rc = ddeunadv(channel,'item',format)
rc = ddeunadv(channel,'item',format,timeout)

Description ddeunadv releases the advisory link between MATLAB and the server
application established by an earlier ddeadv call. The channel, item, and
format must be the same as those specified in the call to ddeadv that initiated
the link. If you include the timeout argument but accept the default format,
you must specify format as an empty matrix.

If successful, ddeunadv returns 1 in variable, rc. Otherwise it returns 0.

Arguments

Example To release an advisory link established previously with ddeadv:

rc = ddeunadv(channel, 'r1c1:r5c5')
rc =

1.00

See Also ddeadv, ddeexec, ddeinit, ddepoke, ddereq, ddeterm

channel Conversation channel from ddeinit.

item String specifying the DDE item name for the advisory link.
Changing the data identified by item at the server triggers the
advisory link.

format
(optional)

Two-element array. This must be the same as the format
argument for the corresponding ddeadv call.

timeout
(optional)

Scalar specifying the time-out limit for this operation. timeout
is specified in milliseconds. (1000 milliseconds = 1 second). The
default value of timeout is three seconds.

deal

2-477

2dealPurpose Deal inputs to outputs

Syntax [Y1,Y2,Y3,...] = deal(X)
[Y1,Y2,Y3,...] = deal(X1,X2,X3,...)

Description [Y1,Y2,Y3,...] = deal(X) copies the single input to all the requested
outputs. It is the same as Y1 = X, Y2 = X, Y3 = X, ...

[Y1,Y2,Y3,...] = deal(X1,X2,X3,...) is the same as Y1 = X1; Y2 = X2;
Y3 = X3; ...

Remarks deal is most useful when used with cell arrays and structures via comma
separated list expansion. Here are some useful constructions:

[S.field] = deal(X) sets all the fields with the name field in the structure
array S to the value X. If S doesn't exist, use [S(1:m).field] = deal(X).

[X{:}] = deal(A.field) copies the values of the field with name field to
the cell array X. If X doesn't exist, use [X{1:m}] = deal(A.field).

[Y1,Y2,Y3,...] = deal(X{:}) copies the contents of the cell array X to the
separate variables Y1,Y2,Y3,...

[Y1,Y2,Y3,...] = deal(S.field) copies the contents of the fields with the
name field to separate variables Y1,Y2,Y3,...

Examples Use deal to copy the contents of a 4-element cell array into four separate
output variables.

C = {rand(3) ones(3,1) eye(3) zeros(3,1)};
[a,b,c,d] = deal(C{:})

a =

 0.9501 0.4860 0.4565
 0.2311 0.8913 0.0185
 0.6068 0.7621 0.8214

b =

deal

2-478

 1
 1
 1

c =

 1 0 0
 0 1 0
 0 0 1

d =

 0
 0
 0

Use deal to obtain the contents of all the name fields in a structure array:

A.name = 'Pat'; A.number = 176554;
A(2).name = 'Tony'; A(2).number = 901325;
[name1,name2] = deal(A(:).name)

name1 =

Pat

name2 =

Tony

deblank

2-479

2deblankPurpose Strip trailing blanks from the end of a string

Syntax str = deblank(str)
c = deblank(c)

Description str = deblank(str) removes the trailing blanks from the end of a character
string str.

c = deblank(c), when c is a cell array of strings, applies deblank to each
element of c.

The deblank function is useful for cleaning up the rows of a character array.

Examples A{1,1} = 'MATLAB ';
A{1,2} = 'SIMULINK ';
A{2,1} = 'Toolboxes ';
A{2,2} = 'The MathWorks ';

A =

 'MATLAB ' 'SIMULINK '
 'Toolboxes ' 'The MathWorks '

deblank(A)

ans =

 'MATLAB' 'SIMULINK'
 'Toolboxes' 'The MathWorks'

dec2base

2-480

2dec2basePurpose Decimal number to base conversion

Syntax str = dec2base(d,base)
str = dec2base(d,base,n)

Description str = dec2base(d,base) converts the nonnegative integer d to the specified
base.d must be a nonnegative integer smaller than 2^52, and base must be an
integer between 2 and 36. The returned argument str is a string.

str = dec2base(d,base,n) produces a representation with at least n digits.

Examples The expression dec2base(23,2) converts 2310 to base 2, returning the string
'10111'.

See Also base2dec

dec2bin

2-481

2dec2binPurpose Decimal to binary number conversion

Syntax str = dec2bin(d)
str = dec2bin(d,n)

Description str = dec2bin(d) returns the binary representation of d as a string. d must
be a nonnegative integer smaller than 2^52.

str = dec2bin(d,n) produces a binary representation with at least n bits.

Examples
ans =
 10111

See Also bin2dec, dec2hex

dec2hex

2-482

2dec2hexPurpose Decimal to hexadecimal number conversion

Syntax str = dec2hex(d)
str = dec2hex(d,n)

Description str = dec2hex(d) converts the decimal integer d to its hexadecimal
representation stored in a MATLAB string. d must be a nonnegative integer
smaller than 2^52.

str = dec2hex(d,n) produces a hexadecimal representation with at least n
digits.

Examples To convert decimal 1023 to hexadecimal,

dec2hex(1023)

ans =
 3FF

See Also dec2bin, format, hex2dec, hex2num

deconv

2-483

2deconvPurpose Deconvolution and polynomial division

Syntax [q,r] = deconv(v,u)

Description [q,r] = deconv(v,u) deconvolves vector u out of vector v, using long division.
The quotient is returned in vector q and the remainder in vector r such that v
= conv(u,q)+r.

If u and v are vectors of polynomial coefficients, convolving them is equivalent
to multiplying the two polynomials, and deconvolution is polynomial division.
The result of dividing v by u is quotient q and remainder r.

Examples If

u = [1 2 3 4]
v = [10 20 30]

the convolution is

c = conv(u,v)
c =

 10 40 100 160 170 120

Use deconvolution to recover u:

[q,r] = deconv(c,u)
q =

 10 20 30
r =

 0 0 0 0 0 0

This gives a quotient equal to v and a zero remainder.

Algorithm deconv uses the filter primitive.

See Also conv, residue

del2

2-484

2del2Purpose Discrete Laplacian

Syntax L = del2(U)
L = del2(U,h)
L = del2(U,hx,hy)
L = del2(U,hx,hy,hz,...)

Definition If the matrix U is regarded as a function evaluated at the point on a
square grid, then 4*del2(U) is a finite difference approximation of Laplace’s
differential operator applied to , that is:

where:

in the interior. On the edges, the same formula is applied to a cubic
extrapolation.

For functions of more variables , del2(U) is an approximation,

where is the number of variables in .

Description L = del2(U) where U is a rectangular array is a discrete approximation of

The matrix L is the same size as U with each element equal to the difference
between an element of U and the average of its four neighbors.

u x y,()

u

l ∇ 2u
4

----------- 1
4
--- d2u

dx2
---------- d2u

d y2
----------+

==

lij
1
4
--- ui 1 j,+ ui 1 j,– ui j 1+, ui j 1–,+ + +() ui,–=

u x y z …, , ,()

l ∇ 2u
2N
----------- 1

2N
--------- d2u

dx2
---------- d2u

d y2
---------- d2u

dz2
---------- …+ + +

==

N u

l ∇ 2u
4

----------- 1
4
--- d2u

dx2
---------- d2u

d y2
----------+

==

del2

2-485

-L = del2(U) when U is an multidimensional array, returns an
approximation of

where is ndims(u).

L = del2(U,h) where H is a scalar uses H as the spacing between points in each
direction (h=1 by default).

L = del2(U,hx,hy) when U is a rectangular array, uses the spacing specified
by hx and hy. If hx is a scalar, it gives the spacing between points in the
x-direction. If hx is a vector, it must be of length size(u,2) and specifies the
x-coordinates of the points. Similarly, if hy is a scalar, it gives the spacing
between points in the y-direction. If hy is a vector, it must be of length
size(u,1) and specifies the y-coordinates of the points.

L = del2(U,hx,hy,hz,...) where U is multidimensional uses the spacing
given by hx, hy, hz, ...

Examples The function

has

For this function, 4*del2(U) is also 4.

[x,y] = meshgrid(-4:4,-3:3);
U = x.*x+y.*y
U =

25 18 13 10 9 10 13 18 25
20 13 8 5 4 5 8 13 20
17 10 5 2 1 2 5 10 17
16 9 4 1 0 1 4 9 16
17 10 5 2 1 2 5 10 17
20 13 8 5 4 5 8 13 20
25 18 13 10 9 10 13 18 25

∇ 2u
2N

N

u x y,() x2 y2+=

u∇ 2 4=

del2

2-486

V = 4*del2(U)
V =

4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4

See Also diff, gradient

delaunay

2-487

2delaunayPurpose Delaunay triangulation

Syntax TRI = delaunay(x,y)

Definition Given a set of data points, the Delaunay triangulation is a set of lines
connecting each point to its natural neighbors. The Delaunay triangulation is
related to the Voronoi diagram— the circle circumscribed about a Delaunay
triangle has its center at the vertex of a Voronoi polygon.

Description TRI = delaunay(x,y) for the data points defined by vectors x and y, returns a
set of triangles such that no data points are contained in any triangle's
circumscribed circle. Each row of the m-by-3 matrix TRI defines one such
triangle and contains indices into x and y. If the original data points are
collinear or x is empty, the triangles cannot be computed and delaunay returns
an empty matrix.

Remarks The Delaunay triangulation is used by: griddata (to interpolate scattered
data), voronoi (to compute the voronoi diagram), and is useful by itself to
create a triangular grid for scattered data points.

The functions dsearch and tsearch search the triangulation to find nearest
neighbor points or enclosing triangles, respectively.

Visualization Use one of these functions to plot the output of delaunay:

Delaunay triangle
Voronoi polygon

x

delaunay

2-488

Examples Example 1. Plot the Delaunay triangulation for 10 randomly generated points.

rand('state',0);
x = rand(1,10);
y = rand(1,10);
TRI = delaunay(x,y);
subplot(1,2,1),...
triplot(TRI,x,y)
axis([0 1 0 1]);
hold on;
plot(x,y,'or');
hold off

Compare the Voronoi diagram of the same points:

[vx, vy] = voronoi(x,y,TRI);
subplot(1,2,2),...
plot(x,y,'r+',vx,vy,'b-'),...
axis([0 1 0 1])

triplot Displays the triangles defined in the m-by-3 matrix TRI. See
Example 1.

trisurf Displays each triangle defined in the m-by-3 matrix TRI as a
surface in 3-D space. To see a 2-D surface, you can supply a
vector of some constant value for the third dimension. For
example

trisurf(TRI,x,y,zeros(size(x)))

See Example 2.

trimesh Displays each triangle defined in the m-by-3 matrix TRI as a
mesh in 3-D space. To see a 2-D surface, you can supply a vector
of some constant value for the third dimension. For example,

trimesh(TRI,x,y,zeros(size(x)))

produces almost the same result as triplot, except in 3-D
space. See Example 2.

delaunay

2-489

Example 2. Create a 2-D grid then use trisurf to plot its Delaunay
triangulation in 3-D space by using 0s for the third dimension.

[x,y] = meshgrid(1:15,1:15);
tri = delaunay(x,y);
trisurf(tri,x,y,zeros(size(x)))

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Voronoi
diagram

Delaunay
triangulation

delaunay

2-490

Next, generate peaks data as a 15-by-15 matrix, and use that data with the
Delaunay triangulation to produce a surface in 3-D space.

z = peaks(15);
trisurf(tri,x,y,z)

0

5

10

15

0

5

10

15
−1

−0.5

0

0.5

1

0

5

10

15

0

5

10

15
−10

−5

0

5

10

delaunay

2-491

You can use the same data with trimesh to produce a mesh in 3-D space.

trimesh(tri,x,y,z)

Algorithm delaunay is based on Qhull . It uses the Qhull joggle option ('QJ'). For
information about qhull, see http://www.geom.umn.edu/software/qhull/.
For copyright information, see
http://www.geom.umn.edu/software/download/COPYING.html.

See Also delaunay3, delaunayn, dsearch, griddata, plot, triplot, trimesh, trisurf,
tsearch, voronoi

References [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar
ber/ and in PostScript format at
ftp://geom.umn.edu/pub/software/qhull-96.ps.

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

0

5

10

15

0

5

10

15
−10

−5

0

5

10

delaunay3

2-492

2delaunay3Purpose 3-D Delaunay tessellation

Syntax TES = delaunay3(x,y,z)

Description TES = delaunay3(x,y,z) returns an array TES, each row of which contains the
indices of the points in (x,y,z) that make up a tetrahedron in the tessellation
of (x,y,z). TES is a numtes-by-4 array where numtes is the number of facets in
the tessellation. x, y, and z are vectors of equal length. If the original data
points are collinear or x, y, and z define an insufficient number of points, the
triangles cannot be computed and delaunay3 returns an empty matrix.

Visualization Use tetramesh to plot delaunay3 output. tetramesh displays the tetrahedrons
defined in TES as mesh. tetramesh uses the default tranparency parameter
value 'FaceAlpha' = 0.9.

Example This example generates a 3-D Delaunay tessellation, then uses tetramesh to
plot the tetrahedrons that form the corresponding simplex. camorbit rotates
the camera position to provide a meaningful view of the figure.

d = [-1 1];
[x,y,z] = meshgrid(d,d,d); % A cube
x = [x(:);0];
y = [y(:);0];
z = [z(:);0];
% [x,y,z] are corners of a cube plus the center.
Tes = delaunay3(x,y,z)

Tes =

 9 1 5 6
 3 9 1 5
 2 9 1 6
 2 3 9 4
 2 3 9 1
 7 9 5 6
 7 3 9 5
 8 7 9 6
 8 2 9 6
 8 2 9 4

delaunay3

2-493

 8 3 9 4
 8 7 3 9

X = [x(:) y(:) z(:)];
tetramesh(Tes,X);camorbit(20,0)

Algorithm delaunay3 is based on Qhull [2]. It uses the Qhull joggle option ('QJ'). For
information about qhull, see http://www.geom.umn.edu/software/qhull/.
For copyright information, see
http://www.geom.umn.edu/software/download/COPYING.html.

See Also delaunay, delaunayn

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar
ber/ and in PostScript format at
ftp://geom.umn.edu/pub/software/qhull-96.ps.

delaunay3

2-494

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

delaunayn

2-495

2delaunaynPurpose n-D Delaunay tessellation

Syntax T = delaunayn(X)

Description T = delaunayn(X) computes a set of simplices such that no data points of X are
contained in any circumspheres of the simplices. The set of simplices forms the
Delaunay tessellation. X is an m-by-n array representing m points in n-D space.
T is a numt-by-(n+1) array where each row contains the indices into X of the
vertices of the corresponding simplex.

Visualization Plotting the output of delaunayn depends of the value of n:

• For n = 2, use triplot, trisurf, or trimesh as you would for delaunay.

• For n = 3, use tetramesh as you would for delaunay3.

For more control over the color of the facets, use patch to plot the output. For
an example, see “Tessellation and Interpolation of Scattered Data in Higher
Dimensions” in the MATLAB documentation.

• You cannot plot delaunayn output for n > 3.

Example This example generates an n-D Delaunay tessellation, where n = 3.

d = [-1 1];
[x,y,z] = meshgrid(d,d,d); % A cube
x = [x(:);0];
y = [y(:);0];
z = [z(:);0];
% [x,y,z] are corners of a cube plus the center.
X = [x(:) y(:) z(:)];
Tes = delaunayn(X)

Tes =
 9 1 5 6
 3 9 1 5
 2 9 1 6
 2 3 9 4
 2 3 9 1
 7 9 5 6
 7 3 9 5
 8 7 9 6

delaunayn

2-496

 8 2 9 6
 8 2 9 4
 8 3 9 4
 8 7 3 9

You can use tetramesh to visualize the tetrahedrons that form the
corresponding simplex. camorbit rotates the camera position to provide a
meaningful view of the figure.

tetramesh(Tes,X);camorbit(20,0)

Algorithm delaunayn is based on Qhull [2],. It uses the Qhull joggle option ('QJ'). For
information about qhull, see http://www.geom.umn.edu/software/qhull/.
For copyright information, see
http://www.geom.umn.edu/software/download/COPYING.html.

See Also convhulln, delaunayn, delaunay3, tetramesh, voronoin

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at

delaunayn

2-497

http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-bar
ber/ and in PostScript format at
ftp://geom.umn.edu/pub/software/qhull-96.ps.

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

delete

2-498

2deletePurpose Delete files or graphics objects

Graphical
Interface

As an alternative to the delete function, you can delete files using the Current
Directory browser.

Syntax delete filename
delete(h)
delete('filename')

Description delete filename deletes the named file from the disk. The filename may
include an absolute pathname or a pathname relative to the current directory.
The filename may also include wildcards, (*).

delete(h) deletes the graphics object with handle h. The function deletes the
object without requesting verification even if the object is a window.

delete('filename') is the function form of delete. Use this form when the
filename is stored in a string.

Note MATLAB does not ask for confirmation when you enter the delete
command. To avoid accidentally losing files or graphics objects that you need,
make sure that you have accurately specified the items you want deleted.

Examples To delete all files with a .mat extension in the ../mytests/ directory, type

delete('../mytests/*.mat')

To delete a directory, use rmdir rather than delete:

rmdir mydirectory

See Also dir, edit, mkdir, rmdir, type

delete (COM)

2-499

2delete (COM)Purpose Delete a COM control or server

Syntax delete(h)

Arguments h
Handle for a COM object previously returned from actxcontrol, actxserver,
get, or invoke.

Description Release all interfaces derived from the specified COM server or control, and
then delete the server or control itself. This is different from releasing an
interface, which releases and invalidates only that interface.

Examples Create a Microsoft Calender application. Then create a TitleFont interface
and use it to change the appearance of the font of the calendar’s title:

f = figure('pos',[300 300 500 500]);
cal = actxcontrol('mscal.calendar', [0 0 500 500], f);

TFont = get(cal, 'TitleFont')
TFont =
 Interface.mscal.calendar.TitleFont

set(TFont, 'Name', 'Viva BoldExtraExtended');
set(TFont, 'Bold', 0);

When you’re finished working with the title font, release the TitleFont
interface:

release(TFont);

Now create a GridFont interface and use it to modify the size of the calendar’s
date numerals:

GFont = get(cal, 'GridFont')
GFont =
 Interface.mscal.calendar.GridFont

set(GFont, 'Size', 16);

When you’re done, delete the cal object and the figure window. Deleting the
cal object also releases all interfaces to the object (e.g., GFont):

delete (COM)

2-500

delete(cal);
delete(f);
clear f;

Note that, although the object and interfaces themselves have been destroyed,
the variables assigned to them still reside in the MATLAB workspace until you
remove them with clear.

whos
 Name Size Bytes Class

 GFont 1x1 0 handle
 TFone 1x1 0 handle
 cal 1x1 0 handle

Grand total is 3 elements using 0 bytes

See Also release, save, load, actxcontrol, actxserver

delete (serial)

2-501

2delete (serial)Purpose Remove a serial port object from memory

Syntax delete(obj)

Arguments

Description delete(obj) removes obj from memory.

Remarks When you delete obj, it becomes an invalid object. Because you cannot connect
an invalid serial port object to the device, you should remove it from the
workspace with the clear command. If multiple references to obj exist in the
workspace, then deleting one reference invalidates the remaining references.

If obj is connected to the device, it has a Status property value of open. If you
issue delete while obj is connected, then the connection is automatically
broken. You can also disconnect obj from the device with the fclose function.

If you use the help command to display help for delete, then you need to
supply the pathname shown below.

help serial/delete

Example This example creates the serial port object s, connects s to the device, writes
and reads text data, disconnects s from the device, removes s from memory
using delete, and then removes s from the workspace using clear.

s = serial('COM1');
fopen(s)
fprintf(s,'*IDN?')
idn = fscanf(s);
fclose(s)
delete(s)
clear s

See Also Functions
clear, fclose, isvalid

Properties
Status

obj A serial port object or an array of serial port objects.

delete (timer)

2-502

2delete (timer)Purpose Remove a timer object from memory

Syntax delete(obj)

Description delete(obj) removes timer object, obj, from memory. If obj is an array of
timer objects, delete removes all the objects from memory.

When you delete a timer object, it becomes invalid and cannot be reused. Use
the clear command to remove invalid timer objects from the workspace.

If multiple references to a timer object exist in the workspace, deleting the
timer object invalidates the remaining references. Use the clear command to
remove the remaining references to the object from the workspace.

See Also clear, isvalid, timer

deleteproperty (COM)

2-503

2deleteproperty (COM)Purpose Remove custom property from COM object

Syntax deleteproperty(h, 'propertyname')

Arguments h
Handle for a COM object previously returned from actxcontrol, actxserver,
get, or invoke.

propertyname
A string specifying the name of the custom property to delete.

Description Delete a property, propertyname, from the custom properties belonging to
object or interface, h. You can only delete properties that have been created
with addproperty.

Examples Create an mwsamp control and add a new property named Position to it. Assign
an array value to the property:

f = figure('pos', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
get(h)
 Label: 'Label'
 Radius: 20

addproperty(h, 'Position');
set(h, 'Position', [200 120]);
get(h)
 Label: 'Label'
 Radius: 20
 Position: [200 120]

Delete the custom Position property:

deleteproperty(h, 'Position');
get(h)
 Label: 'Label'
 Radius: 20

See Also addproperty, get, set, inspect

demo

2-504

2demoPurpose Access product demos via Help browser

Syntax demo
demo subtopic
demo subtopic category

Description demo opens the Demos panel in the Help browser. In the left pane, expand the
listing for a product area (for example, MATLAB). Within that product area,
expand the listing for a product or product category (for example, MATLAB
Graphics). Select a specific demo from the list (for example, Visualizing Sound).
In the right pane, view instructions for using the demo. For more information,
see Running Demonstrations. For platforms that do not support Java GUIs,
the demos are presented in a non-Java interface. To run a demo from the
command line, type the demo name. For playshow demos, that is those demos
in which the H1 line begins with two comment symbols (%%), type playshow
followed by the demo name.

demo subtopic opens the Demos panel in the Help browser with the specified
subtopic expanded. Subtopics are matlab, toolbox, simulink, and blockset.

demo subtopic product opens the Demos panel in the Help browser to the
specified product or category within the subtopic.

demo

2-505

Examples Accessing Toolbox Demos
To find the demos relating to the Communications Toolbox, type

demo toolbox communication

The Help browser opens to the Demos panel with the Toolbox subtopic
expanded and with the Communications product highlighted and expanded to
show the available demos.

Accessing the Simulink Automotive Demos
To accesses the automotive demos within Simulink, type

demo simulink automotive

Type demo to access the Demos panel in the Help browser.

View the demos for products installed on your system. When you choose a
demo, information about it appears in the display pane.

To run an M-file demo, click this link.

When you click this link, the M-f ile source code
for the demo appears in your editor.

demo

2-506

The Demos panel opens with the Simulink subtopic and Automotive category
expanded.

Running a Demo from the Command Line
Type

vibes

to run a visualization demonstration showing an animated L-shaped
membrane.

Running a Playshow Demo from the Command Line
Type

quake

to run an earthquake data demo. Not much appears to happen. This is because
quake is a playshow demo. Verify this by viewing the M-file, quake.m, for
example, by typing

edit quake

The first line, that is, the H1 line for quake is

%% Loma Prieta Earthquake

The %% indicates that quake is a playshow demo. So to run it, type

playshow quake

and the earthquake demo runs.

See Also help, helpbrowser, helpwin, lookfor

depdir

2-507

2depdirPurpose List the dependent directories of an M-file or P-file

Syntax list = depdir('file_name');
[list,prob_files,prob_sym,prob_strings] = depdir('file_name');
[...] = depdir('file_name1','file_name2',...);

Description The depdir function lists the directories of all of the functions that a specified
M-file or P-file needs to operate. This function is useful for finding all of the
directories that need to be included with a runtime application and for
determining the runtime path.

list = depdir('file_name') creates a cell array of strings containing the
directories of all the M-files and P-files that file_name.m or file_name.p uses.
This includes the second-level files that are called directly by file_name, as
well as the third-level files that are called by the second-level files, and so on.

[list,prob_files,prob_sym,prob_strings] = depdir('file_name')
creates three additional cell arrays containing information about any problems
with the depdir search. prob_files contains filenames that depdir was
unable to parse. prob_sym contains symbols that depdir was unable to find.
prob_strings contains callback strings that depdir was unable to parse.

[...] = depdir('file_name1','file_name2',...) performs the same
operation for multiple files. The dependent directories of all files are listed
together in the output cell arrays.

Example list = depdir('mesh')

See Also depfun

depfun

2-508

2depfunPurpose List the dependent functions of an M-file or P-file

Syntax list = depfun('file_name');
[list,builtins,classes] = depfun('file_name');
[list,builtins,classes,prob_files,prob_sym,eval_strings,...

called_from,java_classes] = depfun('file_name');
[...] = depfun('file_name1','file_name2',...);
[...] = depfun('fig_file_name');
[...] = depfun(...,'-toponly');

Description The depfun function lists all of the functions and scripts, as well as built-in
functions, that a specified M-file needs to operate. This is useful for finding all
of the M-files that you need to compile for a MATLAB runtime application.

list = depfun('file_name') creates a cell array of strings containing the
paths of all the files that file_name.m uses. This includes the second-level files
that are called directly by file_name.m, as well as the third-level files that are
called by the second-level files, and so on.

Note If depfun reports that “These files could not be parsed:” or if the
prob_files output below is nonempty, then the rest of the output of depfun
might be incomplete. You should correct the problematic files and invoke
depfun again.

[list,builtins,classes] = depfun('file_name') creates three cell arrays
containing information about dependent functions. list contains the paths of
all the files that file_name and its subordinates use. builtins contains the
built-in functions that file_name and its subordinates use. classes contains
the MATLAB classes that file_name and its subordinates use.

[list,builtins,classes,prob_files,prob_sym,eval_strings,...
called_from,java_classes] = depfun('file_name') creates additional cell
arrays or structure arrays containing information about any problems with the
depfun search and about where the functions in list are invoked. The
additional outputs are:

depfun

2-509

• prob_files, which indicates which files depfun was unable to parse, find, or
access. Parsing problems can arise from MATLAB syntax errors. prob_files
is a structure array whose fields are:

- name, which gives the names of the files

- listindex, which tells where the files appeared in list

- errmsg, which describes the problems

• prob_sym, which indicates which symbols depfun was unable to resolve as
functions or variables. It is a structure array whose fields are:

- fcn_id, which tells where the files appeared in list

- name, which gives the names of the problematic symbols

• eval_strings, which indicates usage of these evaluation functions: eval,
evalc, evalin, feval. When preparing a runtime application, you should
examine this output to determine whether an evaluation function invokes a
function that does not appear in list. The output eval_strings is a
structure array whose fields are:

- fcn_name, which give the names of the files that use evaluation functions

- lineno, which gives the line numbers in the files where the evaluation
functions appear

• called_from, a cell array of the same length as list. This cell array is
arranged so that
list(called_from{i})

returns all functions in file_name that invoke the function list{i}.

• java_classes, a cell array of Java class names that file_name and its
subordinates use

[...] = depfun('file_name1','file_name2',...) performs the same
operation for multiple files. The dependent functions of all files are listed
together in the output arrays.

[...] = depfun('fig_file_name') looks for dependent functions among the
callback strings of the GUI elements that are defined in the .fig or .mat file
named fig_file_name.

[...] = depfun(...,'-toponly') differs from the other syntaxes of depfun
in that it examines only the files listed explicitly as input arguments. It does

depfun

2-510

not examine the files on which they depend. In this syntax, the flag '-toponly'
must be the last input argument.

Notes

1 If depfun does not find a file called hginfo.mat on the path, then it creates
one. This file contains information about Handle Graphics callbacks.

2 If your application uses toolbar items from the MATLAB default figure
window, then you must include 'FigureToolBar.fig' in your input to
depfun.

3 If your application uses menu items from the MATLAB default figure
window, then you must include 'FigureMenuBar.fig' in your input to
depfun.

4 Because many built-in Handle Graphics functions invoke newplot, the list
produced by depfun always includes the functions on which newplot is
dependent:
- 'matlabroot\toolbox\matlab\graphics\newplot.m'
- 'matlabroot\toolbox\matlab\graphics\closereq.m'
- 'matlabroot\toolbox\matlab\graphics\gcf.m'
- 'matlabroot\toolbox\matlab\graphics\gca.m'
- 'matlabroot\toolbox\matlab\graphics\private\clo.m'
- 'matlabroot\toolbox\matlab\general\@char\delete.m'
- 'matlabroot\toolbox\matlab\lang\nargchk.m'
- 'matlabroot\toolbox\matlab\uitools\allchild.m'
- 'matlabroot\toolbox\matlab\ops\setdiff.m'
- 'matlabroot\toolbox\matlab\ops\@cell\setdiff.m'
- 'matlabroot\toolbox\matlab\iofun\filesep.m'
- 'matlabroot\toolbox\matlab\ops\unique.m'
- 'matlabroot\toolbox\matlab\elmat\repmat.m'
- 'matlabroot\toolbox\matlab\datafun\sortrows.m'
- 'matlabroot\toolbox\matlab\strfun\deblank.m'
- 'matlabroot\toolbox\matlab\ops\@cell\unique.m'
- 'matlabroot\toolbox\matlab\strfun\@cell\deblank.m'
- 'matlabroot\toolbox\matlab\datafun\@cell\sort.m'
- 'matlabroot\toolbox\matlab\strfun\cellstr.m'
- 'matlabroot\toolbox\matlab\datatypes\iscell.m'
- 'matlabroot\toolbox\matlab\strfun\iscellstr.m'

depfun

2-511

- 'matlabroot\toolbox\matlab\datatypes\cellfun.dll'

Examples list = depfun('mesh'); % Files mesh.m depends on
list = depfun('mesh','-toponly') % Files mesh.m depends on
directly
[list,builtins,classes] = depfun('gca');

See Also depdir, profile

det

2-512

2detPurpose Matrix determinant

Syntax d = det(X)

Description d = det(X) returns the determinant of the square matrix X. If X contains only
integer entries, the result d is also an integer.

Remarks Using det(X) == 0 as a test for matrix singularity is appropriate only for
matrices of modest order with small integer entries. Testing singularity using
abs(det(X)) <= tolerance is not recommended as it is difficult to choose the
correct tolerance. The function cond(X) can check for singular and nearly
singular matrices.

Algorithm The determinant is computed from the triangular factors obtained by Gaussian
elimination

[L,U] = lu(A)
s = det(L) % This is always +1 or -1
det(A) = s*prod(diag(U))

Examples The statement A = [1 2 3; 4 5 6; 7 8 9]

produces

A =
1 2 3
4 5 6
7 8 9

This happens to be a singular matrix, so d = det(A) produces d = 0.
Changing A(3,3) with A(3,3) = 0 turns A into a nonsingular matrix. Now
d = det(A) produces d = 27.

See Also cond, condest, inv, lu, rref

The arithmetic operators \, /

detrend

2-513

2detrendPurpose Remove linear trends.

Syntax y = detrend(x)
y = detrend(x,'constant')
y = detrend(x,'linear',bp)

Description detrend removes the mean value or linear trend from a vector or matrix,
usually for FFT processing.

y = detrend(x) removes the best straight-line fit from vector x and returns it
in y. If x is a matrix, detrend removes the trend from each column.

y = detrend(x,'constant') removes the mean value from vector x or, if x is
a matrix, from each column of the matrix.

y = detrend(x,'linear',bp) removes a continuous, piecewise linear trend
from vector x or, if x is a matrix, from each column of the matrix. Vector bp
contains the indices of the breakpoints between adjacent linear segments. The
breakpoint between two segments is defined as the data point that the two
segments share.

detrend(x,'linear'), with no breakpoint vector specified, is the same as
detrend(x).

Example sig = [0 1 -2 1 0 1 -2 1 0]; % signal with no linear trend
trend = [0 1 2 3 4 3 2 1 0]; % two-segment linear trend
x = sig+trend; % signal with added trend
y = detrend(x,'linear',5) % breakpoint at 5th element

breakpoints

detrend

2-514

y =

-0.0000
 1.0000
 -2.0000
 1.0000
 0.0000
 1.0000
 -2.0000
 1.0000
 -0.0000

Note that the breakpoint is specified to be the fifth element, which is the data
point shared by the two segments.

Algorithm detrend computes the least-squares fit of a straight line (or composite line for
piecewise linear trends) to the data and subtracts the resulting function from
the data. To obtain the equation of the straight-line fit, use polyfit.

See Also polyfit

deval

2-515

2devalPurpose Evaluate the solution of a differential equation problem

Syntax sxint = deval(sol,xint)
sxint = deval(xint,sol)
sxint = deval(sol,xint,idx)
sxint = deval(xint,sol,idx)

Description sxint = deval(sol,xint) and sxint = deval(xint,sol) evaluate the
solution of a differential equation problem. sol is a structure returned by one
of these solvers:

• An initial value problem solver (ode45, ode23, ode113, ode15s, ode23s,
ode23t, ode23tb),

• The delay differential equations solver (dde23),

• The boundary value problem solver (bvp4c).

xint is a point or a vector of points at which you want the solution. The
elements of xint must be in the interval [sol.x(1),sol.x(end)]. For each i,
sxint(:,i) is the solution at xint(i).

sxint = deval(sol,xint,idx) and sxint = deval(xint,sol,idx) evaluate
as above but return only the solution components with indices listed in idx.

Example This example solves the system using ode45, and evaluates
and plots the first component of the solution at 100 points in the interval
[0,20].

sol = ode45(@vdp1,[0 20],[2 0]);
x = linspace(0,20,100);
y = deval(sol,x,1);
plot(x,y);

y ′ vdp1 t y,()=

deval

2-516

See Also ODE solvers: ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

DDE solver: dde23

BVP solver: bvp4c

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

diag

2-517

2diagPurpose Diagonal matrices and diagonals of a matrix

Syntax X = diag(v,k)
X = diag(v)
v = diag(X,k)
v = diag(X)

Description X = diag(v,k) when v is a vector of n components, returns a square matrix X
of order n+abs(k), with the elements of v on the kth diagonal. k = 0 represents
the main diagonal, k > 0 above the main diagonal, and k < 0 below the main
diagonal.

X = diag(v) puts v on the main diagonal, same as above with k = 0.

v = diag(X,k) for matrix X, returns a column vector v formed from the
elements of the kth diagonal of X.

v = diag(X) returns the main diagonal of X, same as above with k = 0.

Examples diag(diag(X)) is a diagonal matrix.

sum(diag(X)) is the trace of X.

The statement

diag(-m:m)+diag(ones(2*m,1),1)+diag(ones(2*m,1),-1)

produces a tridiagonal matrix of order 2*m+1.

k > 0

k < 0

k = 0

diag

2-518

See Also spdiags, tril, triu

dialog

2-519

2dialogPurpose Create and display dialog box

Syntax h = dialog('PropertyName',PropertyValue,...)

Description h = dialog('PropertyName',PropertyValue,...) returns a handle to a
dialog box. This function creates a figure graphics object and sets the figure
properties recommended for dialog boxes. You can specify any valid figure
property value.

See Also errordlg, figure, helpdlg, inputdlg, pagedlg, printdlg, questdlg, uiwait,
uiresume, warndlg

“Predefined Dialog Boxes” for related functions

diary

2-520

2diaryPurpose Save session to a file

Syntax diary
diary('filename')
diary off
diary on
diary filename

Description The diary function creates a log of keyboard input and the resulting output
(except it does not include graphics). The output of diary is an ASCII file,
suitable for printing or for inclusion in reports and other documents. If you do
not specify filename, MATLAB creates a file named diary in the current
directory.

diary toggles diary mode on and off. To see the status of diary, type
get(0,'Diary'). MATLAB returns either on or off indicating the diary
status.

diary('filename') writes a copy of all subsequent keyboard input and the
resulting output (except it does not include graphics) to the named file, where
filename is the full pathname or filename is in the current MATLAB
directory. If the file already exists, output is appended to the end of the file. You
cannot use a filename called off or on. To see the name of the diary file, use
get(0,'DiaryFile').

diary off suspends the diary.

diary on resumes diary mode using the current filename, or the default
filename diary if none has yet been specified.

diary filename is the unquoted form of the syntax.

See Also Command History window in MATLAB Development Environment
documentation

diff

2-521

2diffPurpose Differences and approximate derivatives

Syntax Y = diff(X)
Y = diff(X,n)
Y = diff(X,n,dim)

Description Y = diff(X) calculates differences between adjacent elements of X.

If X is a vector, then diff(X) returns a vector, one element shorter than X, of
differences between adjacent elements:

[X(2)-X(1) X(3)-X(2) ... X(n)-X(n-1)]

If X is a matrix, then diff(X) returns a matrix of row differences:

[X(2:m,:)-X(1:m-1,:)]

In general, diff(X) returns the differences calculated along the first
non-singleton (size(X,dim) > 1) dimension of X.

Y = diff(X,n) applies diff recursively n times, resulting in the nth
difference. Thus, diff(X,2) is the same as diff(diff(X)).

Y = diff(X,n,dim) is the nth difference function calculated along the
dimension specified by scalar dim. If order n equals or exceeds the length of
dimension dim, diff returns an empty array.

Remarks Since each iteration of diff reduces the length of X along dimension dim, it is
possible to specify an order n sufficiently high to reduce dim to a singleton
(size(X,dim) = 1) dimension. When this happens, diff continues calculating
along the next nonsingleton dimension.

Examples The quantity diff(y)./diff(x) is an approximate derivative.

x = [1 2 3 4 5];
y = diff(x)
y =
 1 1 1 1

z = diff(x,2)
z =

diff

2-522

 0 0 0

Given,

A = rand(1,3,2,4);

diff(A) is the first-order difference along dimension 2.

diff(A,3,4) is the third-order difference along dimension 4.

See Also gradient, prod, sum

dir

2-523

2dirPurpose Display directory listing

Graphical
Interface

As an alternative to the dir function, use the Current Directory browser.

Syntax dir
dir name
files = dir('name')

Description dir lists the files in the current working directory.

dir name lists the specified files. The name argument can be a pathname,
filename, or can include both. You can use absolute and relative pathnames
and wildcards (*).

files = dir('directory') returns the list of files in the specified directory
(or the current directory, if dirname is not specified) to an m-by-1 structure with
the fields

Examples List Directory Contents
To view the contents of the matlab/audio directory, type

dir $matlabroot/toolbox/matlab/audio

Using Wildcard and File Extension
To view the MAT files in your current working directory that include the term
java, type

dir *java*.mat

MATLAB returns

java_array.mat javafrmobj.mat testjava.mat

name Filename

date Modification date

bytes Number of bytes allocated to the file

isdir 1 if name is a directory; 0 if not

dir

2-524

Using Relative Pathname
To view the M-files in the MATLAB audio directory, type

dir(fullfile(matlabroot,'toolbox/matlab/audio/*.m'))

MATLAB returns

Contents.m auread.m soundsc.m
audiodevinfo.m auwrite.m wavplay.m
audioplayer.m lin2mu.m wavread.m
audioplayerreg.m mu2lin.m wavrecord.m
audiorecorder.m prefspanel.m wavwrite.m
audiouniquename.m sound.m

Returning File List to Structure
To return the list of files to the variable audio_files, type

audio_files=dir(fullfile(matlabroot,'toolbox/matlab/audio/*.m')
)

MATLAB returns the information in a structure array.

audio_files =
19x1 struct array with fields:
 name
 date
 bytes
 isdir

Index into the structure to access a particular item. For example,

audio_files(3).name
ans =
audioplayer.m

See Also cd, copyfile, delete, fileattrib, filebrowser, ls, mkdir, movefile, rmdir,
type, what

disp

2-525

2dispPurpose Display text or array

Syntax disp(X)

Description disp(X) displays an array, without printing the array name. If X contains a
text string, the string is displayed.

Another way to display an array on the screen is to type its name, but this
prints a leading “X =,” which is not always desirable.

Note that disp does not display empty arrays.

Examples One use of disp in an M-file is to display a matrix with column labels:

disp(' Corn Oats Hay')
disp(rand(5,3))

which results in

Corn Oats Hay
 0.2113 0.8474 0.2749
 0.0820 0.4524 0.8807
 0.7599 0.8075 0.6538
 0.0087 0.4832 0.4899
 0.8096 0.6135 0.7741

See Also format, int2str, num2str, rats, sprintf

disp (serial)

2-526

2disp (serial)Purpose Display serial port object summary information

Syntax obj
disp(obj)

Arguments

Description obj or disp(obj) displays summary information for obj.

Remarks In addition to the syntax shown above, you can display summary information
for obj by excluding the semicolon when:

• Creating a serial port object

• Configuring property values using the dot notation

Use the display summary to quickly view the communication settings,
communication state information, and information associated with read and
write operations.

Example The following commands display summary information for the serial port
object s.

s = serial('COM1')
s.BaudRate = 300
s

obj A serial port object or an array of serial port objects.

disp (timer)

2-527

2disp (timer)Purpose Display information about timer object

Syntax obj
disp(obj)

Description obj or disp(obj) displays summary information for timer object, obj.

If obj is an array of timer objects, disp outputs a table of summary information
about the timer objects in the array.

In addition to the syntax shown above, you can display summary information
for obj by excluding the semicolon when:

• Creating a timer object, using the timer function

• Configuring property values using the dot notation

Example The following commands display summary information for the timer object t.

t = timer

Timer Object: timer-1

 Timer Settings
 ExecutionMode: singleShot
 Period: 1
 BusyMode: drop
 Running: off

 Callbacks
 TimerFcn: []
 ErrorFcn: []
 StartFcn: []
 StopFcn: []

This example shows the summary information displayed for an array of timer
objects, t_arr.

disp(t_arr)

Timer Object Array

disp (timer)

2-528

 Index: ExecutionMode: Period: TimerFcn: Name:
 1 singleShot 1 [] timer-1
 2 singleShot 1 [] timer-2

See Also timer, get

display

2-529

2displayPurpose Overloaded method to display an object

Syntax display(X)

Description display(X) prints the value of a variable or expression, X. MATLAB calls
display(X) when it interprets a variable or expression, X, that is not
terminated by a semicolon. For example, sin(A) calls display, while sin(A);
does not.

If X is an instance of a MATLAB class, then MATLAB calls the display method
of that class, if such a method exists. If the class has no display method or if X
is not an instance of a MATLAB class, then the MATLAB builtin display
function is called.

Examples A typical implementation of display calls disp to do most of the work and looks
like this.

function display(X)
if isequal(get(0,'FormatSpacing'),'compact')
 disp([inputname(1) ' =']);
 disp(X)
else
 disp(' ')
 disp([inputname(1) ' =']);
 disp(' ');
 disp(X)
end

The expression magic(3), with no terminating semicolon, calls this function as
display(magic(3)).

magic(3)

ans =

 8 1 6
 3 5 7
 4 9 2

As an example of a class display method, the function below implements the
display method for objects of the MATLAB class, polynom.

display

2-530

function display(p)
% POLYNOM/DISPLAY Command window display of a polynom
disp(' ');
disp([inputname(1),' = '])
disp(' ');
disp([' ' char(p)])
disp(' ');

The statement

p = polynom([1 0 -2 -5])

creates a polynom object. Since the statement is not terminated with a
semicolon, the MATLAB interpreter calls display(p), resulting in the output

p =

 x^3 - 2*x - 5

See Also disp, ans, sprintf, special characters

divergence

2-531

2divergencePurpose Computes the divergence of a vector field

Syntax div = divergence(X,Y,Z,U,V,W)
div = divergence(U,V,W)
div = divergence(X,Y,U,V)
div = divergence(U,V)

Description div = divergence(X,Y,Z,U,V,W) computes the divergence of a 3-D vector
field U, V, W. The arrays X, Y, Z define the coordinates for U, V, W and must be
monotonic and 3-D plaid (as if produced by meshgrid).

div = divergence(U,V,W) assumes X, Y, and Z are determined by the
expression:

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

div = divergence(X,Y,U,V) computes the divergence of a 2-D vector field U,
V. The arrays X, Y define the coordinates for U, V and must be monotonic and
2-D plaid (as if produced by meshgrid).

div = divergence(U,V) assumes X and Y are determined by the expression:

[X Y] = meshgrid(1:n,1:m)

where [m,n] = size(U).

Examples This example displays the divergence of vector volume data as slice planes
using color to indicate divergence.

load wind
div = divergence(x,y,z,u,v,w);
slice(x,y,z,div,[90 134],[59],[0]);
shading interp
daspect([1 1 1])
camlight

divergence

2-532

See Also streamtube, curl, isosurface

“Volume Visualization” for related functions

Displaying Divergence with Stream Tubes for another example

dlmread

2-533

2dlmreadPurpose Read an ASCII delimited file into a matrix

Graphical
Interface

As an alternative to dlmread, use the Import Wizard. To activate the Import
Wizard, select Import data from the File menu.

Syntax M = dlmread(filename,delimiter)
M = dlmread(filename,delimiter,R,C)
M = dlmread(filename,delimiter,range)

Description M = dlmread(filename,delimiter) reads numeric data from the ASCII
delimited file filename, using the specified delimiter. A comma (,) is the
default delimiter. Use '\t' to specify a tab delimiter.

M = dlmread(filename,delimiter,R,C) reads numeric data from the ASCII
delimited file filename, using the specified delimiter. The values R and C
specify the row and column where the upper-left corner of the data lies in the
file. R and C are zero based so that R=0, C=0 specifies the first value in the file,
which is the upper left corner.

M = dlmread(filename,delimiter,range) reads the range specified by
range = [R1 C1 R2 C2] where (R1,C1) is the upper-left corner of the data to
be read and (R2,C2) is the lower-right corner. range can also be specified using
spreadsheet notation as in range = 'A1..B7'.

Remarks dlmread fills empty delimited fields with zero. Data files having lines that end
with a non-space delimiter, such as a semi-colon, produce a result that has an
additional last column of zeros.

See Also dlmwrite, textread, csvread, csvwrite, wk1read, wk1write

dlmwrite

2-534

2dlmwritePurpose Write a matrix to an ASCII delimited file

Syntax dlmwrite(filename,M,delimiter)
dlmwrite(filename,M,delimiter,R,C)

Description dlmwrite(filename,M,delimiter) writes matrix M into an ASCII-format file,
using delimiter to separate matrix elements. The data is written to the upper
left-most cell of the spreadsheet filename. A comma (,) is the default delimiter.
Use '\t' to produce tab-delimited files.

dlmwrite(filename,M,delimiter,R,C) writes matrix A into an ASCII-format
file, using delimiter to separate matrix elements. The data is written to the
spreadsheet filename, starting at spreadsheet cell R and C, where R is the row
offset and C is the column offset. R and C are zero based so that R=0, C=0
specifies the first value in the file, which is the upper left corner.

Remarks The resulting file is readable by spreadsheet programs.

See Also dlmread, csvwrite, csvread, wk1write, wk1read

dmperm

2-535

2dmpermPurpose Dulmage-Mendelsohn decomposition

 Syntax p = dmperm(A)
[p,q,r,s] = dmperm(A)

Description p = dmperm(A) if A is square and has full rank, returns a row permutation p so
that A(p,:) has nonzero diagonal elements. This permutation is also called a
perfect matching. If A is not square or not full rank, p is a vector that identifies
a matching of maximum size: for each column j of A, either p(j)=0 or
A(p(j),j) is nonzero.

[p,q,r,s] = dmperm(A), where A need not be square or full rank, finds
permutations p and q and index vectors r and s so that A(p,q) is block upper
triangular. The kth block has indices (r(k):r(k+1)-1, s(k):s(k+1)-1).
When A is square and has full rank, r = s.

If A is not square or not full rank, the first block may have more columns and
the last block may have more rows. All other blocks are square and irreducible.
dmperm permutes nonzeros to the diagonals of square blocks, but does not do
this for non-square blocks.

Remarks If A is a reducible matrix, the linear system can be solved by permuting
A to a block upper triangular form, with irreducible diagonal blocks, and then
performing block backsubstitution. Only the diagonal blocks of the permuted
matrix need to be factored, saving fill and arithmetic in the blocks above the
diagonal.

In graph theoretic terms, dmperm finds a maximum-size matching in the
bipartite graph of A, and the diagonal blocks of A(p,q) correspond to the strong
Hall components of that graph. The output of dmperm can also be used to find
the connected or strongly connected components of an undirected or directed
graph. For more information see Pothen and Fan [].

See Also sprank

References Pothen, Alex and Chin-Ju Fan, "Computing the Block Triangular Form of a
Sparse Matrix," ACM Transactions on Mathematical Software, Vol. 16, No. 4,
Dec. 1990, pp. 303-324.

Ax b=

doc

2-536

2docPurpose Display online documentation in MATLAB Help browser

Graphical
Interface

As an alternative to the doc function, use the Help browser Search tab. Set the
Search type to Function Name, type the function name, and click Go.

Syntax doc
doc function
doc toolbox/
doc toolbox/function

Description doc opens the Help browser, if it is not already running.

doc function displays the reference page for the MATLAB function function
in the Help browser. If function is overloaded, doc displays the reference page
for the first function on the search path and lists the overloaded functions in
the MATLAB Command Window. If a reference page for the function does not
exist, doc displays M-file help in the Help browser.

doc toolbox/ displays the Roadmap page, a summary of the most pertinent
documentation for toolbox, in the Help browser.

doc toolbox/function displays the reference page for function that belongs
to the specified toolbox, in the Help browser.

See Also help, helpbrowser, lookfor, type, web

docopt

2-537

2docoptPurpose Display location of help file directory for UNIX platforms

Syntax docopt
[doccmd,options,docpath] = docopt

Description docopt displays the location of the online help files directory (online
documentation location) for UNIX platforms if the web function is used with the
-browser option. It is also used for UNIX platforms that do not support Java
GUIs—see the “Release 13 Release Notes” for more information about these
platforms. You specify where the online help directory will be located when you
install MATLAB. It can be on a disk or CD-ROM drive in your local system. If
you relocate your online help file directory, edit the docopt.m file, changing the
location in it. (For Windows and the UNIX platforms that support Java GUIs,
select File -> Preferences -> Help to view or change the documentation
location.)

[doccmd,options,docpath] = docopt displays three strings: doccmd,
options, and docpath.

Remarks To globally replace the online help file directory location, update
$matlabroot/toolbox/local/docopt.m.

To override the global setting, copy $matlabroot/toolbox/local/docopt.m to
$HOME/matlab/docopt.m and make changes there. For the changes to take
effect in the current MATLAB session, $HOME/matlab must be on your
MATLAB path.

See Also doc, help, helpbrowser, helpdesk, lookfor, type

doccmd The function that doc uses to display MATLAB documentation.
The default is netscape.

options Additional configuration options for use with doccmd.

docpath The path to the MATLAB online help files. If docpath is empty,
the doc function assumes the help files are in the default
location.

docroot

2-538

2docrootPurpose Get or set root directory for MATLAB help files

Graphical
Interface

As an alternative to the docroot function, select File -> Preferences -> Help
and set the Documentation location.

Syntax docroot
docroot('newdocroot')
docroot(newdocroot, 'cdrom')

Description docroot displays the current value for docroot, the root directory for MATLAB
help files. This is the directory where the MATLAB Help browser looks for the
online documentation to display.

docroot('newdocroot') sets the root directory for MATLAB help files to
newdocroot, where newdocroot is the full pathname to the help directory. For
example, type docroot('d:/matlabr13/help'). One useful application is
setting docroot in your startup.m file.

docroot('newdocroot', 'cdrom') sets the root directory for MATLAB help
files on the MATLAB documentation CD to newdocroot, where newdocroot is
the full pathname to the help directory on your MATLAB documentation CD.
For example, type docroot('z:/help', 'cdrom').

Examples You can include a docroot statement in your startup.m file.

See Also doc, helpbrowser

dos

2-539

2dosPurpose Execute a DOS command and return result

Syntax dos command
status = dos('command')
[status,result] = dos('command')
[status,result] = dos('command','-echo')

Description dos command calls upon the shell to execute the given command for Windows
systems.

status = dos('command') returns completion status to the status variable.

[status,result] = dos('command') in addition to completion status, returns
the result of the command to the result variable.

[status,result] = dos('command','-echo') forces the output to the
Command Window, even though it is also being assigned into a variable.

Both console (DOS) programs and Windows programs may be executed, but the
syntax causes different results based on the type of programs. Console
programs have stdout and their output is returned to the result variable. They
are always run in an iconified DOS or Command Prompt Window except as
noted below. Console programs never execute in the background. Also,
MATLAB will always wait for the stdout pipe to close before continuing
execution. Windows programs may be executed in the background as they have
no stdout.

The ampersand, &, character has special meaning. For console programs this
causes the console to open. Omitting this character will cause console programs
to run iconically. For Windows programs, appending this character will cause
the application to run in the background. MATLAB will continue processing.

Examples The following example performs a directory listing, returning a zero (success)
in s and the string containing the listing in w.

[s, w] = dos('dir');

To open the DOS 5.0 editor in a DOS window

dos('edit &')

dos

2-540

To open the notepad editor and return control immediately to MATLAB

dos('notepad file.m &')

The next example returns a one in s and an error message in w because foo is
not a valid shell command.

[s, w] = dos('foo')

This example echoes the results of the dir command to the Command Window
as it executes as well as assigning the results to w.

[s, w] = dos('dir', '-echo');

See Also ! (exclamation point), perl, system, unix

dot

2-541

2dotPurpose Vector dot product

Syntax C = dot(A,B)
C = dot(A,B,dim)

Description C = dot(A,B) returns the scalar product of the vectors A and B. A and B must
be vectors of the same length. When A and B are both column vectors, dot(A,B)
is the same as A'*B.

For multidimensional arrays A and B, dot returns the scalar product along the
first non-singleton dimension of A and B. A and B must have the same size.

C = dot(A,B,dim) returns the scalar product of A and B in the dimension dim.

Examples The dot product of two vectors is calculated as shown:

a = [1 2 3]; b = [4 5 6];
c = dot(a,b)

c =
 32

See Also cross

double

2-542

2doublePurpose Convert to double-precision

Syntax double(X)

Description double(x) returns the double-precision value for X. If X is already a
double-precision array, double has no effect.

 Remarks double is called for the expressions in for, if, and while loops if the expression
isn't already double-precision. double should be overloaded for any object when
it makes sense to convert it to a double-precision value.

dragrect

2-543

2dragrectPurpose Drag rectangles with mouse

Syntax [finalrect] = dragrect(initialrect)
[finalrect] = dragrect(initialrect,stepsize)

Description [finalrect] = dragrect(initialrect) tracks one or more rectangles
anywhere on the screen. The n-by-4 matrix, initialrect, defines the
rectangles. Each row of initialrect must contain the initial rectangle
position as [left bottom width height] values. dragrect returns the final
position of the rectangles in finalrect.

[finalrect] = dragrect(initialrect,stepsize) moves the rectangles in
increments of stepsize. The lower-left corner of the first rectangle is
constrained to a grid of size equal to stepsize starting at the lower-left corner
of the figure, and all other rectangles maintain their original offset from the
first rectangle.

[finalrect] = dragrect(...) returns the final positions of the rectangles
when the mouse button is released. The default stepsize is 1.

Remarks dragrect returns immediately if a mouse button is not currently pressed. Use
dragrect in a ButtonDownFcn, or from the command line in conjunction with
waitforbuttonpress to ensure that the mouse button is down when dragrect
is called. dragrect returns when you release the mouse button.

If the drag ends over a figure window, the positions of the rectangles are
returned in that figure's coordinate system. If the drag ends over a part of the
screen not contained within a figure window, the rectangles are returned in the
coordinate system of the figure over which the drag began

Example Drag a rectangle that is 50 pixels wide and 100 pixels in height.

waitforbuttonpress
point1 = get(gcf,'CurrentPoint') % button down detected
rect = [point1(1,1) point1(1,2) 50 100]
[r2] = dragrect(rect)

See Also rbbox, waitforbuttonpress

“Selecting Region of Interest” for related functions

drawnow

2-544

2drawnowPurpose Complete pending drawing events

Syntax drawnow

Description drawnow flushes the event queue and updates the figure window.

Remarks Other events that cause MATLAB to flush the event queue and draw the figure
windows include:

• Returning to the MATLAB prompt

• A pause statement

• A waitforbuttonpress statement

• A waitfor statement

• A getframe statement

• A figure statement

Examples Executing the statements,

x = -pi:pi/20:pi;
plot(x,cos(x))
drawnow
title('A Short Title')
grid on

as an M-file updates the current figure after executing the drawnow function
and after executing the final statement.

See Also waitfor, pause, waitforbuttonpress

“Figure Windows” for related functions

dsearch

2-545

2dsearchPurpose Search for nearest point

Syntax K = dsearch(x,y,TRI,xi,yi)
K = dsearch(x,y,TRI,xi,yi,S)

Description K = dsearch(x,y,TRI,xi,yi) returns the index into x and y of the nearest
point to the point (xi,yi). dsearch requires a triangulation TRI of the points x,y
obtained using delaunay. If xi and yi are vectors, K is a vector of the same size.

K = dsearch(x,y,TRI,xi,yi,S) uses the sparse matrix S instead of
computing it each time:

S = sparse(TRI(:,[1 1 2 2 3 3]),TRI(:,[2 3 1 3 1 2]),1,nxy,nxy)

where nxy = prod(size(x)).

See Also delaunay, tsearch, voronoi

dsearchn

2-546

2dsearchnPurpose n-D nearest point search

Syntax k = dsearchn(X,T,XI)
k = dsearchn(X,T,XI,outval)
k = dsearchn(X,XI)
[k,d] = dsearchn(X,...)

Description k = dsearchn(X,T,XI) returns the indices k of the closest points in X for each
point in XI. X is an m-by-n matrix representing m points in n-D space. XI is a
p-by-n matrix, representing p points in n-D space. T is a numt-by-n+1 matrix, a
tessellation of the data X generated by delaunayn. The output k is a column
vector of length p.

k = dsearchn(X,T,XI,outval) returns the indices k of the closest points in X
for each point in XI, unless a point is outside the convex hull. If XI(J,:) is
outside the convex hull, then K(J) is assigned outval, a scalar double. Inf is
often used for outval. If outval is [], then k is the same as in the case
k = dsearchn(X,T,XI).

k = dsearchn(X,XI) performs the search without using a tessellation. With
large X and small XI, this approach is faster and uses much less memory.

[k,d] = dsearchn(X,...) also returns the distances d to the closest points. d
is a column vector of length p.

See Also tsearch, dsearch, tsearchn, griddatan, delaunayn

echo

2-547

2echoPurpose Echo M-files during execution

Syntax echo on
echo off
echo
echo fcnname on
echo fcnname off
echo fcnname
echo on all
echo off all

Description The echo command controls the echoing of M-files during execution. Normally,
the commands in M-files do not display on the screen during execution.
Command echoing is useful for debugging or for demonstrations, allowing the
commands to be viewed as they execute.

The echo command behaves in a slightly different manner for script files and
function files. For script files, the use of echo is simple; echoing can be either
on or off, in which case any script used is affected.

With function files, the use of echo is more complicated. If echo is enabled on a
function file, the file is interpreted, rather than compiled. Each input line is
then displayed as it is executed. Since this results in inefficient execution, use
echo only for debugging.

See Also function

echo on Turns on the echoing of commands in all script files.

echo off Turns off the echoing of commands in all script files.

echo Toggles the echo state.

echo fcnname on Turns on echoing of the named function file.

echo fcnname off Turns off echoing of the named function file.

echo fcnname Toggles the echo state of the named function file.

echo on all Set echoing on for all function files.

echo off all Set echoing off for all function files.

edit

2-548

2editPurpose Edit or create M-file

Graphical
Interface

As an alternative to the edit function, select New or Open from the File menu
in the MATLAB desktop or any desktop tool.

Syntax edit
edit fun.m
edit file.ext
edit fun1 fun2 fun3 ...
edit class/fun
edit private/fun
edit class/private/fun

Description edit opens a new editor window.

edit fun.m opens the M-file fun.m in the default editor. Note that fun.m can
be a MATLAB partialpath or a complete path. If fun.m does not exist, a
prompt appears asking if you want to create a new file titled fun.m. After you
click Yes, the Editor/Debugger creates a blank file titled fun.m. If you do not
want the prompt to appear in this situation, select that check box in the
prompt. Then when you type edit fun.m, where fun.m did not previously exist,
a new file called fun.m is automatically opened in the Editor. To make the
prompt appear, specify it in preferences for “Prompt” on page 7-38.

edit file.ext opens the specified file.

edit fun1 fun2 fun3 ... opens fun1.m, fun2.m, fun3.m, and so on, in the
default editor.

edit class/fun, edit private/fun, or edit class/private/fun can be
used to edit a method, private function, or private method (for the class named
class).

Remarks To specify the default editor for MATLAB, select Preferences from the File
menu. On the Editor/Debugger panel, select the MATLAB Editor/Debugger or
specify another.

edit

2-549

UNIX Users
If you run MATLAB with the -nodisplay startup option, or run without the
DISPLAY environment variable set, edit uses the External Editor command.
It does not use the MATLAB Editor/Debugger, but instead uses the default
editor defined for your system in $matlabroot/X11/app-defaults/Matlab.

You can specify the editor that the edit function uses or specify editor options
by adding the following line to your own .Xdefaults file, located in ~home

matlab*externalEditorCommand: $EDITOR -option $FILE

where

• $EDITOR is the name of your default editor, for example, emacs; leaving it as
$EDITOR means your default system editor will be used.

• -option is a valid option flag you can include for the specified editor.

• $FILE means the filename you type with the edit command will open in the
specified editor.

For example,

emacs $FILE

means that when you type edit foo, the file foo will open in the emacs editor.

After adding the line to your .Xdefaults file, you must run the following before
starting MATLAB:

xrdb -merge ~home/.Xdefaults

For the HP 700 platform, the default editor is instead defined in
$matlabroot/toolbox/matlab/general/edit.m. To change it, open the file
edit.m and edit the line

 eval(['!$EDITOR “' file '" &']);

See Also open, type

eig

2-550

2eigPurpose Find eigenvalues and eigenvectors

Syntax d = eig(A)
d = eig(A,B)
[V,D] = eig(A)
[V,D] = eig(A,'nobalance')
[V,D] = eig(A,B)
[V,D] = eig(A,B,flag)

Description d = eig(A) returns a vector of the eigenvalues of matrix A.

d = eig(A,B) returns a vector containing the generalized eigenvalues, if A and
B are square matrices.

Note If S is sparse and symmetric, you can use d = eig(S) to returns the
eigenvalues of S. To request eigenvectors, and in all other cases, use eigs to
find the eigenvalues or eigenvectors of sparse matrices.

[V,D] = eig(A) produces matrices of eigenvalues (D) and eigenvectors (V) of
matrix A, so that A*V = V*D. Matrix D is the canonical form of A—a diagonal
matrix with A’s eigenvalues on the main diagonal. Matrix V is the modal
matrix—its columns are the eigenvectors of A.

If W is a matrix such that W'*A = D*W', the columns of W are the left eigenvectors
of A . Use [W,D] = eig(A.'); W = conj(W) to compute the left eigenvectors.

[V,D] = eig(A,'nobalance') finds eigenvalues and eigenvectors without a
preliminary balancing step. Ordinarily, balancing improves the conditioning of
the input matrix, enabling more accurate computation of the eigenvectors and
eigenvalues. However, if a matrix contains small elements that are really due
to roundoff error, balancing may scale them up to make them as significant as
the other elements of the original matrix, leading to incorrect eigenvectors. Use
the nobalance option in this event. See the balance function for more details.

[V,D] = eig(A,B) produces a diagonal matrix D of generalized eigenvalues
and a full matrix V whose columns are the corresponding eigenvectors so that
A*V = B*V*D.

eig

2-551

[V,D] = eig(A,B,flag) specifies the algorithm used to compute eigenvalues
and eigenvectors. flag can be:

Note For eig(A), the eigenvectors are scaled so that the norm of each is 1.0.
For eig(A,B), eig(A,'nobalance'), and eig(A,B,flag), the eigenvectors are
not normalized.

Remarks The eigenvalue problem is to determine the nontrivial solutions of the equation

where is an n-by-n matrix, is a length n column vector, and is a scalar.
The n values of that satisfy the equation are the eigenvalues, and the
corresponding values of are the right eigenvectors. In MATLAB, the function
eig solves for the eigenvalues , and optionally the eigenvectors .

The generalized eigenvalue problem is to determine the nontrivial solutions of
the equation

where both and are n-by-nmatrices and is a scalar. The values of that
satisfy the equation are the generalized eigenvalues and the corresponding
values of are the generalized right eigenvectors.

If is nonsingular, the problem could be solved by reducing it to a standard
eigenvalue problem

Because can be singular, an alternative algorithm, called the QZ method, is
necessary.

'chol' Computes the generalized eigenvalues of A and B using the
Cholesky factorization of B. This is the default for symmetric
(Hermitian) A and symmetric (Hermitian) positive definite B.

'qz' Ignores the symmetry, if any, and uses the QZ algorithm as it
would for nonsymmetric (non-Hermitian) A and B.

Ax λx=

A x λ
λ

x
λ x

Ax λBx=

A B λ λ

x

B

B 1– Ax λx=

B

eig

2-552

When a matrix has no repeated eigenvalues, the eigenvectors are always
independent and the eigenvector matrix V diagonalizes the original matrix A if
applied as a similarity transformation. However, if a matrix has repeated
eigenvalues, it is not similar to a diagonal matrix unless it has a full
(independent) set of eigenvectors. If the eigenvectors are not independent then
the original matrix is said to be defective. Even if a matrix is defective, the
solution from eig satisfies A*X = X*D.

Examples The matrix

B = [3 -2 -.9 2*eps
 -2 4 1 -eps
 -eps/4 eps/2 -1 0
 -.5 -.5 .1 1];

has elements on the order of roundoff error. It is an example for which the
nobalance option is necessary to compute the eigenvectors correctly. Try the
statements

[VB,DB] = eig(B)
B*VB - VB*DB
[VN,DN] = eig(B,'nobalance')
B*VN - VN*DN

Algorithm MATLAB uses LAPACK routines to compute eigenvalues and eigenvectors:

Case Routine

Real symmetric A DSYEV

Real nonsymmetric A:

• With preliminary balance step DGEEV (with SCLFAC = 2 instead
of 8 in DGEBAL)

• d = eig(A,'nobalance') DGEHRD, DHSEQR

• [V,D] = eig(A,'nobalance') DGEHRD, DORGHR, DHSEQR, DTREVC

Hermitian A ZHEEV

eig

2-553

See Also balance, condeig, eigs, hess, qz, schur

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

Non-Hermitian A:

• With preliminary balance step ZGEEV (with SCLFAC = 2 instead
of 8 in ZGEBAL)

• d = eig(A,'nobalance') ZGEHRD, ZHSEQR

• [V,D] = eig(A,'nobalance') ZGEHRD, ZUNGHR, ZHSEQR, ZTREVC

Real symmetric A,
symmetric positive definite B.

DSYGV

Special case:
eig(A,B,'qz') for real A, B
(same as real nonsymmetric A, real
general B)

DGGEV

Real nonsymmetric A, real general B DGGEV

Complex Hermitian A,
Hermitian positive definite B.

ZHEGV

Special case:
eig(A,B,'qz') for complex A or B
(same as complex non-Hermitian A,
complex B)

ZGGEV

Complex non-Hermitian A, complex B ZGGEV

Case Routine

eigs

2-554

2eigsPurpose Find a few eigenvalues and eigenvectors of a square large sparse matrix

Syntax d = eigs(A)
d = eigs(A,B)
d = eigs(A,k)
d = eigs(A,B,k)
d = eigs(A,k,sigma)
d = eigs(A,B,k,sigma)
d = eigs(A,k,sigma,options)
d = eigs(A,B,k,sigma,options)
d = eigs(Afun,n)
d = eigs(Afun,n,B)
d = eigs(Afun,n,k)
d = eigs(Afun,n,B,k)
d = eigs(Afun,n,k,sigma)
d = eigs(Afun,n,B,k,sigma)
d = eigs(Afun,n,k,sigma,options)
d = eigs(Afun,n,B,k,sigma,options)
d = eigs(Afun,n,k,sigma,options,p1,p2...)
d = eigs(Afun,n,B,k,sigma,options,p1,p2...)
[V,D] = eigs(A,...)
[V,D] = eigs(Afun,n,...)
[V,D,flag] = eigs(A,...)
[V,D,flag] = eigs(Afun,n,...)

Description d = eigs(A) returns a vector of A's six largest magnitude eigenvalues.

[V,D] = eigs(A) returns a diagonal matrix D of A's six largest magnitude
eigenvalues and a matrix V whose columns are the corresponding eigenvectors.

[V,D,flag] = eigs(A) also returns a convergence flag. If flag is 0 then all
the eigenvalues converged; otherwise not all converged.

eigs(A,B) solves the generalized eigenvalue problem A*V == B*V*D. B must
be symmetric (or Hermitian) positive definite and the same size as A.
eigs(A,[],...) indicates the standard eigenvalue problem A*V == V*D.

eigs(A,k) and eigs(A,B,k) return the k largest magnitude eigenvalues.

eigs

2-555

eigs(A,k,sigma) and eigs(A,B,k,sigma) return k eigenvalues based on
sigma, which can take any of the following values:

Note The MATLAB 5 value sigma = 'be' is obsolete for nonsymmetric and
complex problems.

scalar
(real or complex,
including 0)

The eigenvalues closest to sigma. If A is a function, Afun
must return Y = (A-sigma*B)\x (i.e., Y = A\x when
sigma = 0). Note, B need only be symmetric (Hermitian)
positive semi-definite.

'lm' Largest magnitude (default).

'sm' Smallest magnitude. Same as sigma = 0. If A is a function,
Afun must return Y = A\x. Note, B need only be symmetric
(Hermitian) positive semi-definite.

For real symmetric problems, the following are also options:

'la' Largest algebraic ('lr' in MATLAB 5)

'sa' Smallest algebraic ('sr' in MATLAB 5)

'be' Both ends (one more from high end if k is odd)

For nonsymmetric and complex problems, the following are also options:

'lr' Largest real part

'sr' Smallest real part

'li' Largest imaginary part

'si' Smallest imaginary part

eigs

2-556

eigs(A,K,sigma,opts) and eigs(A,B,k,sigma,opts) specify an options
structure. Default values are shown in brackets ({}).

Note MATLAB 5 options stagtol and cheb are no longer allowed.

Parameter Description Values

options.issym 1 if A or A-sigma*B represented
by Afun is symmetric, 0
otherwise.

[{0} | 1]

options.isreal 1 if A or A-sigma*B represented
by Afun is real, 0 otherwise.

[0 | {1}]

options.tol Convergence: Ritz estimate
residual <= tol*norm(A).

[scalar | {eps}]

options.maxit Maximum number of iterations. [integer | {300}]

options.p Number of basis vectors. p >= 2k
(p >= 2k+1 real nonsymmetric)
advised. Note: p must satisfy
k < p <= n for real symmetric,
k+1 < p <= n otherwise.

[integer | 2*k]

options.v0 Starting vector. Randomly
generated by
ARPACK

options.disp Diagnostic information display
level.

[0 | {1} | 2]

options.cholB 1 if B is really its Cholesky factor
chol(B), 0 otherwise.

[{0} | 1]

options.permB Permutation vector permB if
sparse B is really
chol(B(permB,permB)).

[permB | {1:n}]

eigs

2-557

eigs(Afun,n,...) accepts the function Afun instead of the matrix A.
y = Afun(x) should return:

n is the size of A. The matrix A, A-sigma*I or A-sigma*B represented by Afun is
assumed to be real and nonsymmetric unless specified otherwise by
opts.isreal and opts.issym. In all the eigs syntaxes, eigs(A,...) can be
replaced by eigs(Afun,n,...).

eigs(Afun,n,k,sigma,opts,p1,p2,...) and
eigs(Afun,n,B,k,sigma,opts,p1,p2,...) provide for additional arguments
which are passed to Afun(x,p1,p2,...).

Remarks d = eigs(A,k) is not a substitute for

d = eig(full(A))
d = sort(d)
d = d(end-k+1:end)

but is most appropriate for large sparse matrices. If the problem fits into
memory, it may be quicker to use eig(full(A)).

Algorithm eigs provides the reverse communication required by the Fortran library
ARPACK, namely the routines DSAUPD, DSEUPD, DNAUPD, DNEUPD, ZNAUPD, and
ZNEUPD.

Examples Example 1: This example shows the use of function handles.

A = delsq(numgrid('C',15));
d1 = eigs(A,5,'sm');

Equivalently, if dnRk is the following one-line function:

function y = dnRk(x,R,k)

A*x if sigma is not specified, or is a string other than 'sm'

A\x if sigma is 0 or 'sm'

(A-sigma*I)\x if sigma is a nonzero scalar (standard eigenvalue
problem). I is an identity matrix of the same size as A.

(A-sigma*B)\x if sigma is a nonzero scalar (generalized eigenvalue
problem)

eigs

2-558

y = (delsq(numgrid(R,k))) \ x;

then pass dnRk's additional arguments, 'C' and 15, to eigs.

n = size(A,1);
opts.issym = 1;
d2 = eigs(@dnRk,n,5,'sm',opts,'C',15);

Example 2: west0479 is a real 479-by-479 sparse matrix with both real and
pairs of complex conjugate eigenvalues. eig computes all 479 eigenvalues. eigs
easily picks out the largest magnitude eigenvalues.

This plot shows the 8 largest magnitude eigenvalues of west0479 as computed
by eig and eigs.

load west0479
d = eig(full(west0479))
dlm = eigs(west0479,8)
[dum,ind] = sort(abs(d));
plot(dlm,'k+')
hold on
plot(d(ind(end-7:end)),'ks')
hold off
legend('eigs(west0479,8)','eig(full(west0479))')

eigs

2-559

Example 3: A = delsq(numgrid('C',30)) is a symmetric positive definite
matrix of size 632 with eigenvalues reasonably well-distributed in the interval
(0 8), but with 18 eigenvalues repeated at 4. The eig function computes all 632
eigenvalues. It computes and plots the six largest and smallest magnitude
eigenvalues of A successfully with:

A = delsq(numgrid('C',30));
d = eig(full(A));
[dum,ind] = sort(abs(d));
dlm = eigs(A);
dsm = eigs(A,6,'sm');

subplot(2,1,1)
plot(dlm,'k+')
hold on
plot(d(ind(end:-1:end-5)),'ks')
hold off
legend('eigs(A)','eig(full(A))',3)
set(gca,'XLim',[0.5 6.5])

−150 −100 −50 0 50 100 150
−2000

−1500

−1000

−500

0

500

1000

1500

2000
eigs(west0479,8)
eig(full(west0479))

eigs

2-560

subplot(2,1,2)
plot(dsm,'k+')
hold on
plot(d(ind(1:6)),'ks')
hold off
legend('eigs(A,6,''sm'')','eig(full(A))',2)
set(gca,'XLim',[0.5 6.5])

However, the repeated eigenvalue at 4 must be handled more carefully. The
call eigs(A,18,4.0) to compute 18 eigenvalues near 4.0 tries to find
eigenvalues of A - 4.0*I. This involves divisions of the form
1/(lambda - 4.0), where lambda is an estimate of an eigenvalue of A. As
lambda gets closer to 4.0, eigs fails. We must use sigma near but not equal to
4 to find those 18 eigenvalues.

sigma = 4 - 1e-6
[V,D] = eigs(A,18,sigma)

1 2 3 4 5 6
7.8

7.85

7.9

7.95

8

eigs(A)
eig(full(A))

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2
eigs(A,6,’SM’)
eig(full(A))

eigs

2-561

The plot shows the 20 eigenvalues closest to 4 that were computed by eig,
along with the 18 eigenvalues closest to 4 - 1e-6 that were computed by eigs.

See Also arpackc, eig, svds

References [1] Lehoucq, R.B. and D.C. Sorensen, “Deflation Techniques for an Implicitly
Re-Started Arnoldi Iteration,” SIAM J. Matrix Analysis and Applications, Vol.
17, 1996, pp. 789-821.

[2] Lehoucq, R.B., D.C. Sorensen, and C. Yang, ARPACK Users' Guide:
Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi
Methods, SIAM Publications, Philadelphia, 1998.

[3] Sorensen, D.C., “Implicit Application of Polynomial Filters in a k-Step
Arnoldi Method,” SIAM J. Matrix Analysis and Applications, Vol. 13, 1992,
pp. 357-385.

2 4 6 8 10 12 14 16 18 20
3.97

3.98

3.99

4

4.01

4.02

4.03
18 repeated eigenvalues of delsq(numgrid(’C’,30)) at 4

eigs(A,18,sigma)
eig(A)

ellipj

2-562

2ellipjPurpose Jacobi elliptic functions

Syntax [SN,CN,DN] = ellipj(U,M)
[SN,CN,DN] = ellipj(U,M,tol)

Definition The Jacobi elliptic functions are defined in terms of the integral:

Then

Some definitions of the elliptic functions use the modulus instead of the
parameter . They are related by

The Jacobi elliptic functions obey many mathematical identities; for a good
sample, see [1].

Description [SN,CN,DN] = ellipj(U,M) returns the Jacobi elliptic functions SN, CN, and
DN, evaluated for corresponding elements of argument U and parameter M.
Inputs U and M must be the same size (or either can be scalar).

[SN,CN,DN] = ellipj(U,M,tol) computes the Jacobi elliptic functions to
accuracy tol. The default is eps; increase this for a less accurate but more
quickly computed answer.

Algorithm ellipj computes the Jacobi elliptic functions using the method of the
arithmetic-geometric mean [1]. It starts with the triplet of numbers:

u θd

1 m θsin2–()
1
2

0

φ
∫=

sn u() φsin cn u(), φcos= = dn u(), 1 m φsin2–()
1
2

= am u(), φ=

k
m

k2 m αsin2= =

a0 1,= b0 1 m–()
1
2

,= c0 m()

1
2

=

ellipj

2-563

ellipj computes successive iterates with

Next, it calculates the amplitudes in radians using:

being careful to unwrap the phases correctly. The Jacobian elliptic functions
are then simply:

Limitations The ellipj function is limited to the input domain . Map other values
of M into this range using the transformations described in [1], equations 16.10
and 16.11. U is limited to real values.

See Also ellipke

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
Dover Publications, 1965, 17.6.

ai
1
2
--- ai 1– bi 1–+()=

bi ai 1– bi 1–()
1
2

=

ci
1
2
--- ai 1– bi 1––()=

2φn 1– φn–()sin
cn
an
------ φn()sin=

sn u() φ0sin=

cn u() φ0cos=

dn u() 1 m sn u()2⋅–()
1
2

=

0 m 1≤ ≤

ellipke

2-564

2ellipkePurpose Complete elliptic integrals of the first and second kind

Syntax K = ellipke(M)
[K,E] = ellipke(M)
[K,E] = ellipke(M,tol)

Definition The complete elliptic integral of the first kind [1] is

where , the elliptic integral of the first kind, is

The complete elliptic integral of the second kind

is

Some definitions of K and E use the modulus instead of the parameter .
They are related by

Description K = ellipke(M) returns the complete elliptic integral of the first kind for the
elements of M.

[K,E] = ellipke(M) returns the complete elliptic integral of the first and
second kinds.

[K,E] = ellipke(M,tol) computes the Jacobian elliptic functions to accuracy
tol. The default is eps; increase this for a less accurate but more quickly
computed answer.

K m() F π 2⁄ m()=

F

K m() 1 t2–() 1 mt2–()[]
1–
2

0

1

∫ dt 1 m θsin2–()
1–
2

θd

0

π
2

∫= =

E m() E K m()() E π 2⁄ m〈 | 〉= =

E m() 1 t2–()
1–
2

1 mt2–()

1
2

0

1

∫= dt 1 m θsin2–()
1
2

0

π
2

∫ dθ=

k m

k2 m αsin2= =

ellipke

2-565

Algorithm ellipke computes the complete elliptic integral using the method of the
arithmetic-geometric mean described in [1], section 17.6. It starts with the
triplet of numbers

ellipke computes successive iterations of , , and with

stopping at iteration when , within the tolerance specified by eps. The
complete elliptic integral of the first kind is then

Limitations ellipke is limited to the input domain .

See Also ellipj

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
Dover Publications, 1965, 17.6.

a0 1= b0, 1 m–()
1
2

= c0, m()
1
2

=

ai bi ci

ai
1
2
--- ai 1– bi 1–+()=

bi ai 1– bi 1–()
1
2

=

ci
1
2
--- ai 1– bi 1––()=

n cn 0≈

K m() π
2an
----------=

0 m 1≤ ≤

ellipsoid

2-566

2ellipsoidPurpose Generate ellipsoid

Syntax [x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr,n)
[x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr)
ellipsoid(...)

Description [x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr,n) generates three n+1-by-n+1
matrices so that surf(x,y,z) produces an ellipsoid with center (xc,yc,zc)
and radii (xr,yr,zr).

[x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr) uses n = 20.

ellipsoid(...) with no output arguments graphs the ellipsoid as a surface.

Algorithm ellipsoid generates the data using the following equation:

See Also cylinder, sphere, surf

“Polygons and Surfaces” for related functions

x xc–()2

xr2
----------------------- y yc–()2

yr2
----------------------- z zc–()2

zr2
----------------------+ +

else

2-567

2elsePurpose Conditionally execute statements

Syntax if expression
statements1

else
statements2

end

Description else is used to delineate an alternate block of statements. If expression
evaluates as false, MATLAB executes the one or more commands denoted
here as statements2.

A true expression has either a logical true or nonzero value. For nonscalar
expressions, (for example, “if (matrix A is less than matrix B)”), true means
that every element of the resulting matrix has a logical true or nonzero value.

Expressions usually involve relational operations such as (count < limit) or
isreal(A). Simple expressions can be combined by logical operators (&,|,~) into
compound expressions such as: (count < limit) & ((height - offset) >=
0).

See if for more information.

Examples In this example, if both of the conditions are not satisfied, then the student fails
the course.

if ((attendance >= 0.90) & (grade_average >= 60))
 pass = 1;
else
 fail = 1;
end;

See Also if, elseif, end, for, while, switch, break, return, relational_operators,
logical_operators

elseif

2-568

2elseifPurpose Conditionally execute statements

Syntax if expression1
statements1

elseif expression2
statements2

end

Description If expression1 evaluates as false and expression2 as true, MATLAB
executes the one or more commands denoted here as statements2.

A true expression has either a logical true or nonzero value. For nonscalar
expressions, (for example, is matrix A less then matrix B), true means that
every element of the resulting matrix has a logical true or nonzero value.

Expressions usually involve relational operations such as (count < limit) or
isreal(A). Simple expressions can be combined by logical operators (&,|,~) into
compound expressions such as: (count < limit) & ((height - offset) >=
0).

See if for more information.

Remarks else if, with a space between the else and the if, differs from elseif, with
no space. The former introduces a new, nested if, which must have a matching
end. The latter is used in a linear sequence of conditional statements with only
one terminating end.

The two segments shown below produce identical results. Exactly one of the
four assignments to x is executed, depending upon the values of the three
logical expressions, A, B, and C.

if A if A
x = a x = a

else elseif B
if B x = b

x = b elseif C
else x = c

if C else
x = c x = d

else end
x = d

elseif

2-569

end
end

end

Examples Here is an example showing if, else, and elseif.

for m = 1:k
 for n = 1:k
 if m == n
 a(m,n) = 2;
 elseif abs(m-n) == 2
 a(m,n) = 1;
 else
 a(m,n) = 0;
 end
 end
end

For k=5 you get the matrix

a =

 2 0 1 0 0
 0 2 0 1 0
 1 0 2 0 1
 0 1 0 2 0
 0 0 1 0 2

See Also if, else, end, for, while, switch, break, return, relational_operators,
logical_operators

end

2-570

2endPurpose Terminate for, while, switch, try, and if statements or indicate last index

Syntax while expression% (or if, for, or try)
statements

end

B = A(index:end,index)

Description end is used to terminate for, while, switch, try, and if statements. Without
an end statement, for, while, switch, try, and if wait for further input. Each
end is paired with the closest previous unpaired for, while, switch, try, or if
and serves to delimit its scope.

The end command also serves as the last index in an indexing expression. In
that context, end = (size(x,k)) when used as part of the kth index. Examples
of this use are X(3:end) and X(1,1:2:end-1). When using end to grow an
array, as in X(end+1)=5, make sure X exists first.

You can overload the end statement for a user object by defining an end method
for the object. The end method should have the calling sequence end(obj,k,n),
where obj is the user object, k is the index in the expression where the end
syntax is used, and n is the total number of indices in the expression. For
example, consider the expression

A(end-1,:)

MATLAB will call the end method defined for A using the syntax

end(A,1,2)

Examples This example shows end used with the for and if statements.

for k = 1:n
if a(k) == 0

a(k) = a(k) + 2;
end

end

In this example, end is used in an indexing expression.

A = magic(5)

end

2-571

A =

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

B = A(end,2:end)

B =

 18 25 2 9

See Also break, for, if, return, switch, try, while

eomday

2-572

2eomdayPurpose End of month

Syntax E = eomday(Y,M)

Description E = eomday(Y,M) returns the last day of the year and month given by
corresponding elements of arrays Y and M.

Examples Because 1996 is a leap year, the statement eomday(1996,2) returns 29.

To show all the leap years in this century, try:

y = 1900:1999;
E = eomday(y,2∗ ones(length(y),1)');
y(find(E==29))'

ans =
 Columns 1 through 6

1904 1908 1912 1916 1920 1924

 Columns 7 through 12
1928 1932 1936 1940 1944 1948

 Columns 13 through 18
1952 1956 1960 1964 1968 1972

 Columns 19 through 24
1976 1980 1984 1988 1992 1996

See Also datenum, datevec, weekday

eps

2-573

2epsPurpose Floating-point relative accuracy

Syntax eps

Description eps returns the distance from 1.0 to the next largest floating-point number.

The value eps is a default tolerance for pinv and rank, as well as several other
MATLAB functions. eps = 2^(-52), which is roughly 2.22e-16.

See Also realmax, realmin

erf, erfc, erfcx, erfinv, erfcinv

2-574

2erf, erfc, erfcx, erfinv, erfcinvPurpose Error functions

Syntax Y = erf(X) Error function
Y = erfc(X) Complementary error function
Y = erfcx(X) Scaled complementary error function
X = erfinv(Y) Inverse error function
X = erfcinv(Y) Inverse complementary error function

Definition The error function erf(X) is twice the integral of the Gaussian distribution
with 0 mean and variance of .

The complementary error function erfc(X) is defined as

The scaled complementary error function erfcx(X) is defined as

For large X, erfcx(X) is approximately

Description Y = erf(X) returns the value of the error function for each element of real
array X.

Y = erfc(X) computes the value of the complementary error function.

Y = erfcx(X) computes the value of the scaled complementary error function.

X = erfinv(Y) returns the value of the inverse error function for each element
of Y. Elements of Y must be in the interval [-1 1]. The function erfinv
satisfies for and .

X = erfcinv(Y) returns the value of the inverse of the complementary error
function for each element of Y. Elements of Y must be in the interval [0 2].
The function erfcinv satisfies for and .

1 2⁄

erf x() 2
π

------- e t2–
0

x

∫ dt=

erfc x() 2
π

------- e t2– td
x

∞
∫ 1 erf x()–= =

erfcx x() ex2
erfc x()=

1
π

 1

x

y erf x()= 1– y 1≤ ≤ ∞– x ∞≤ ≤

y erfc x()= 2 y 0≥ ≥ ∞– x ∞≤ ≤

erf, erfc, erfcx, erfinv, erfcinv

2-575

Remarks The relationship between the complementary error function erfc and the
standard normal probability distribution returned by the Statistics Toolbox
function normcdf is

The relationship between the inverse complementary error function erfcinv
and the inverse standard normal probability distribution returned by the
Statistics Toolbox function norminv is

Examples erfinv(1) is Inf

erfinv(-1) is -Inf.

For abs(Y) > 1, erfinv(Y) is NaN.

Algorithms For the error functions, the MATLAB code is a translation of a Fortran
program by W. J. Cody, Argonne National Laboratory, NETLIB/SPECFUN,
March 19, 1990. The main computation evaluates near-minimax rational
approximations from [1].

For the inverse of the error function, rational approximations accurate to
approximately six significant digits are used to generate an initial
approximation, which is then improved to full accuracy by one step of Halley’s
method.

References [1] Cody, W. J., “Rational Chebyshev Approximations for the Error Function,”
Math. Comp., pgs. 631-638, 1969

normcdf x() 0.5 * erfc x– 2⁄()=

norminv p() 2– * erfcinv 2 p()=

error

2-576

2errorPurpose Display error messages

Syntax error('message')
error('message',a1,a2, ...)
error('message_id','message')
error('message_id','message',a1,a2,...)

Description error('message') displays an error message and returns control to the
keyboard. The error message contains the input string message.

The error command has no effect if message is a null string.

error('message',a1,a2,...) displays a message string that contains
formatting conversion characters, such as those used with the MATLAB
sprintf function. Each conversion character in message is converted to one of
the values a1, a2, ... in the argument list.

Note MATLAB converts special characters (like \n and %d) in the error
message string only when you specify more than one input argument with
error. See Example 3 below.

error('message_id','message') attaches a unique message identifier, or
message_id, to the error message. The identifier enables you to better identify
the source of an error. See “Message Identifiers” and “Using Message
Identifiers with lasterr” in the MATLAB documentation for more information
on the message_id argument and how to use it.

error('message_id','message',a1,a2, ...) includes formatting
conversion characters in message, and the character translations a1, a2, ...

Examples Example 1
The error function provides an error return from M-files:

function foo(x,y)
if nargin ~= 2

error('Wrong number of input arguments')
end

error

2-577

The returned error message looks like this:

foo(pi)

??? Error using ==> foo
Wrong number of input arguments

Example 2
Specify a message identifier and error message string with error:

error('MyToolbox:angleTooLarge', ...
 'The angle specified must be less than 90 degrees.');

In your error handling code, use lasterr to determine the message identifier
and error message string for the failing operation:

[errmsg, msgid] = lasterr
errmsg =
 The angle specified must be less than 90 degrees.
msgid =
 MyToolbox:angleTooLarge

Example 3
MATLAB converts special characters (like \n and %d) in the error message
string only when you specify more than one input argument with error. In the
single argument case shown below, \n is taken to mean backslash-n. It is not
converted to a newline character:

error('In this case, the newline \n is not converted.')
??? In this case, the newline \n is not converted.

But, when more than one argument is specified, MATLAB does convert special
characters. This holds true regardless of whether the additional argument
supplies conversion values or is a message identifier:

error('ErrorTests:convertTest', ...
 'In this case, the newline \n is converted.')
??? In this case, the newline
 is converted.

See Also lasterr, lasterror, rethrow, errordlg, warning, lastwarn, warndlg, dbstop,
disp, sprintf

errorbar

2-578

2errorbarPurpose Plot error bars along a curve

Syntax errorbar(Y,E)
errorbar(X,Y,E)
errorbar(X,Y,L,U)
errorbar(...,LineSpec)
h = errorbar(...)

Description Error bars show the confidence level of data or the deviation along a curve.

errorbar(Y,E) plots Y and draws an error bar at each element of Y. The error
bar is a distance of E(i) above and below the curve so that each bar is
symmetric and 2*E(i) long.

errorbar(X,Y,E) plots X versus Y with symmetric error bars 2*E(i) long. X, Y,
E must be the same size. When they are vectors, each error bar is a distance of
E(i) above and below the point defined by (X(i),Y(i)). When they are
matrices, each error bar is a distance of E(i,j) above and below the point
defined by (X(i,j),Y(i,j)).

errorbar(X,Y,L,U) plots X versus Y with error bars L(i)+U(i) long specifying
the lower and upper error bars. X, Y, L, and Umust be the same size. When they
are vectors, each error bar is a distance of L(i) below and U(i) above the point
defined by (X(i),Y(i)). When they are matrices, each error bar is a distance
of L(i,j) below and U(i,j) above the point defined by (X(i,j),Y(i,j)).

errorbar(...,LineSpec) draws the error bars using the line type, marker
symbol, and color specified by LineSpec.

h = errorbar(...) returns a vector of handles to line graphics objects.

Remarks When the arguments are all matrices, errorbar draws one line per matrix
column. If X and Y are vectors, they specify one curve.

Examples Draw symmetric error bars that are two standard deviation units in length.

X = 0:pi/10:pi;
Y = sin(X);
E = std(Y)*ones(size(X));

errorbar

2-579

errorbar(X,Y,E)

See Also LineSpec, plot, std

“Basic Plots and Graphs” for related functions

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

errordlg

2-580

2errordlgPurpose Create and display an error dialog box

Syntax errordlg
errordlg('errorstring')
errordlg('errorstring','dlgname')
errordlg('errorstring','dlgname','on')
h = errordlg(...)

Description errordlg creates an error dialog box, or if the named dialog exists, errordlg
pops the named dialog in front of other windows.

errordlg displays a dialog box named 'Error Dialog' that contains the string
'This is the default error string.'

errordlg('errorstring') displays a dialog box named 'Error Dialog' that
contains the string 'errorstring'.

errordlg('errorstring','dlgname') displays a dialog box named 'dlgname'
that contains the string 'errorstring'.

errordlg('errorstring','dlgname','on') specifies whether to replace an
existing dialog box having the same name. 'on' brings an existing error dialog
having the same name to the foreground. In this case, errordlg does not create
a new dialog.

h = errordlg(...) returns the handle of the dialog box.

Remarks MATLAB sizes the dialog box to fit the string 'errorstring'. The error dialog
box has an OK pushbutton and remains on the screen until you press the OK
button or the Return key. After pressing the button, the error dialog box
disappears.

The appearance of the dialog box depends on the windowing system you use.

Examples The function

errordlg('File not found','File Error');

errordlg

2-581

displays this dialog box:

See Also dialog, helpdlg, msgbox, questdlg, warndlg

“Predefined Dialog Boxes” for related functions

etime

2-582

2etimePurpose Elapsed time

Syntax e = etime(t2,t1)

Description e = etime(t2,t1) returns the time in seconds between vectors t1 and t2. The
two vectors must be six elements long, in the format returned by clock:

T = [Year Month Day Hour Minute Second]

Examples Calculate how long a 2048-point real FFT takes.

x = rand(2048,1);
t = clock; fft(x); etime(clock,t)
ans =

0.4167

Limitations As currently implemented, the etime function fails across month and year
boundaries. Since etime is an M-file, you can modify the code to work across
these boundaries if needed.

See Also clock, cputime, tic, toc

etree

2-583

2etreePurpose Elimination tree

Syntax p = etree(A)
p = etree(A,'col')
p = etree(A,'sym')
[p,q] = etree(...)

Description p = etree(A) returns an elimination tree for the square symmetric matrix
whose upper triangle is that of A. p(j) is the parent of column j in the tree, or
0 if j is a root.

p = etree(A,'col') returns the elimination tree of A'*A.

p = etree(A,'sym') is the same as p = etree(A).

[p,q] = etree(...) also returns a postorder permutation q of the tree.

See Also treelayout, treeplot, etreeplot

etreeplot

2-584

2etreeplotPurpose Plot elimination tree

Syntax etreeplot(A)
etreeplot(A,nodeSpec,edgeSpec)

Description etreeplot(A) plots the elimination tree of A (or A+A', if non-symmetric).

etreeplot(A,nodeSpec,edgeSpec) allows optional parameters nodeSpec and
edgeSpec to set the node or edge color, marker, and linestyle. Use '' to omit
one or both.

See Also etree, treeplot, treelayout

eval

2-585

2evalPurpose Execute a string containing a MATLAB expression

Syntax eval(expression)
eval(expression,catch_expr)
[a1,a2,a3,...] = eval(function(b1,b2,b3,...))

Description eval(expression) executes expression, a string containing any valid
MATLAB expression. You can construct expression by concatenating
substrings and variables inside square brackets:

expression = [string1,int2str(var),string2,...]

eval(expression,catch_expr) executes expression and, if an error is
detected, executes the catch_expr string. If expression produces an error, the
error string can be obtained with the lasterr function. This syntax is useful
when expression is a string that must be constructed from substrings. If this
is not the case, use the try...catch control flow statement in your code.

[a1,a2,a3,...] = eval(function(b1,b2,b3,...)) executes function with
arguments b1,b2,b3,..., and returns the results in the specified output
variables.

Remarks Using the eval output argument list is recommended over including the output
arguments in the expression string. The first syntax below avoids strict
checking by the MATLAB parser and can produce untrapped errors and other
unexpected behavior.

eval('[a1,a2,a3,...] = function(var)') % not recommended

[a1,a2,a3,...] = eval('function(var)') % recommended syntax

Examples This for loop generates a sequence of 12 matrices named M1 through M12:

for n = 1:12

 magic_str = ['M',int2str(n),' = magic(n)'];
 eval(magic_str)

end

eval

2-586

This example uses a function showdemo that runs a MATLAB demo selected by
the user. If an error is encountered, a message is displayed that names the
demo that failed.

function showdemo(demos)
errstring = 'Error running demo: ';
n = input('Select a demo number: ');
eval(demos(n,:),'[errstring demos(n,:)]')
% ----- end of file showdemo.m -----

D = ['odedemo'; 'quademo'; 'fitdemo'];
showdemo(D)
Select a demo number: 2

ans =

Error running demo: quademo

The next example executes the size function on a 3-dimensional array,
returning the array dimensions in output variables d1, d2, and d3.

A = magic(4);
A(:,:,2) = A';

[d1,d2,d3] = eval('size(A)')

d1 =
 4

d2 =
 4

d3 =
 2

See Also assignin, catch, evalin, feval, lasterr, try

evalc

2-587

2evalcPurpose Evaluate MATLAB expression with capture

Syntax T = evalc(S)
T = evalc(s1,s2)
[T,X,Y,Z,...] = evalc(S)

Description T = evalc(S) is the same as eval(S) except that anything that would normally
be written to the command window is captured and returned in the character
array T (lines in T are separated by \n characters).

T = evalc(s1,s2) is the same as eval(s1,s2) except that any output is
captured into T.

[T,X,Y,Z,...] = evalc(S) is the same as [X,Y,Z,...] = eval(S) except
that any output is captured into T.

Remark When you are using evalc, diary, more, and input are disabled.

See Also diary, eval, evalin, input, more

evalin

2-588

2evalinPurpose Execute a string containing a MATLAB expression in a workspace

Syntax evalin(ws,expression)
[a1,a2,a3,...] = evalin(ws,expression)
evalin(ws,expression,catch_expr)

Description evalin(ws,expression) executes expression, a string containing any valid
MATLAB expression, in the context of the workspace ws. ws can have a value
of 'base' or 'caller' to denote the MATLAB base workspace or the workspace
of the caller function. You can construct expression by concatenating
substrings and variables inside square brackets:

expression = [string1,int2str(var),string2,...]

[a1,a2,a3,...] = evalin(ws,expression) executes expression and
returns the results in the specified output variables. Using the evalin output
argument list is recommended over including the output arguments in the
expression string:

evalin(ws,'[a1,a2,a3,...] = function(var)')

The above syntax avoids strict checking by the MATLAB parser and can
produce untrapped errors and other unexpected behavior.

evalin(ws,expression,catch_expr) executes expression and, if an error is
detected, executes the catch_expr string. If expression produces an error, the
error string can be obtained with the lasterr function. This syntax is useful
when expression is a string that must be constructed from substrings. If this
is not the case, use the try...catch control flow statement in your code.

Remarks The MATLAB base workspace is the workspace that is seen from the MATLAB
command line (when not in the debugger). The caller workspace is the
workspace of the function that called the M-file. Note, the base and caller
workspaces are equivalent in the context of an M-file that is invoked from the
MATLAB command line.

Examples This example extracts the value of the variable var in the MATLAB base
workspace and captures the value in the local variable v:

v = evalin('base','var');

evalin

2-589

Limitation evalin cannot be used recursively to evaluate an expression. For example, a
sequence of the form evalin('caller','evalin(''caller'',''x'')')
doesn’t work.

See Also assignin, catch, eval, feval, lasterr, try

eventlisteners (COM)

2-590

2eventlisteners (COM)Purpose Return a list of events attached to listeners

Syntax eventlisteners(h)

Arguments h
Handle for a MATLAB COM control object.

Description eventlisteners lists any events, along with their callback or event handler
routines, that have been registered with control, h. The function returns a cell
array of strings, with each row containing the name of a registered event and
the handler routine for that event. If the control has no registered events, then
eventlisteners returns an empty cell array.

Events and their callback or event handler routines must be registered in order
for the control to respond to them. You can register events either when you
create the control, using actxcontrol, or at any time afterwards, using
registerevent.

Examples Create an mwsamp control, registering only the Click event. eventlisteners
returns the name of the event and its event handler routine, myclick:

f = figure('pos', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f, ...
 {'Click' 'myclick'});

eventlisteners(h)
ans =
 'click' 'myclick'

Register two more events: DblClick and MouseDown. eventlisteners returns
the names of the three registered events along with their respective handler
routines:

registerevent(h, {'DblClick', 'my2click'; ...
 'MouseDown' 'mymoused'});

eventlisteners(h)
ans =
 'click' 'myclick'
 'dblclick' 'my2click'

eventlisteners (COM)

2-591

 'mousedown' 'mymoused'

Now unregister all events for the control, and eventlisteners returns an
empty cell array, indicating that no events have been registered for the control:

unregisterallevents(h)

eventlisteners(h)
ans =
 {}

See Also events, registerevent, unregisterevent, unregisterallevents, isevent

events (COM)

2-592

2events (COM)Purpose Return a list of events that the control can trigger

Syntax events(h)

Arguments h
Handle for a MATLAB COM control object.

Description Returns a structure array containing all events, both registered and
unregistered, known to the control, and the function prototype used when
calling the event handler routine. For each array element, the structure field
is the event name and the contents of that field is the function prototype for
that event’s handler.

Note The send function is identical to events, but send will be made obsolete
in a future release.

Examples Create an mwsamp control and list all events:

f = figure ('pos', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);

events(h)
 Click = void Click()
 DblClick = void DblClick()
 MouseDown = void MouseDown(int16 Button, int16 Shift,
 Variant x, Variant y)

Or assign the output to a variable and get one field of the returned structure:

ev = events(h);

ev.MouseDown
ans =
void MouseDown(int16 Button, int16 Shift, Variant x, Variant y)

See Also isevent, eventlisteners, registerevent, unregisterevent,
unregisterallevents

events (COM)

2-593

In the following example, exist returns 8 on the Java class, Welcome, and
returns 2 on the Java class file, Welcome.class.

exist Welcome
ans =
 8

exist javaclasses/Welcome.class
ans =
 2

indicates there is a Java class Welcome and a Java class file Welcome.class.

The following example indicates that testresults is both a variable in the
workspace and a directory on the search path:

exist('testresults','var')
ans =
 1

exist('testresults','dir')
ans =
 7

See Also dir, help, lookfor, partialpath, what, which, who

exist

2-594

2existPurpose Check if a variable or file exists

Graphical
Interface

As an alternative to the exist function, use the Workspace browser or the
Current Directory Browser.

Syntax exist item
exist item kind
a = exist('item',...)

Description exist item returns the status of the variable or file, item:

If item specifies a filename, that filename may include an extension to
preclude conflicting with other similar filenames. For example,
exist('file.ext').

MEX, MDL, and P-files must be on the MATLAB search path for exist to
return the values shown above. If item is found, but is not on the MATLAB
search path, exist('item') returns 2, because it considers item to be an
unknown file type.

Any other file type or directory specified by item is not required to be on the
MATLAB search path to be recognized by exist. If the file or directory is not
on the search path, then item must specify either a full pathname, a partial
pathname relative to MATLABPATH, or a partial pathname relative to your
current directory.

0 If item does not exist.

1 If the variable item exists in the workspace.

2 If item is an M-file or a file of unknown type.

3 If item is a MEX-file on your MATLAB search path.

4 If item is an MDL-file on your MATLAB search path.

5 If item is a built-in MATLAB function.

6 If item is a P-file on your MATLAB search path.

7 If item is a directory.

8 If item is a Java class.

exist

2-595

If item is a Java class, then exist('item') returns an 8. However, if item is a
Java class file, then exist('item') returns a 2.

exist item kind returns the status of item for the specified kind. If item of
type kind does not exist, it returns 0. The kind argument may be one of the
following:

a = exist('item',...) returns the status of the variable or file in variable a.

Remarks To check for the existence of more than one variable, use the ismember
function. For example,

a = 5.83;
c = 'teststring';
ismember({'a','b','c'},who)

ans =

 1 0 1

Examples This example uses exist to check whether a MATLAB function is a built-in
function or a file:

type = exist('plot')
type =

5

This indicates that plot is a built-in function.

builtin Checks only for built-in functions.

class Checks only for Java classes.

dir Checks only for directories.

file Checks only for files or directories.

var Checks only for variables.

exit

2-596

2exitPurpose Terminate MATLAB (same as quit)

Graphical
Interface

As an alternative to the exit function, select Exit MATLAB from the File
menu or click the close box in the MATLAB desktop.

Syntax exit

Description exit ends the current MATLAB session. It is the same as quit. See quit for
termination options.

See Also finish, quit

exp

2-597

2expPurpose Exponential

Syntax Y = exp(X)

Description The exp function is an elementary function that operates element-wise on
arrays. Its domain includes complex numbers.

Y = exp(X) returns the exponential for each element of X. For complex
, it returns the complex exponential .

Remark Use expm for matrix exponentials.

See Also expm, log, log10, expint

z x i* y+= ez ex y()cos i y()sin+()=

expint

2-598

2expintPurpose Exponential integral

Syntax Y = expint(X)

Definitions The exponential integral computed by this function is defined as

Another common definition of the exponential integral function is the Cauchy
principal value integral

which, for real positive x, is related to expint as

Description Y = expint(X) evaluates the exponential integral for each element of X.

References [1] Abramowitz, M. and I. A. Stegun. Handbook of Mathematical Functions.
Chapter 5, New York: Dover Publications, 1965.

E1 x() e t–

t

x

∞
∫= dt

Ei x() et

t
---- td

∞–

x

∫=

E1 x–() Ei x()– iπ–=

expm

2-599

2expmPurpose Matrix exponential

Syntax Y = expm(X)

Description Y = expm(X) raises the constant to the matrix power X. The expm function
produces complex results if X has nonpositive eigenvalues.

Use exp for the element-by-element exponential.

Algorithm expm is a built-in function that uses the Padé approximation with scaling and
squaring. You can see the coding of this algorithm in the expm1 demo.

Note The expm1, expm2, and expm3 demos illustrate the use of Padé
approximation, Taylor series approximation, and eigenvalues and
eigenvectors, respectively, to compute the matrix exponential.

References [1] and [2] describe and compare many algorithms for computing a
matrix exponential. The built-in method, expm, is essentially method 3 of [2].

Examples This example computes and compares the matrix exponential of A and the
exponential of A.

A = [1 1 0
 0 0 2
 0 0 -1];

expm(A)
ans =
 2.7183 1.7183 1.0862
 0 1.0000 1.2642
 0 0 0.3679

exp(A)
ans =
 2.7183 2.7183 1.0000
 1.0000 1.0000 7.3891
 1.0000 1.0000 0.3679

e

expm

2-600

Notice that the diagonal elements of the two results are equal. This would be
true for any triangular matrix. But the off-diagonal elements, including those
below the diagonal, are different.

See Also exp, funm, logm, sqrtm

References [1] Golub, G. H. and C. F. Van Loan, Matrix Computation, p. 384, Johns
Hopkins University Press, 1983.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute the
Exponential of a Matrix,” SIAM Review 20, 1979, pp. 801-836.

eye

2-601

2eyePurpose Identity matrix

Syntax Y = eye(n)
Y = eye(m,n)
Y = eye(size(A))

Description Y = eye(n) returns the n-by-n identity matrix.

Y = eye(m,n) or eye([m n]) returns an m-by-n matrix with 1’s on the
diagonal and 0’s elsewhere.

Y = eye(size(A)) returns an identity matrix the same size as A.

Limitations The identity matrix is not defined for higher-dimensional arrays. The
assignment y = eye([2,3,4]) results in an error.

See Also ones, rand, randn, zeros

ezcontour

2-602

2ezcontourPurpose Easy to use contour plotter

Syntax ezcontour(f)
ezcontour(f,domain)
ezcontour(...,n)

Description ezcontour(f) plots the contour lines of f(x,y), where f is a string that
represents a mathematical function of two variables, such as x and y.

The function f is plotted over the default domain: -2π< x < 2π, -2π < y < 2π.
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function f is not defined (singular) for points on the grid, then
these points are not plotted.

ezcontour(f,domain) plots f(x,y) over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max]
(where min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezcontour('u^2 - v^3',[0,1],[3,6]) plots the contour lines for u2 - v3 over
0 < u < 1, 3 < v < 6.

ezcontour(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezcontour automatically adds a title and axis labels.

Remarks Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezcontour. For example, the MATLAB syntax for a
contour plot of the expression,

sqrt(x.^2 + y.^2)

is written as:

ezcontour('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezcontour.

Examples The following mathematical expression defines a function of two variables, x
and y.

ezcontour

2-603

ezcontour requires a string argument that expresses this function using
MATLAB syntax to represent exponents, natural logs, etc. This function is
represented by the string:

f = ['3*(1−x)^2*exp(−(x^2)−(y+1)^2)',...
'− 10*(x/5 − x^3 − y^5)*exp(-x^2−y^2)',...
'- 1/3*exp(−(x+1)^2 − y^2)'];

For convenience, this string is written on three lines and concatenated into one
string using square brackets.

Pass the string variable f to ezcontour along with a domain ranging from −3
to 3 and specify a computational grid of 49-by-49:

ezcontour(f,[-3,3],49)

In this particular case, the title is too long to fit at the top of the graph so
MATLAB abbreviates the string.

f x y,() 3 1 x–()2e x2– y 1+()2– 10 x
5
--- x3– y5–

 e x2– y2––
1
3
---e x 1+()2– y2––=

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

3 (1−x)2 exp(−(x2) − (y+1)2)− ~~~ x2−y2)− 1/3 exp(−(x+1)2 − y2)

ezcontour

2-604

See Also contour, ezcontourf, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar, ezsurf,
ezsurfc

“Contour Plots” for related functions

ezcontourf

2-605

2ezcontourfPurpose Easy to use filled contour plotter

Syntax ezcontourf(f)
ezcontourf(f,domain)
ezcontourf(...,n)

Description ezcontourf(f) plots the contour lines of f(x,y), where f is a string that
represents a mathematical function of two variables, such as x and y.

The function f is plotted over the default domain: -2π< x < 2π, -2π < y < 2π.
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function f is not defined (singular) for points on the grid, then
these points are not plotted.

ezcontourf(f,domain) plots f(x,y) over the specified domain. domain can be
either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max]
(where, min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezcontourf('u^2 - v^3',[0,1],[3,6]) plots the contour lines for u2 - v3 over
0 < u < 1, 3 < v < 6.

ezcontourf(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezcontourf automatically adds a title and axis labels.

Remarks Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezcontourf. For example, the MATLAB syntax for a
filled contour plot of the expression,

sqrt(x.^2 + y.^2);

is written as:

ezcontourf('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezcontourf.

Examples The following mathematical expression defines a function of two variables, x
and y.

ezcontourf

2-606

ezcontourf requires a string argument that expresses this function using
MATLAB syntax to represent exponents, natural logs, etc. This function is
represented by the string:

f = ['3*(1−x)^2*exp(−(x^2)−(y+1)^2)',...
'− 10*(x/5 − x^3 − y^5)*exp(-x^2−y^2)',...
'- 1/3*exp(−(x+1)^2 − y^2)'];

For convenience, this string is written on three lines and concatenated into one
string using square brackets.

Pass the string variable f to ezcontourf along with a domain ranging from −3
to 3 and specify a grid of 49-by-49:

ezcontourf(f,[-3,3],49)

In this particular case, the title is too long to fit at the top of the graph so
MATLAB abbreviates the string.

f x y,() 3 1 x–()2e x2– y 1+()2– 10 x
5
--- x3– y5–

 e x2– y2––
1
3
---e x 1+()2– y2––=

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

3 (1−x)2 exp(−(x2) − (y+1)2)− ~~~ x2−y2)− 1/3 exp(−(x+1)2 − y2)

ezcontourf

2-607

See Also contourf, ezcontour, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar, ezsurf,
ezsurfc

“Contour Plots” for related functions

ezmesh

2-608

2ezmeshPurpose Easy to use 3-D mesh plotter

Syntax ezmesh(f)
ezmesh(f,domain)
ezmesh(x,y,z)
ezmesh(x,y,z,[smin,smax,tmin,tmax]) or ezmesh(x,y,z,[min,max])
ezmesh(...,n)
ezmesh(...,'circ')

Description ezmesh(f) creates a graph of f(x,y), where f is a string that represents a
mathematical function of two variables, such as x and y.

The function f is plotted over the default domain: -2π< x < 2π, -2π < y < 2π.
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function f is not defined (singular) for points on the grid, then
these points are not plotted.

ezmesh(f,domain) plots f over the specified domain. domain can be either a
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where,
min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezmesh('u^2 - v^3',[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

ezmesh(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t)
over the square: -2π< s < 2π, -2π < t < 2π.

ezmesh(x,y,z,[smin,smax,tmin,tmax]) or ezmesh(x,y,z,[min,max]) plots
the parametric surface using the specified domain.

ezmesh(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezmesh(...,'circ') plots f over a disk centered on the domain.

Remarks Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezmesh. For example, the MATLAB syntax for a mesh
plot of the expression,

sqrt(x.^2 + y.^2);

ezmesh

2-609

is written as:

ezmesh('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezmesh.

Examples This example visualizes the function,

with a mesh plot drawn on a 40-by-40 grid. The mesh lines are set to a uniform
blue color by setting the colormap to a single color:

ezmesh('x*exp(-x^2-y^2)',40)
colormap([0 0 1])

See Also ezmeshc, mesh

“Function Plots” for related functions

f x y,() xe x– 2 y2–
=

−2
0

2

−2
−1

0
1

2

−0.5

0

0.5

x

x exp(−x2 − y2)

y

ezmeshc

2-610

2ezmeshcPurpose Easy to use combination mesh/contour plotter

Syntax ezmeshc(f)
ezmeshc(f,domain)
ezmeshc(x,y,z)
ezmeshc(x,y,z,[smin,smax,tmin,tmax]) or ezmeshc(x,y,z,[min,max])
ezmeshc(...,n)
ezmeshc(...,'circ')

Description ezmeshc(f) creates a graph of f(x,y), where f is a string that represents a
mathematical function of two variables, such as x and y.

The function f is plotted over the default domain: -2π< x < 2π, -2π < y < 2π.
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function f is not defined (singular) for points on the grid, then
these points are not plotted.

ezmeshc(f,domain) plots f over the specified domain. domain can be either a
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where,
min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezmeshc('u^2 - v^3',[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

ezmeshc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t)
over the square: -2π< s < 2π, -2π < t < 2π.

ezmeshc(x,y,z,[smin,smax,tmin,tmax]) or ezmeshc(x,y,z,[min,max])
plots the parametric surface using the specified domain.

ezmeshc(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezmeshc(...,'circ') plots f over a disk centered on the domain.

Remarks Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezmeshc. For example, the MATLAB syntax for a
mesh/contour plot of the expression,

sqrt(x.^2 + y.^2);

ezmeshc

2-611

is written as:

ezmeshc('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezmeshc.

Examples Create a mesh/contour graph of the expression,

over the domain -5 < x < 5, -2*pi < y < 2*pi:

ezmeshc('y/(1 + x^2 + y^2)',[−5,5,−2*pi,2*pi])

Use the mouse to rotate the axes to better observe the contour lines (this
picture uses a view of azimuth = -65.5 and elevation = 26).

See Also ezmesh, ezsurfc, meshc

“Function Plots” for related functions

f x y,() y

1 x2 y2
+ +

----------------------------=

−5

0

5

−5
0

5
−0.5

0

0.5

x

y/(1 + x2 + y2)

y

ezplot

2-612

2ezplotPurpose Easy to use function plotter

Syntax ezplot(f)
ezplot(f,[min,max])
ezplot(f,[xmin,xmax,ymin,ymax])
ezplot(x,y)
ezplot(x,y,[tmin,tmax])
ezplot(...,figure)

Description ezplot(f) plots the expression f = f(x) over the default domain: -2π< x < 2π.

ezplot(f,[min,max]) plots f = f(x) over the domain: min < x < max.

For implicitly defined functions, f = f(x,y):

ezplot(f) plots f(x,y) = 0 over the default domain -2π< x < 2π, -2π< y < 2π.

ezplot(f,[xmin,xmax,ymin,ymax]) plots f(x,y) = 0 over xmin < x < xmax and
ymin < y < ymax.

ezplot(f,[min,max])plots f(x,y) = 0 over min < x < max and min < y < max.

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezplot('u^2 - v^2 - 1',[-3,2,-2,3]) plots u2 - v2 - 1 = 0 over -3 < u < 2, -2
< v < 3.

ezplot(x,y) plots the parametrically defined planar curve x = x(t) and y = y(t)
over the default domain 0 < t < 2π.

ezplot(x,y,[tmin,tmax]) plots x = x(t) and y = y(t) over tmin < t < tmax.

ezplot(...,figure) plots the given function over the specified domain in the
figure window identified by the handle figure.

Remarks Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezplot. For example, the MATLAB syntax for a plot of
the expression,

x.^2 - y.^2

which represents an implicitly defined function, is written as:

ezplot('x^2 - y^2')

ezplot

2-613

That is, x^2 is interpreted as x.^2 in the string you pass to ezplot.

Examples This example plots the implicitly defined function,

x2 - y4 = 0

over the domain [-2π, 2π]:

ezplot('x^2-y^4')

See Also ezplot3, ezpolar, plot

“Function Plots” for related functions

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

x

y

x2−y4 = 0

ezplot3

2-614

2ezplot3Purpose Easy to use 3-D parametric curve plotter

Syntax ezplot3(x,y,z)
ezplot3(x,y,z,[tmin,tmax])
ezplot3(...,'animate')

Description ezplot3(x,y,z) plots the spatial curve x = x(t), y = y(t), and z = z(t) over the
default domain 0 < t < 2π.

ezplot3(x,y,z,[tmin,tmax]) plots the curve x = x(t), y = y(t), and z = z(t) over
the domain tmin < t < tmax.

ezplot3(...,'animate') produces an animated trace of the spatial curve.

Remarks Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezplot3. For example, the MATLAB syntax for a plot of
the expression,

x = s./2, y = 2.*s, z = s.^2;

which represents a parametric function, is written as:

ezplot3('s/2','2*s','s^2')

That is, s/2 is interpreted as s./2 in the string you pass to ezplot3.

Examples This example plots the parametric curve,

over the domain [0,6π]:

ezplot3('sin(t)','cos(t)','t',[0,6*pi])

x t y t z t=,cos=,sin=

ezplot3

2-615

See Also ezplot, ezpolar, plot3

“Function Plots” for related functions

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

5

10

15

20

x

x = sin(t), y = cos(t), z = t

y

z

ezpolar

2-616

2ezpolarPurpose Easy to use polar coordinate plotter

Syntax ezpolar(f)
ezpolar(f,[a,b])

Description ezpolar(f) plots the polar curve rho = f(theta) over the default domain 0 <
theta < 2π.

ezpolar(f,[a,b]) plots f for a < theta < b.

Examples This example creates a polar plot of the function,

1 + cos(t)

over the domain [0, 2π]:

ezpolar('1+cos(t)')

See Also ezplot, ezplot3, plot, plot3, polar

 0.5

 1

 1.5

 2

30

210

60

240

90

270

120

300

150

330

180 0

r = 1+cos(t)

ezpolar

2-617

“Function Plots” for related functions

ezsurf

2-618

2ezsurfPurpose Easy to use 3-D colored surface plotter

Syntax ezsurf(f)
ezsurf(f,domain)
ezsurf(x,y,z)
ezsurf(x,y,z,[smin,smax,tmin,tmax]) or ezsurf(x,y,z,[min,max])
ezsurf(...,n)
ezsurf(...,'circ')

Description ezsurf(f) creates a graph of f(x,y), where f is a string that represents a
mathematical function of two variables, such as x and y.

The function f is plotted over the default domain: -2π< x < 2π, -2π < y < 2π.
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function f is not defined (singular) for points on the grid, then
these points are not plotted.

ezsurf(f,domain) plots f over the specified domain. domain can be either a
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where,
min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezsurf('u^2 - v^3',[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

ezsurf(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t)
over the square: -2π< s < 2π, -2π < t < 2π.

ezsurf(x,y,z,[smin,smax,tmin,tmax]) or ezsurf(x,y,z,[min,max]) plots
the parametric surface using the specified domain.

ezsurf(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezsurf(...,'circ') plots f over a disk centered on the domain.

Remarks Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezsurf. For example, the MATLAB syntax for a surface
plot of the expression,

sqrt(x.^2 + y.^2);

ezsurf

2-619

is written as:

ezsurf('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezsurf.

Examples ezsurf does not graph points where the mathematical function is not defined
(these data points are set to NaNs, which MATLAB does not plot). This example
illustrates this filtering of singularities/discontinuous points by graphing the
function,

over the default domain -2π< x < 2π, -2π < y < 2π:

ezsurf('real(atan(x+i*y))')

Using surf to plot the same data produces a graph without filtering of
discontinuities (as well as requiring more steps):

[x,y] = meshgrid(linspace(-2*pi,2*pi,60));
z = real(atan(x+i.*y));

f x y,() x iy+()atan()real=

−5

0

5

−5

0

5

−2

−1

0

1

2

x

real(atan(x+i y))

y

ezsurf

2-620

surf(x,y,z)

Note also that ezsurf creates graphs that have axis labels, a title, and extend
to the axis limits.

See Also ezmesh, ezsurfc, surf

“Function Plots” for related functions

−10
−5

0
5

10

−10
−5

0
5

10
−2

−1

0

1

2

ezsurfc

2-621

2ezsurfcPurpose Easy to use combination surface/contour plotter

Syntax ezsurfc(f)
ezsurfc(f,domain)
ezsurfc(x,y,z)
ezsurfc(x,y,z,[smin,smax,tmin,tmax]) or ezsurfc(x,y,z,[min,max])
ezsurfc(...,n)
ezsurfc(...,'circ')

Description ezsurfc(f) creates a graph of f(x,y), where f is a string that represents a
mathematical function of two variables, such as x and y.

The function f is plotted over the default domain: -2π< x < 2π, -2π < y < 2π.
MATLAB chooses the computational grid according to the amount of variation
that occurs; if the function f is not defined (singular) for points on the grid, then
these points are not plotted.

ezsurfc(f,domain) plots f over the specified domain. domain can be either a
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where,
min < x < max, min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain
endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezsurfc('u^2 - v^3',[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

ezsurfc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t)
over the square: -2π< s < 2π, -2π < t < 2π.

ezsurfc(x,y,z,[smin,smax,tmin,tmax]) or ezsurfc(x,y,z,[min,max])
plots the parametric surface using the specified domain.

ezsurfc(...,n) plots f over the default domain using an n-by-n grid. The
default value for n is 60.

ezsurfc(...,'circ') plots f over a disk centered on the domain.

Remarks Array multiplication, division, and exponentiation are always implied in the
expression you pass to ezsurfc. For example, the MATLAB syntax for a
surface/contour plot of the experssion,

sqrt(x.^2 + y.^2);

ezsurfc

2-622

is written as:

ezsurfc('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezsurfc.

Examples Create a surface/contour plot of the expression,

over the domain -5 < x < 5, -2*pi < y < 2*pi, with a computational grid of size
35-by-35:

ezsurfc('y/(1 + x^2 + y^2)',[−5,5,−2*pi,2*pi],35)

Use the mouse to rotate the axes to better observe the contour lines (this
picture uses a view of azimuth = -65.5 and elevation = 26)

See Also ezmesh, ezmeshc, ezsurf, surfc

f x y,() y

1 x2 y2
+ +

----------------------------=

−5

0

5

−5
0

5
−0.5

0

0.5

x

y/(1 + x2 + y2)

y

ezsurfc

2-623

“Function Plots” for related functions

ezsurfc

2-624

I-1

Index

Symbols
! 2-24
- 2-11
% 2-24
& 2-20, 2-22
&& 2-22
' 2-11, 2-24
() 2-24
* 2-11
+ 2-11
, 2-24
. 2-24
... 2-24
/ 2-11
: 2-27
< 2-19
= 2-24
== 2-19
> 2-19
\ 2-11
^ 2-11
{} 2-24
| 2-20, 2-22
|| 2-22
~ 2-20, 2-22
~= 2-19

A
abs 2-29
absolute value 2-29
accuracy

of linear equation solution 2-357
of matrix inversion 2-357
relative floating-point 2-573

acos 2-30
acosh 2-32

acot 2-34
acoth 2-36
acsc 2-38
acsch 2-40
actxcontrol 2-42
actxserver 2-46
addframe

AVI files 2-48
addition (arithmetic operator) 2-11
addpath 2-50
addproperty 2-52
addressing selected array elements 2-27
adjacency graph 2-535
airy 2-53
Airy functions

relationship to modified Bessel functions 2-53
ALim, Axes property 2-117
all 2-56
AmbientLightColor, Axes property 2-117
and (M-file function equivalent for &) 2-21
AND, logical

bit-wise 2-190
angle 2-64
ans 2-65
any 2-66
arccosecant 2-38
arccosine 2-30
arccotangent 2-34
arcsecant 2-70
arcsine 2-74
arctangent 2-80

four-quadrant 2-82
area 2-68
arithmetic operations, matrix and array

distinguished 2-11
arithmetic operators

Index

I-2

reference 2-11
array

addressing selected elements of 2-27
displaying 2-525
left division (arithmetic operator) 2-12
multiplication (arithmetic operator) 2-11
power (arithmetic operator) 2-12
right division (arithmetic operator) 2-12
shift circularly 2-297
transpose (arithmetic operator) 2-12

arrays
maximum size of 2-356

arrowhead matrix 2-348
ASCII

delimited files
writing 2-534

ASCII data
printable characters (list of) 2-278
reading 2-533

asec 2-70
asech 2-72
asin 2-74
asinh 2-76
aspect ratio of axes 2-428
assignin 2-78
atan 2-80
atan2 2-82
atanh 2-84
.au files

reading 2-97
writing 2-98

audio
saving in AVI format 2-99

audio devices 2-86
audiodevinfo 2-86
audioplayer 2-88
audiorecorder 2-92

auwrite 2-98
avi 2-99
avifile 2-99
aviinfo 2-102
aviread 2-104
Axes

creating 2-105
defining default properties 2-109
fixed-width font 2-126
property descriptions 2-117

axes
setting and querying data aspect ratio 2-428

axes 2-105
axis 2-138

B
balance 2-144
bar 2-147
bar3 2-151
bar3h 2-151
barh 2-147
base to decimal conversion 2-155
base two operations

conversion from decimal to binary 2-481
base2dec 2-155
beep 2-156
Bessel functions

first kind 2-167
modified, first kind 2-161
modified, second kind 2-164
second kind 2-170

Bessel functions, modified
relationship to Airy functions 2-53

Bessel’s equation
(defined) 2-167
modified (defined) 2-161

Index

I-3

besseli 2-161
besselj 2-167
besselk 2-164
bessely 2-170
beta 2-173
beta function

(defined) 2-173
incomplete (defined) 2-175
natural logarithm 2-176

betainc 2-175
betaln 2-176
bicg 2-177
bicgstab 2-184
BiConjugate Gradients method 2-177
BiConjugate Gradients Stabilized method 2-184
bin2dec 2-189
binary to decimal conversion 2-189
bitand 2-190
bitcmp 2-191
bitget 2-192
bitmax 2-193
bitor 2-194
bitset 2-195
bitshift 2-196
bit-wise operations

AND 2-190
get 2-192
OR 2-194
set bit 2-195
shift 2-196
XOR 2-197

bitxor 2-197
blanks

removing trailing 2-479
blanks 2-198
blkdiag 2-199
box 2-200

Box, Axes property 2-118
braces, curly (special characters) 2-24
brackets (special characters) 2-24
break 2-201
breakpoints

listing 2-451
removing 2-442
resuming execution from 2-444
setting in M-files 2-453

brighten 2-202
builtin 2-204
BusyAction

Axes property 2-118
ButtonDownFcn

Axes property 2-118
bvp4c 2-205
bvpget 2-212
bvpinit 2-213
bvpset 2-215
bvpval 2-218

C
calendar 2-219
camdolly 2-220
camera

dollying position 2-220
moving camera and target postions 2-220
placing a light at 2-222
positioning to view objects 2-224
rotating around camera target 2-226, 2-228
rotating around viewing axis 2-232
setting and querying position 2-229
setting and querying projection type 2-231
setting and querying target 2-233
setting and querying up vector 2-235
setting and querying view angle 2-237

Index

I-4

CameraPosition, Axes property 2-119
CameraPositionMode, Axes property 2-119
CameraTarget, Axes property 2-119
CameraTargetMode, Axes property 2-119
CameraUpVector, Axes property 2-119
CameraUpVectorMode, Axes property 2-119
CameraViewAngle, Axes property 2-120
CameraViewAngleMode, Axes property 2-120
camlight 2-222
camlookat 2-224
camorbit 2-226
campan 2-228
campos 2-229
camproj 2-231
camroll 2-232
camtarget 2-233
camup 2-235
camva 2-237
camzoom 2-239
capture 2-240
cart2pol 2-241
cart2sph 2-242
Cartesian coordinates 2-241, 2-242
case 2-243
cat 2-244
catch 2-245
caxis 2-246
cd 2-250
cdf2rdf 2-251
cdfepoch 2-253
cdfinfo 2-254
cdfread 2-258
cdfwrite 2-260
ceil 2-263
cell 2-264
cell array

creating 2-264

structure of, displaying 2-272
cell2mat 2-266
cell2struct 2-268
celldisp 2-269
cellfun 2-270
cellplot 2-272
cgs 2-274
char 2-278
checkin 2-280

examples 2-281
options 2-280

checkout 2-282
examples 2-283
options 2-282

Children

Axes property 2-121
chol 2-285
Cholesky factorization 2-285

(as algorithm for solving linear equations) 2-15
preordering for 2-348

cholinc 2-287
cholupdate 2-294
circshift 2-297
cla 2-298
clabel 2-299
class 2-301
clc 2-303, 2-309
clear 2-304
clear

serial port I/O 2-308
clearing

Command Window 2-303
items from workspace 2-304
Java import list 2-305

clf 2-309
CLim, Axes property 2-121
CLimMode, Axes property 2-121

Index

I-5

clipboard 2-310
Clipping

Axes property 2-121
clock 2-311
close 2-312

AVI files 2-314
closest point search 2-546
cmapeditor 2-330
cmopts 2-316
colamd 2-317
colmmd 2-319
Color

Axes property 2-122
colorbar 2-322
colormap

editor 2-330
colormap 2-326
ColorOrder, Axes property 2-122
ColorSpec 2-346
colperm 2-348
COM

object methods
actxcontrol 2-42
actxserver 2-46
addproperty 2-52
delete 2-499
deleteproperty 2-503
eventlisteners 2-590
events 2-592

comet 2-349
comet3 2-350
comma (special characters) 2-26
Command Window

clearing 2-303
compan 2-351
companion matrix 2-351
compass 2-352

complementary error function
(defined) 2-574
scaled (defined) 2-574

complete elliptic integral
(defined) 2-564
modulus of 2-562, 2-564

complex
exponential (defined) 2-597
phase angle 2-64

complex 2-354
complex conjugate 2-365

sorting pairs of 2-407
complex data

creating 2-354
complex numbers, magnitude 2-29
computer 2-356
computer MATLAB is running on 2-356
concatenating arrays 2-244
cond 2-357
condeig 2-358
condest 2-359
condition number of matrix 2-357

improving 2-144
coneplot 2-360
conj 2-365
conjugate, complex 2-365

sorting pairs of 2-407
continuation (..., special characters) 2-25
continue 2-366
contour

and mesh plot 2-610
filled plot 2-605
functions 2-602
of mathematical expression 2-602
with surface plot 2-621

contour 2-367
contour3 2-371

Index

I-6

contourc 2-373
contourf 2-375
contours

in slice planes 2-377
contourslice 2-377
contrast 2-380
conv 2-381
conv2 2-382
conversion

base to decimal 2-155
binary to decimal 2-189
Cartesian to cylindrical 2-241
Cartesian to polar 2-241
complex diagonal to real block diagonal 2-251
decimal number to base 2-477, 2-480
decimal to binary 2-481
decimal to hexadecimal 2-482
string matrix to cell array 2-273
vector to character string 2-278

convex hulls
multidimensional vizualization 2-388
two-dimensional vizualization 2-386

convhull 2-386
convhulln 2-388
convn 2-390
convolution 2-381

inverse See deconvolution
two-dimensional 2-382

coordinates
Cartesian 2-241, 2-242
cylindrical 2-241, 2-242
polar 2-241, 2-242

coordinates.See also conversion
copyfile 2-391
copyobj 2-393
corrcoef 2-395
cos 2-398

cosecant
hyperbolic 2-412
inverse 2-38
inverse hyperbolic 2-40

cosh 2-400
cosine 2-398

hyperbolic 2-400
inverse 2-30
inverse hyperbolic 2-32

cot 2-402
cotangent 2-402

hyperbolic 2-404
inverse 2-34
inverse hyperbolic 2-36

coth 2-404
cov 2-406
cplxpair 2-407
cputime 2-408
CreateFcn

Axes property 2-122
cross 2-409
cross product 2-409
csc 2-410
csch 2-412
csvread 2-414
csvwrite 2-416
ctranspose (M-file function equivalent for ') 2-13
cumprod 2-417
cumsum 2-418
cumtrapz 2-419
cumulative

product 2-417
sum 2-418

curl 2-421
curly braces (special characters) 2-24
current directory

changing 2-250

Index

I-7

CurrentPoint

Axes property 2-123
customverctrl 2-424
cylinder 2-425
cylindrical coordinates 2-241, 2-242

D
daspect 2-428
data aspect ratio of axes 2-428
data types

complex 2-354
DataAspectRatio, Axes property 2-123
DataAspectRatioMode, Axes property 2-125
date 2-431
date and time functions 2-572
date string

format of 2-434
date vector 2-440
datenum 2-432
datestr 2-434
datevec 2-440
dbclear 2-442
dbcont 2-444
dbdown 2-445
dblquad 2-446
dbmex 2-448
dbquit 2-449
dbstack 2-450
dbstatus 2-451
dbstep 2-452
dbstop 2-453
dbtype 2-457
dbup 2-458
dde23 2-459
ddeadv 2-463
ddeexec 2-465

ddeget 2-466
ddeinit 2-467
ddepoke 2-468
ddereq 2-470
ddeset 2-472
ddeterm 2-475
ddeunadv 2-476
deal 2-477
deblank 2-479
debugging

changing workspace context 2-445
changing workspace to calling M-file 2-458
displaying function call stack 2-450
MEX-files on UNIX 2-448
quitting debug mode 2-449
removing breakpoints 2-442
resuming execution from breakpoint 2-452
setting breakpoints in 2-453
stepping through lines 2-452

dec2base 2-477, 2-480
dec2bin 2-481
dec2hex 2-482
decimal number to base conversion 2-477, 2-480
decimal point (.)

(special characters) 2-25
to distinguish matrix and array operations

2-11
decomposition

Dulmage-Mendelsohn 2-535
deconv 2-483
deconvolution 2-483
default tolerance 2-573
del operator 2-484
del2 2-484
delaunay 2-487
Delaunay tessellation

3-dimensional vizualization 2-492

Index

I-8

multidimensional vizualization 2-495
Delaunay triangulation

vizualization 2-487
delaunay3 2-492
delaunayn 2-495
delete 2-498, 2-499
delete

serial port I/O 2-501
timer object 2-502

DeleteFcn

Axes property 2-125
deleteproperty 2-503
deleting

files 2-498
items from workspace 2-304

delimiters in ASCII files 2-533, 2-534
demo 2-504
depdir 2-507
depfun 2-508
derivative

approximate 2-521
det 2-512
determinant of a matrix 2-512
detrend 2-513
deval 2-515
diag 2-517
diagonal 2-517

main 2-517
dialog 2-519
dialog box

error 2-580
diary 2-520
diff 2-521
differences

between adjacent array elements 2-521
differential equation solvers

ODE boundary value problems 2-205

adjusting parameters 2-215
extracting properties 2-212
extracting properties of 2-583, 2-584
forming initial guess 2-213

dir 2-523
directories

adding to search path 2-50
checking existence of 2-594
copying 2-391
listing contents of 2-523
See also directory, search path

directory
See also directories

directory, changing 2-250
discontinuities, plotting functions with 2-619
disp 2-525
disp

serial port I/O 2-526
timer object 2-527

display 2-529
distribution

Gaussian 2-574
division

array, left (arithmetic operator) 2-12
array, right (arithmetic operator) 2-12
matrix, left (arithmetic operator) 2-12
matrix, right (arithmetic operator) 2-11
of polynomials 2-483

dlmread 2-533
dlmwrite 2-534
dmperm 2-535
docroot 2-538
documentation

location of files for UNIX 2-537
documentation location 2-538
dolly camera 2-220
dos 2-539

Index

I-9

dot 2-541
dot product 2-409, 2-541
double 2-542
double integral

numerical evaluation 2-446
dragrect 2-543
DrawMode, Axes property 2-125
drawnow 2-544
dsearch 2-545
dsearchn 2-546
Dulmage-Mendelsohn decomposition 2-535

E
echo 2-547
edge finding, Sobel technique 2-383
editing

M-files 2-548
eig 2-550
eigensystem

transforming 2-251
eigenvalue

accuracy of 2-550
complex 2-251
of companion matrix 2-351
problem 2-551
problem, generalized 2-551
repeated 2-552

eigenvalues
effect of roundoff error 2-144
improving accuracy 2-144

eigenvector
left 2-551
right 2-551

eigs 2-554
ellipj 2-562
ellipke 2-564

elliptic functions, Jacobian
(defined) 2-562

elliptic integral
complete (defined) 2-564
modulus of 2-562, 2-564

else 2-567
elseif 2-568
end 2-570
end of line, indicating 2-26
eomday 2-572
eps 2-573
equal sign (special characters) 2-25
equations, linear

accuracy of solution 2-357
erf 2-574
erfc 2-574
erfcinv 2-574
erfcx 2-574
erfinv 2-574
error 2-576
error function

(defined) 2-574
complementary 2-574
scaled complementary 2-574

error message
displaying 2-576

errorbar 2-578
errordlg 2-580
etime 2-582
etree 2-583
etreeplot 2-584
eval 2-585
evalc 2-587
evalin 2-588
eventlisteners 2-590
events 2-592
examples

Index

I-10

contouring mathematical expressions 2-602
mesh plot of mathematical function 2-609
mesh/contour plot 2-611
plotting filled contours 2-605
plotting function of two variables 2-613
plotting parametric curves 2-614
polar plot of function 2-616
surface plot of mathematical function 2-619
surface/contour plot 2-622

exclamation point (special characters) 2-26
execution

resuming from breakpoint 2-444
exist 2-594
exit 2-596
exp 2-597
expint 2-598
expm 2-599
exponential 2-597

complex (defined) 2-597
integral 2-598
matrix 2-599

exponentiation
array (arithmetic operator) 2-12
matrix (arithmetic operator) 2-12

eye 2-601
ezcontour 2-602
ezcontourf 2-605
ezmesh 2-608
ezmeshc 2-610
ezplot 2-612
ezplot3 2-614
ezpolar 2-616
ezsurf 2-618
ezsurfc 2-621

F
factorization, Cholesky 2-285

(as algorithm for solving linear equations) 2-15
preordering for 2-348

Figures
updating from M-file 2-544

files
ASCII delimited

reading 2-533
writing 2-534

checking existence of 2-594
copying 2-391
deleting 2-498
listing

names in a directory 2-523
sound

reading 2-97
writing 2-98, 2-99

filter
two-dimensional 2-382

fixed-width font
axes 2-126

flint See floating-point, integer
floating-point

integer 2-191, 2-195
integer, maximum 2-193
numbers, interval between 2-573

flow control
break 2-201
case 2-243
end 2-570
error 2-576

font
fixed-width, axes 2-126

FontAngle

Axes property 2-125
FontName

Index

I-11

Axes property 2-126
FontSize

Axes property 2-126
FontUnits

Axes property 2-126
FontWeight

Axes property 2-127
Fourier transform

convolution theorem and 2-381
functions

call stack for 2-450
checking existence of 2-594
clearing from workspace 2-304

G
Gaussian distribution function 2-574
Gaussian elimination

(as algorithm for solving linear equations)
2-16

generalized eigenvalue problem 2-551
generating a sequence of matrix names (M1

through M12) 2-585
global variables, clearing from workspace 2-304
graph

adjacency 2-535
graphics objects

Axes 2-105
graphics objects, deleting 2-498
GridLineStyle, Axes property 2-127

H
HandleVisibility

Axes property 2-127
help

files, location for UNIX 2-537

Help browser
accessing from doc 2-536

help files 2-538
HitTest

Axes property 2-128
horzcat (M-file function equivalent for [,]) 2-26
Householder reflections (as algorithm for solving

linear equations) 2-16
hyperbolic

cosecant 2-412
cosecant, inverse 2-40
cosine 2-400
cosine, inverse 2-32
cotangent 2-404
cotangent, inverse 2-36
secant, inverse 2-72
sine, inverse 2-76
tangent, inverse 2-84

I
identity matrix 2-601
incomplete beta function

(defined) 2-175
inheritance, of objects 2-302
integer

floating-point 2-191, 2-195
floating-point, maximum 2-193

Interruptible

Axes property 2-128
inverse

cosecant 2-38
cosine 2-30
cotangent 2-34
hyperbolic cosecant 2-40
hyperbolic cosine 2-32
hyperbolic cotangent 2-36

Index

I-12

hyperbolic secant 2-72
hyperbolic sine 2-76
hyperbolic tangent 2-84
secant 2-70
sine 2-74
tangent 2-80
tangent, four-quadrant 2-82

inversion, matrix
accuracy of 2-357

J
Jacobian elliptic functions

(defined) 2-562
Java

class names 2-305
Java import list

clearing 2-305
joining arrays See concatenating arrays

L
labeling

matrix columns 2-525
Laplacian 2-484
Layer, Axes property 2-128
ldivide (M-file function equivalent for .\) 2-13
Light

positioning in camera coordinates 2-222
line numbers in M-files 2-457
linear equation systems

accuracy of solution 2-357
linear equation systems, methods for solving

Cholesky factorization 2-15
Gaussian elimination 2-16
Householder reflections 2-16

LineStyleOrder

Axes property 2-129
LineWidth

Axes property 2-129
Lobatto IIIa ODE solver 2-211
log

saving session to file 2-520
logarithm

of beta function (natural) 2-176
logical operations

AND, bit-wise 2-190
OR, bit-wise 2-194
XOR, bit-wise 2-197

logical operators 2-20, 2-22
logical tests

all 2-56
any 2-66

M
matrix

addressing selected rows and columns of 2-27
arrowhead 2-348
companion 2-351
condition number of 2-357
condition number, improving 2-144
converting to vector 2-27
defective (defined) 2-552
determinant of 2-512
diagonal of 2-517
Dulmage-Mendelsohn decomposition 2-535
exponential 2-599
identity 2-601
inversion, accuracy of 2-357
left division (arithmetic operator) 2-12
maximum size of 2-356
modal 2-550
multiplication (defined) 2-11

Index

I-13

power (arithmetic operator) 2-12
reading files into 2-533
right division (arithmetic operator) 2-11
singularity, test for 2-512
trace of 2-517
transpose (arithmetic operator) 2-12
transposing 2-25
writing to ASCII delimited file 2-534
See also array

matrix names, (M1 through M12) generating a
sequence of 2-585

matrix power See matrix, exponential
maximum matching 2-535
MDL-files

checking existence of 2-594
memory

clearing 2-304
methods

inheritance of 2-302
MEX-files

clearing from workspace 2-304
debugging on UNIX 2-448

M-file
displaying during execution 2-547
function file, echoing 2-547
script file, echoing 2-547

M-files
checking existence of 2-594
clearing from workspace 2-304
deleting 2-498
editing 2-548
line numbers, listing 2-457
setting breakpoints 2-453

MinorGridLineStyle, Axes property 2-129
minus (M-file function equivalent for -) 2-13
mldivide (M-file function equivalent for \) 2-13
modal matrix 2-550

modified Bessel functions
relationship to Airy functions 2-53

modifying for PVCS 2-316
movies

exporting in AVI format 2-99
mpower (M-file function equivalent for ^) 2-13
mrdivide (M-file function equivalent for /) 2-13
mtimes (M-file function equivalent for *) 2-13
multidimensional arrays

concatenating 2-244
multiplication

array (arithmetic operator) 2-11
matrix (defined) 2-11
of polynomials 2-381

N
NextPlot

Axes property 2-130
not (M-file function equivalent for ~) 2-21
numerical evaluation

double integral 2-446

O
object

inheritance 2-302
object classes, list of predefined 2-301
online help

location of files for UNIX 2-537
operating system command, issuing 2-26
operators

arithmetic 2-11
logical 2-20, 2-22
relational 2-19
special characters 2-24

logical OR

Index

I-14

bit-wise 2-194
or (M-file function equivalent for |) 2-21
orthographic projection, setting and querying

2-231

P
parametric curve, plotting 2-614
Parent

Axes property 2-130
parentheses (special characters) 2-25
path

adding directories to 2-50
pauses, removing 2-442
percent sign (special characters) 2-26
perfect matching 2-535
period (.), to distinguish matrix and array

operations 2-11
period (special characters) 2-25
perspective projection, setting and querying

2-231
P-files

checking existence of 2-594
phase angle, complex 2-64
platform MATLAB is running on 2-356
PlotBoxAspectRatio, Axes property 2-130
PlotBoxAspectRatioMode, Axes property 2-130
plotting

contours (a 2-602
contours (ez function) 2-602
errorbars 2-578
ez-function mesh plot 2-608
filled contours 2-605
functions with discontinuities 2-619
in polar coordinates 2-616
mathematical function 2-612
mesh contour plot 2-610

parametric curve 2-614
surfaces 2-618
velocity vectors 2-360

plus (M-file function equivalent for +) 2-13
polar coordinates

computing the angle 2-64
converting from Cartesian 2-241
plotting in 2-616

polynomial
division 2-483
multiplication 2-381

poorly conditioned eigenvalues 2-144
Position

Axes property 2-131
position of camera

dollying 2-220
position of camera, setting and querying 2-229
power

matrix See matrix exponential
power (M-file function equivalent for .^) 2-13
printing, suppressing 2-26
product

cumulative 2-417
of vectors (cross) 2-409
scalar (dot) 2-409

projection type, setting and querying 2-231
ProjectionType, Axes property 2-131

R
rdivide (M-file function equivalent for ./) 2-13
rearranging arrays

converting to vector 2-27
rearranging matrices

converting to vector 2-27
transposing 2-25

reference page

Index

I-15

accessing from doc 2-536
regularly spaced vectors, creating 2-27
relational operators 2-19
relative accuracy

floating-point 2-573
rolling camera 2-232
rotating camera 2-226
rotating camera target 2-228
round

towards infinity 2-263
roundoff error

convolution theorem and 2-381
effect on eigenvalues 2-144

S
saving

session to a file 2-520
scalar product (of vectors) 2-409
scaled complementary error function (defined)

2-574
search path

adding directories to 2-50
secant

inverse 2-70
inverse hyperbolic 2-72

Selected

Axes property 2-131
SelectionHighlight

Axes property 2-132
semicolon (special characters) 2-26
sequence of matrix names (M1 through M12)

generating 2-585
session

saving 2-520
shifting array

circular 2-297

sine
inverse 2-74
inverse hyperbolic 2-76

single quote (special characters) 2-25
slice planes, contouring 2-377
sorting

complex conjugate pairs 2-407
sound

files
reading 2-97
writing 2-98

source control systems
checking in files 2-280
checking out files 2-282
viewing current system 2-316

sparse matrix
minimum degree ordering of 2-319
permuting columns of 2-348

spreadsheets
reading into a matrix 2-533
writing matrices into 2-534

stack, displaying 2-450
str2cell 2-273
stretch-to-fill 2-106
string

converting from vector to 2-278
string matrix to cell array conversion 2-273
subsref (M-file function equivalent for

A(i,j,k...)) 2-26
subtraction (arithmetic operator) 2-11
sum

cumulative 2-418
Surface

and contour plotter 2-621
plotting mathematical functions 2-618

Index

I-16

T
Tag

Axes property 2-132
tangent

four-quadrant, inverse 2-82
inverse 2-80
inverse hyperbolic 2-84

target, of camera 2-233
test, logical See logical tests and detecting
TickDir, Axes property 2-132
TickDirMode, Axes property 2-132
TickLength, Axes property 2-132
time

CPU 2-408
required to execute commands 2-582

time and date functions 2-572
times (M-file function equivalent for .*) 2-13
Title, Axes property 2-133
tolerance, default 2-573
trace of a matrix 2-517
trailing blanks

removing 2-479
transformation

See also conversion
transpose

array (arithmetic operator) 2-12
matrix (arithmetic operator) 2-12

transpose (M-file function equivalent for .')
2-13

truth tables (for logical operations) 2-20
Type

Axes property 2-133

U
UIContextMenu

Axes property 2-133

uminus (M-file function equivalent for unary –)
2-13

Units

Axes property 2-133
up vector, of camera 2-235
updating figure during M-file execution 2-544
uplus (M-file function equivalent for unary +) 2-13
UserData

Axes property 2-134

V
variables

checking existence of 2-594
clearing from workspace 2-304

vector
dot product 2-541
product (cross) 2-409

vector field, plotting 2-360
vectorizing ODE function (BVP) 2-216
vectors, creating

regularly spaced 2-27
velocity vectors, plotting 2-360
vertcat (M-file function equivalent for [;]) 2-26
video

saving in AVI format 2-99
view 2-224
view angle, of camera 2-237
View, Axes property (obsolete) 2-134
viewing

a group of object 2-224
a specific object in a scene 2-224

Visible

Axes property 2-134
visualizing

cell array structure 2-272
volumes

Index

I-17

contouring slice planes 2-377

W
workspace

changing context while debugging 2-445,
2-458

clearing items from 2-304

X
XAxisLocation, Axes property 2-134
XColor, Axes property 2-134
XDir, Axes property 2-134
XGrid, Axes property 2-135
XLabel, Axes property 2-135
XLim, Axes property 2-135
XLimMode, Axes property 2-136
XMinorGrid, Axes property 2-136
logical XOR

bit-wise 2-197
XScale, Axes property 2-136
XTick, Axes property 2-136
XTickLabel, Axes property 2-136
XTickLabelMode, Axes property 2-137
XTickMode, Axes property 2-137

Y
YAxisLocation, Axes property 2-134
YColor, Axes property 2-134
YDir, Axes property 2-134
YGrid, Axes property 2-135
YLabel, Axes property 2-135
YLim, Axes property 2-135
YLimMode, Axes property 2-136
YMinorGrid, Axes property 2-136

YScale, Axes property 2-136
YTick, Axes property 2-136
YTickLabel, Axes property 2-136
YTickLabelMode, Axes property 2-137
YTickMode, Axes property 2-137

Z
ZColor, Axes property 2-134
ZDir, Axes property 2-134
ZGrid, Axes property 2-135
ZLim, Axes property 2-135
ZLimMode, Axes property 2-136
ZMinorGrid, Axes property 2-136
ZScale, Axes property 2-136
ZTick, Axes property 2-136
ZTickLabel, Axes property 2-136
ZTickLabelMode, Axes property 2-137
ZTickMode, Axes property 2-137

	Functions – By Category
	Development Environment
	Starting and Quitting
	Command Window
	Getting Help
	Workspace, File, and Search Path
	Workspace
	File
	Search Path

	Programming Tools
	Editing and Debugging
	Source Control
	Notebook

	System
	Performance Improvement Tools and Techniques

	Mathematics
	Arrays and Matrices
	Basic Information
	Operators
	Operations and Manipulation
	Elementary Matrices and Arrays
	Specialized Matrices

	Linear Algebra
	Matrix Analysis
	Linear Equations
	Eigenvalues and Singular Values
	Matrix Logarithms and Exponentials
	Factorization

	Elementary Math
	Trigonometric
	Exponential
	Complex
	Rounding and Remainder
	Discrete Math (e.g., Prime Factors)

	Data Analysis and Fourier Transforms
	Basic Operations
	Finite Differences
	Correlation
	Filtering and Convolution
	Fourier Transforms

	Polynomials
	Interpolation and Computational Geometry
	Interpolation
	Delaunay Triangulation and Tessellation
	Convex Hull
	Voronoi Diagrams
	Domain Generation

	Coordinate System Conversion
	Cartesian

	Nonlinear Numerical Methods
	Ordinary Differential Equations (IVP)
	Delay Differential Equations
	Boundary Value Problems
	Partial Differential Equations
	Optimization
	Numerical Integration (Quadrature)

	Specialized Math
	Sparse Matrices
	Elementary Sparse Matrices
	Full to Sparse Conversion
	Working with Sparse Matrices
	Reordering Algorithms
	Linear Algebra
	Linear Equations (Iterative Methods)
	Tree Operations

	Math Constants

	Programming and Data Types
	Data Types
	Numeric
	Characters and Strings
	Structures
	Cell Arrays
	Data Type Conversion
	Determine Data Type

	Arrays
	Array Operations
	Basic Array Information
	Array Manipulation
	Elementary Arrays

	Operators and Operations
	Special Characters
	Arithmetic Operations
	Bit-wise Operations
	Relational Operations
	Logical Operations
	Set Operations
	Date and Time Operations

	Programming in MATLAB
	M-File Functions and Scripts
	Evaluation of Expressions and Functions
	Timer Functions
	Variables and Functions in Memory
	Control Flow
	Function Handles
	Object-Oriented Programming
	Error Handling
	MEX Programming

	File I/O
	Filename Construction
	Opening, Loading, Saving Files
	Low-Level File I/O
	Text Files
	XML Documents
	Spreadsheets
	Microsoft Excel Functions
	Lotus123 Functions

	Scientific Data
	Common Data Format (CDF)
	Flexible Image Transport System
	Hierarchical Data Format (HDF)

	Audio and Audio/Video
	General
	SPARCstation-Specific Sound Functions
	Microsoft WAVE Sound Functions
	Audio Video Interleaved (AVI) Functions

	Images

	Graphics
	Basic Plots and Graphs
	Annotating Plots
	Specialized Plotting
	Area, Bar, and Pie Plots
	Contour Plots
	Direction and Velocity Plots
	Discrete Data Plots
	Function Plots
	Histograms
	Polygons and Surfaces
	Scatter Plots
	Animation

	Bit-Mapped Images
	Printing
	Handle Graphics
	Finding and Identifying Graphics Objects
	Object Creation Functions
	Figure Windows
	Axes Operations

	3-D Visualization
	Surface and Mesh Plots
	Creating Surfaces and Meshes
	Domain Generation
	Color Operations
	Colormaps

	View Control
	Controlling the Camera Viewpoint
	Setting the Aspect Ratio and Axis Limits
	Object Manipulation
	Selecting Region of Interest

	Lighting
	Transparency
	Volume Visualization

	Creating Graphical User Interfaces
	Predefined Dialog Boxes
	Deploying User Interfaces
	Developing User Interfaces
	Working with Application Data
	Interactive User Input

	User Interface Objects
	Finding Objects from Callbacks
	GUI Utility Functions
	Controlling Program Execution

	Functions – Alphabetical List
	Arithmetic Operators + - * / \ ^ '
	Relational Operators <��>�<=�� >=�== ~=
	Logical Operators, Element-wise & | ~
	Logical Operators, Short-circuit && ||
	Special Characters [] () {} = ' , ; % !
	Colon :
	abs
	acos
	acosh
	acot
	acoth
	acsc
	acsch
	actxcontrol
	actxserver
	addframe
	addpath
	addproperty (COM)
	airy
	alim
	all
	allchild
	alpha
	alphamap
	angle
	ans
	any
	area
	asec
	asech
	asin
	asinh
	assignin
	atan
	atan2
	atanh
	audiodevinfo
	audioplayer
	audiorecorder
	auread
	auwrite
	avifile
	aviinfo
	aviread
	axes
	Axes Properties
	axis
	balance
	bar, barh
	bar3, bar3h
	base2dec
	beep
	besselh
	besseli
	besselk
	besselj
	bessely
	beta
	betainc
	betaln
	bicg
	bicgstab
	bin2dec
	bitand
	bitcmp
	bitget
	bitmax
	bitor
	bitset
	bitshift
	bitxor
	blanks
	blkdiag
	box
	break
	brighten
	builtin
	bvp4c
	bvpget
	bvpinit
	bvpset
	bvpval
	calendar
	camdolly
	camlight
	camlookat
	camorbit
	campan
	campos
	camproj
	camroll
	camtarget
	camup
	camva
	camzoom
	capture
	cart2pol
	cart2sph
	case
	cat
	catch
	caxis
	cd
	cdf2rdf
	cdfepoch
	cdfinfo
	cdfread
	cdfwrite
	ceil
	cell
	cell2mat
	cell2struct
	celldisp
	cellfun
	cellplot
	cellstr
	cgs
	char
	checkin
	checkout
	chol
	cholinc
	cholupdate
	circshift
	cla
	clabel
	class
	clc
	clear
	clear (serial)
	clf
	clipboard
	clock
	close
	close
	closereq
	cmopts
	colamd
	colmmd
	colorbar
	colordef
	colormap
	colormapeditor
	ColorSpec
	colperm
	comet
	comet3
	compan
	compass
	complex
	computer
	cond
	condeig
	condest
	coneplot
	conj
	continue
	contour
	contour3
	contourc
	contourf
	contourslice
	contrast
	conv
	conv2
	convhull
	convhulln
	convn
	copyfile
	copyobj
	corrcoef
	cos
	cosh
	cot
	coth
	cov
	cplxpair
	cputime
	cross
	csc
	csch
	csvread
	csvwrite
	cumprod
	cumsum
	cumtrapz
	curl
	customverctrl
	cylinder
	daspect
	date
	datenum
	datestr
	datetick
	datevec
	dbclear
	dbcont
	dbdown
	dblquad
	dbmex
	dbquit
	dbstack
	dbstatus
	dbstep
	dbstop
	dbtype
	dbup
	dde23
	ddeadv
	ddeexec
	ddeget
	ddeinit
	ddepoke
	ddereq
	ddeset
	ddeterm
	ddeunadv
	deal
	deblank
	dec2base
	dec2bin
	dec2hex
	deconv
	del2
	delaunay
	delaunay3
	delaunayn
	delete
	delete (COM)
	delete (serial)
	delete (timer)
	deleteproperty (COM)
	demo
	depdir
	depfun
	det
	detrend
	deval
	diag
	dialog
	diary
	diff
	dir
	disp
	disp (serial)
	disp (timer)
	display
	divergence
	dlmread
	dlmwrite
	dmperm
	doc
	docopt
	docroot
	dos
	dot
	double
	dragrect
	drawnow
	dsearch
	dsearchn
	echo
	edit
	eig
	eigs
	ellipj
	ellipke
	ellipsoid
	else
	elseif
	end
	eomday
	eps
	erf, erfc, erfcx, erfinv, erfcinv
	error
	errorbar
	errordlg
	etime
	etree
	etreeplot
	eval
	evalc
	evalin
	eventlisteners (COM)
	events (COM)
	exist
	exit
	exp
	expint
	expm
	eye
	ezcontour
	ezcontourf
	ezmesh
	ezmeshc
	ezplot
	ezplot3
	ezpolar
	ezsurf
	ezsurfc

	Index

